Commit Graph

226 Commits

Author SHA1 Message Date
Kawrakow
9d0b834405 CUDA: set compute parameters via command line arguments (#910)
* cuda: set compute parameters via command line arguments

* Also llama-bench

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-07 07:11:23 +02:00
firecoperana
0378f38c27 model : Port Minimax M2 from mainline (#907)
Co-authored-by: firecoperana <firecoperana>
2025-11-06 18:09:24 +02:00
Kawrakow
1a3aaa33c1 Merge Q and K into a single tensor (#892)
* Merge Q and K into a single tensor

* Make V mul mat follow QK mul mat

so they can be fused, which gives a slightly bbetter TG performance.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-05 10:54:36 +02:00
Kawrakow
abb966eba1 Allow quantization of ffn_gate_inp (#896)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-05 10:44:32 +02:00
firecoperana
15159a87d4 Add vision support in llama-server (#901)
* server: add support for vision model
webui: add support for vision model

* server : remove hack for extra parallel slot#10187

* llama : fix KV shift for qwen2vl #13870

* add no-context-shift parameter

---------

Co-authored-by: firecoperana <firecoperana>
2025-11-05 10:43:46 +02:00
Thireus ☠
5536e99d42 Port of Qwen3-VL support from mainline (#883)
* Port of Qwen3-VL for latest ik_llama.cpp

- convert_hf_to_gguf.py - Not touched, use llama.cpp to convert model instead
- sysl and metal support for imrope not added
- Vulkan support for imrope not tested
- Code not tested

* Bugfix n_embd was declared multiple times

https://github.com/ikawrakow/ik_llama.cpp/pull/883#issuecomment-3471179655

* Fix n_embd issue with qwen3vl

* model.output tensor not required

https://github.com/ikawrakow/ik_llama.cpp/pull/883#discussion_r2480388389

* Improved logic for qkv combined tensors

59ceaf8fcb (r2480395800)
59ceaf8fcb (r2480398187)

* Fix n_embd for merge_qkv() + cleaner code

https://github.com/ikawrakow/ik_llama.cpp/pull/883#discussion_r2481227395

* Revert TENSOR_NOT_REQUIRED
2025-11-04 19:20:54 +02:00
Kawrakow
cd8d0b0832 Disable some fusion, RoPE cache off by default (#894)
* Disable some fusion and make rope cahe off by default

* Minor

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-04 07:50:14 +02:00
Kawrakow
1cfd19862f RoPE cache (#887)
* Introducing rope cache

When computing RoPE, the rotation angles in each layer
are exactly the same, and only depend on the token positions
(and other constant, model dependent parameters).
So, I wonder, why don't we compute the angles just once
and then reuse for the Q and K RoPE in each layer?

This commit does it as a POC on the CPU, and uses it in
the Qwen3-MoE compute graph.

* cuda: neox works

* WIP

* rope_cache: norm works

* Fused rope+rope

* Fused rope+rope (norm)

* Fused rms+rms+rope+rope (neox) - not working

* WIP

* Also qwen3

* Add command line arg to disable rope cache

* Disable RoPE cache if rope type is not neox or norm

* Add missing break after merge with main

* Fused fused_rms+fused_rms+rope+rope (with -mqkv)

* Fused fused_rms+fused_rms+rope+rope (without -mqkv)

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-03 18:42:20 +02:00
Iwan Kawrakow
58922c23ca Compiler warning 2025-10-31 14:58:00 +02:00
Kawrakow
8c8a7fb7c8 Fused Q and K fused_rms_norm for TG on CUDA (#882)
* Biased mmvq: minor optimization

* Fusing Q and K rms_norm for TG on CUDA

* Remove commented out code

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-31 14:41:28 +02:00
firecoperana
c7dbe3f2c1 Disable pipeline parallel for tensor override or allocation failed (#879)
* disable pipeline parallelism when tensor override present

* disable pipeline parallel if allocation failed

---------

Co-authored-by: firecoperana <firecoperana>
2025-10-31 14:20:48 +02:00
Kawrakow
14760aaf46 Merge Q, K, V (#878)
* POC: merge Q, K, V into a single, contiguous tensor

Done just for Qwen3-MoE, where I see a 4% uplift in TG.
PP performance gain is sub-percent, if any.
Still, it seems it makes sense to do it in general given
the TG performance gain.

