Commit Graph

2639 Commits

Author SHA1 Message Date
源文雨
b6c1bfc960 fix: LLAMA_CUBLAS=1 undefined reference 'shm_open' (#1080) 2023-04-20 15:28:43 +02:00
Stephan Walter
091a53228c AVX2 optimization for vec_dot_q4_2_q8_0 (#1068) 2023-04-20 08:45:41 +02:00
slaren
881ecfb4ef Improve cuBLAS performance by dequantizing on the GPU (#1065) 2023-04-20 03:14:14 +02:00
CRD716
7ecc2d9e42 Minor: Readme fixed grammar, spelling, and misc updates (#1071) 2023-04-19 19:52:14 +00:00
Kawrakow
e0e10251a3 Q4_2 quantization with rmse-optimized scale and quants (#1062)
* Q4_2 quantization with rmse-optimized scale and quants

For quantize-stats we get
q4_2: rmse 0.00159301, maxerr 0.17480469, 95pct<0.0030, median<0.0012

For 7B perplexity with BLAS enabled we get 6.2038 after 655 chunks.

Quantization is slow (~90 seconds on my Mac for 7B) as not
multi-threaded as in PR #896.

* ggml : satisfy the sanitizer builds

Not sure why this makes them fail

* Better follow ggml conventions for function names

* Fixed type as per reviewer comment

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-04-19 20:20:14 +02:00
Georgi Gerganov
73a59affb2 ggml : use 8-bit precision for Q4_1 intermediate results (#1047)
* ggml : use 8-bit precision for Q4_1 intermediate results (ARM)

* ggml : optimize ggml_vec_dot_q4_1_q8_0() via vmalq_n_f32

56 ms/token with Q4_1 !

* ggml : AVX2 implementation of ggml_vec_dot_q4_1_q8_0 (#1051)

* gitignore : ignore ppl-*.txt files

---------

Co-authored-by: slaren <2141330+slaren@users.noreply.github.com>
2023-04-19 20:10:08 +03:00
Georgi Gerganov
068083ca76 readme : add warning about Q4_2 and Q4_3 2023-04-19 19:07:54 +03:00
Stephan Walter
ec0e355be1 ggml : Q4 cleanup - remove 4-bit dot product code (#1061)
* Q4 cleanup

* Remove unused AVX512 Q4_0 code
2023-04-19 19:06:37 +03:00
slaren
bc5977cc90 Add NVIDIA cuBLAS support (#1044) 2023-04-19 11:22:45 +02:00
slaren
dee44e099f Multi-threaded ggml_cpy (#1035)
* Multi-threaded ggml_cpy

* Update ggml.c

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Also fix wdata offset in ggml_compute_forward_add_q_f32

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-04-19 00:53:24 +02:00
Georgi Gerganov
4207b4b129 ggml : add new Q4_2 quantization (ARM only) (#1046)
* ggml : Q4_2 ARM

* ggml : add ggml_is_quantized()

* llama : update llama_type_name() with Q4_2 entry

* ggml : speed-up q4_2

- 4 threads: ~100ms -> ~90ms
- 8 threads:  ~55ms -> ~50ms

* ggml : optimize q4_2 using vmlaq_n_f32 + vmulq_n_f32
2023-04-18 23:54:57 +03:00
Georgi Gerganov
5eaa6d25cf ggml : scratch that - vmlaq_n_f32 is always better
Had a background process that was messing with the timings
2023-04-18 23:11:23 +03:00
Georgi Gerganov
998b1d59c8 gitignore : vdot 2023-04-18 23:00:08 +03:00
Georgi Gerganov
47aacf4239 ggml : optimize ggml_vec_dot_q4_0_q8_0() using vectorized accumulators 2023-04-18 22:59:17 +03:00
Kawrakow
684aeeb3e0 Adding a simple program to measure speed of dot products (#1041)
On my Mac, the direct Q4_1 product is marginally slower
(~69 vs ~55 us for Q4_0). The SIMD-ified ggml version
is now almost 2X slower (~121 us).