* WIP

* merge_qkv: it works for gpt-oss

...but we see a smaller TG gain (~1.5%)

* WIP

* Don't ignore the return value of create_tensors()

else, when q, k, v get merged and we are running on the CPU,
we get a crash because the backend is trying to use mmap,
but that no longer works.

* merge_qkv: bias can be required, optional, or mandatory

* merge_qkv: glm4.5moe

* merge_qkv: add command loine argument to enable

* merge_qkv: fix tensor dimensions

* merge_qkv: llama-4

* merge_qkv: qwen3 (dense)

* merge_qkv: simplify build_qwen3moe

* cohere2 - simplify graph building

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-30 10:49:48 +02:00
Iwan Kawrakow
9a651e8476 Fix device parsing bug 2025-10-29 08:28:57 +02:00
Iwan Kawrakow
65763a2a70 Fix warnings about LLAMA_DEBUG being redefined 2025-10-27 18:41:03 +02:00
firecoperana
6dc5bd847b Support --device and --device-draft parameter (#866)
* add --device and --device-draft parameter

* don't print debug message in release mode

* fix

* bug fix to throw exception when no device specified

* add const

---------

Co-authored-by: firecoperana <firecoperana>
2025-10-27 18:13:28 +02:00
Kawrakow
bdf4f0ddce Even more fused ops (#868)
* Fuse Q, K, V gemv+add

* More gemv+add fusing

* Faster copy when tensors are contiguous

Relevant for storing data into the KV cache. I see ~1% speedup
for fast models (Ling-mini-2.0, gpt-oss-20b, etc.)

* Cleanup

* Make sure the bias really is 1 row to use fusion

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-27 16:09:01 +02:00
Kawrakow
16f30fcf31 Change flash attention and fmoe to be on by default (#863)
* Change fmoe to be on by default

* Change default fmoe also in llama-bench

* Change flash attention to be on by default

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-25 09:37:28 +03:00
Kawrakow
2522c97dc9 Faster tensor name formatting (#860)
* Adding fused mul+multi_add + CPU implementation

* fused mul+multi_add: command line argument to disable it

* Faster tensor name formatting

We gain ~1% for Ling-mini-2.0 when running on CUDA.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-24 07:46:18 +03:00
Kawrakow
db3ba4999f Fused mul + multi_add op (#858)
* Adding fused mul+multi_add + CPU implementation

* fused mul+multi_add: CUDA

* fused mul+multi_add: command line argument to disable it

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-24 07:40:35 +03:00
Kawrakow
483cea527d Fix experts mul node name (#857)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-23 09:46:01 +03:00
Kawrakow
0e1d33ca4a Fuse add+add+fused_rms (#853)
* Fuse add+add+fused_rms

* Try this

* Macro to easily enable/disable fusion

* Various:

* Check that all tensors involved are on the same device before applying fusion
* Fuse sigmoid+scale+sum_rows+div
* Fix the fused bailingmoe2 experts selection

The issue there was that the bias was not per row, but per
expert group, so only the first n_per_group biases were used
for al experts.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-22 16:18:11 +03:00
Kawrakow
caf9759c97 Fuse add + fused_rms_norm (CUDA) (#852)
* Combine all calls to llm_build_norm to a single line

so more easily check what kind of arguments are being passed
by simply using grep.

* Combine add + fused_rms_norm

For many models this happens at each layer: the result of the
layer is added to the ayer input, which then becomes the input
to the next layer, which then is typically normalized via
fused_rms_norm.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-21 14:29:50 +03:00
Kawrakow
22540cee60 Do not allocate KV cache for unused layers (#843)
* Do not allocate KV cache for unused layers

* Do not apply experts weight scale if it is 1

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-20 10:09:39 +03:00
Kawrakow
28d3e63805 Various fused ops around expert selection (#840)
* Fuse sigmoid+add+grouped_topk+get_rows (CPU)

* Fix CPU + CUDA

but CUDA is somehow not 100% correct as I get a slightly different
PPL (lower!)

* Minor

* Fuse sigmoid+add+topk+get_rows (CUDA)

* Fuse sigmoid+add+topk+get_rows (CPU)

* Fuse topk+view+get_rows+reshape+softmax (CPU)

* Fuse topk+view+get_rows+reshape+softmax (CUDA)

* cpu: turn off the openai topk fusing for now

Something is not right and I don't see the bug.
On the CPU one doesn't gain much if anything, so not a big loss.

* Also fuse sum_rows and div

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-19 19:02:46 +03:00
Kawrakow
dbfd151594 Grouped expert routing (CPU only) (#836)
* Better argsort (CPU)

* Attemt at grouped topk

* This seems to do the trick for grouped experts routing

* Cleanup

* Trying to merge, something is not right

* Working merged grouped top_k (CPU)

* Add command line option to enable grouped expert routing

* Add grouped expert routing option to llama-bench

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-16 14:57:02 +03:00
Kawrakow
9d364b88ba Adding Ling/Ring (a.k.a., Bailing-MoE2) support (#833)
* Adding Ling/Ring (a.k.a., Bailing-MoE2)

* Add expert group selection (not working, so turned off)

* BailingMoE2 conversion

* WIP

* Bits and pieces

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-15 14:20:40 +03:00
Kawrakow
8d0d01a593 gpt-oss: duplicate experts biases when necessary (#829)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-14 14:38:40 +03:00
Kawrakow
9724ea9213 Attention mask tweaks for better long context performance (#825)
* Parallelize mask

We see non-negligible PP gains for long contexts.
More importantly, the strange drop in performance
observed for GPT-OSS for context >= 32k tokens is gone.

* Whith FA on, create mask as f16 directly

* WIP

* Reduce KQ mask padding to 16

Why was it 64 in the first place?

I don't observe any issues, while TG performance
for long contexts improves by 2-4%.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-13 14:01:11 +03:00
Kawrakow
1db0c490be Fix PATH_MAX not defined on Windows (#828)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-13 09:25:57 +03:00
Kawrakow
0030bc89c9 Fix performance regression introduced in #823 (#826)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-13 08:09:55 +03:00
Kawrakow
0ad1d34090 Enable and clean up compiler warnings in src (#824)
* WIP: enable and clean up warnings in src

* All warnings handled

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-11 16:01:13 +03:00
Kawrakow
335a1f9b71 Refactor file llama.cpp (#823)
* llama_model and llama_hparams

* llama_build_context

Surprisingly small reduction in llama.cpp compile time given
the reduction in LOCs (22k -> 14k)

* LLM_TN

llama.cpp compilation: 50 s -> 33 s

* llama_quantize

* arch names

* All graph building is now in llm-build-context.cpp

* hparams loading

llama.cpp is now just 9300 LOC, but still takes 32 seconds to compile.

* We are now at 6 seconds to build the src folder

* load -> create

We are not actually loading the tensors, but just creating them.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-11 11:35:20 +03:00
Downtown-Case
6051ba25ee Mark some multi-prediction tensors as not required. (#814) 2025-10-01 20:37:31 +02:00
Kawrakow
87e4762720 Port mdmd from mainline + Qwen2/2.5-VL support (#798)
* Add mtmd: the beginning

* Add mtmd: mtmd.cpp compiles

* Add mtmd: clip initialization compiles

* Add mtmd: clip.cpp compiles

* Add mtmd: builds successfully

* Add CPU implementation for GGML_OP_GLU

* Add CUDA implementation for GGML_OP_GLU

* Add CPU implementation for GGML_OP_CONV_2D and GGML_OP_CONV_2D_DW

* Add CUDA implementation for GGML_OP_CONV_2D and GGML_OP_CONV_2D_DW

* Add mtmd: refresh CPU rope

* Add mtmd: refresh CUDA rope

* Add mtmd: add Qwen2-VL

* Add mtmd: Qwen2.5-VL text seems to work with this change

* Add mtmd: fix swiglu

* Add mtmd: use LOG_TEE so generated tokens show up in terminal

* Add mtmd: do not attempt to load a GPU backend if none are available

* GLU, not GPU

* Fix typo

* Fix new/free mismatch

* LOG stuff

* Add mtmd: this fixes gibberish on second image

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-09-27 08:45:29 +02:00
Kawrakow
8e497e704e Fused matrix multiplications (CUDA and CPU) (#796)
* Quick attempt to fuse the Q, K, V GEMMs

Doesn't do much on the CPU

* Doesn't do much on the GPU either

* Use llm_build_mul_mat_qkv

* This is not needed

* Revert timing on committed by mistake

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-09-24 16:52:54 +02:00
Kawrakow
0d1bbde1c4 Fix dequantization when requantizing (#795)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-09-24 12:44:30 +02:00
firecoperana
8cd2d7ccd7 model : add grok-2 support (#782)
Co-authored-by: firecoperana <firecoperana>
2025-09-23 16:31:01 +02:00
Kawrakow
18f04350e9 cuda: fused top_k+softmax as used in most MoE models (#789)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-09-23 13:45:57 +02:00
firecoperana
33e071201f Add Ernie 4.5 MOE and 0.3B Support (#759)
* Add Ernie4_5MoeModel

* add ernie 4.5 0.3B model

---------

Co-authored-by: firecoperana <firecoperana>
2025-09-05 11:54:35 +02:00
firecoperana
cec8b70a7e llama: enable K-shift for quantized KV cache for cuda (#760)
cuda: add q8_0->f32 cpy operation (#9571)
It will fail on unsupported backends or quant types.

Co-authored-by: Ivan <nekotekina@gmail.com>
2025-09-05 11:54:18 +02:00
Kawrakow
0c15494c30 Offload only activated experts to the GPU (#698)
* Offload only activated experts

* This seems to do the trick for -fmoe

* Do not recalculate activated expers for fused up/gate

* Log out of bounds access details

* Add a command line argument

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-09-04 12:22:30 +02:00
Kawrakow
f5e68bf8b6 Alternative CUDA FA for SWA models (#754)
* Bounds for flash attention

* Add n_swa to FA parameters

* Fix it

* This seems very slightly better

* Using vec kernel when we have SWA

* Need also this

* f32 vec kernel

* This is slightly better

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-09-04 08:42:18 +02:00
Kawrakow
62f5382c2b Revert "CUDA: prompt processing optimizations for MoE models (#739)" (#748)
This reverts commit f22a9ef95a.

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-09-02 06:55:48 +02:00
Iwan Kawrakow
d10d90ae27 Remove double definition of LLAMA_LOG_DEBUG 2025-09-01 08:42:04 +03:00
firecoperana
0f9ecaec04 Tool calls support from mainline (#723)
* Tool calls support from mainline

* update cmake

* revert api for /completions

* Fix broken thinking process for gpt-oss

* add missing args and fix webui bugs

* add missing args and fix webui bugs2

* Fix reasoning format error

* add usage

* change default post_sampling_probs to true

* add back generated_text

* Remove server endpoints tests

* add log

* Chat fixes

* Remove logs

* webui: revert extra handling of thinking process

---------

Co-authored-by: firecoperana <firecoperana>
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-09-01 08:38:49 +03:00
Kawrakow
b66cecca45 Fused FFN_UP+FFN_GATE op (#741)
* Fused up+gate+unary for regular (not MoE) FFN - CPU

* WIP CUDA

* Seems to be working on CUDA

For a dense model we get 2-3% speedup for PP and ~0.6% for TG.

* Add command line option

This time the option is ON by default, and one needs to turn it
off via -no-fug or --no-fused-up-gate

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-08-31 18:16:36 +03:00
Kawrakow
f22a9ef95a CUDA: prompt processing optimizations for MoE models (#739)
* Skip the row id computation for the ffn_down op

Sadly, almost negligible performance gain.

* Also this doesn't do much

* Also this barely moves the needle

* This is slightly better

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-08-30 12:09:41 +03:00
Kawrakow
872ac10b02 Make yarn_log_multiplier optional (#738)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-08-28 14:09:59 +03:00
Kawrakow
dac5b48398 Check for NaNs while loading the model. (#727)
* Check for NaNs while loading the model.

* Also tell which experts have NaNs.

* Add command line option to validate quants

* Add checks for more quantization types

* Add checks for more quantizagtion types

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-08-27 19:00:17 +03:00
Mohan Krishnan
50f7119dfd Fix undefined template std::basic_string<char> (#726)
Getting this error when compiling on Mac with clang 17
Simple fix, add the string header in src/llama-impl.h

Co-authored-by: Mohan Krishnan <mohan.krishnan@grab.com>
2025-08-25 11:34:01 +03:00