On a Ryzen 7950X CPU, the direct product for Q4_1 quantization
is faster than the AVX2 implementation (~60 vs ~62 us).

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-04-18 19:00:14 +00:00
Georgi Gerganov
426d0c45f4 readme : update hot topics about new LoRA functionality 2023-04-18 20:10:26 +03:00
Georgi Gerganov
b2ef9f4eae ci : do not run on drafts 2023-04-18 19:57:06 +03:00
Ivan Komarov
b1f527be59 Do not close file after mmap (Windows version) (#1034) 2023-04-18 03:15:50 +02:00
Atsushi Tatsuma
3c9a24cc72 readme : add Ruby bindings (#1029) 2023-04-17 22:34:35 +03:00
Cameron
5e5d6ffdaa add 4_0 to default outfile namestr dict (#1031)
this came up when trying to convert the gpt4all-lora-unfiltered-quantized.bin file
2023-04-17 20:26:23 +02:00
slaren
dc0fa95077 Add LoRA support (#820) 2023-04-17 17:28:55 +02:00
Arik Poznanski
368d63e55f llama : well-defined static initialization of complex objects (#927)
* Replaced static initialization of complex objects with a initialization on first use. This prevents an undefined behavior on program run, for example, crash in Release build, works in Debug build

* replaced use of auto with exact type to avoid using -std=c++14

* Made the assessors functions for static maps be static const
2023-04-17 17:41:53 +03:00
Georgi Gerganov
9bed0fc823 quantize-stats : fix bug in --type argument 2023-04-17 17:31:06 +03:00
Georgi Gerganov
42ea22af13 ggml : avoid using ggml_fp16_to_fp32() and ggml_fp32_to_fp16() in ggml.c 2023-04-17 16:16:23 +03:00
Ivan Komarov
fb550a0f64 Speedup the AVX-512 implementation of ggml_vec_dot_q4_0() (#933) 2023-04-17 15:10:57 +02:00
slaren
b5fefdd2a8 Fix: do not close file on mmap (#1017) 2023-04-16 21:27:38 +02:00
Georgi Gerganov
aa84f3b5d5 stdout : vertical align outputs for better readibility 2023-04-16 13:59:27 +03:00
Pavol Rusnak
c5cb4f71c6 examples: add missing <ctime> include for time() (#1011) 2023-04-16 10:13:00 +00:00
nanahi
598810e9c4 Fix msys2 build error and warnings (#1009) 2023-04-16 11:13:42 +02:00
comex
a0909d9b15 convert.py: Fix loading safetensors and ggml format on Windows (#991)
Calling `mmap.mmap` on Windows apparently resets the file offset of the
raw file object (and makes the BufferedReader return a *negative* file
offset).  For safetensors, avoid using the file offset after calling
mmap.  For GGML format, explicitly save and restore the offset.

Fixes #966.
2023-04-15 23:53:21 +02:00
Stephan Walter
0363b17de2 Fix potential int8 overflow in non-SIMD vec_dot (#986) 2023-04-15 18:28:56 +00:00
Stephan Walter
378ffbab0e Refactor ggml.c for future tensor types (#1001) 2023-04-15 16:25:38 +00:00
Georgi Gerganov
053915a751 ggml : add Q8_0 quantization for intermediate results (#951)
* ggml : add Q8_0 quantization for intermediate results

* quantize-stats : fix test + add it to Makefile default

* Q8: use int8_t, AVX/AVX2 optimizations

* ggml : fix quantize_row_q8_0() ARM_NEON rounding

* minor : updates after rebase to latest master

* quantize-stats : delete obsolete strings

* ggml : fix q4_1 dot func

---------

Co-authored-by: Stephan Walter <stephan@walter.name>
2023-04-15 17:53:22 +03:00
Georgi Gerganov
a15576393c ggml : use posix_memalign on non-Windows env 2023-04-15 14:25:45 +03:00
Ivan Komarov
ae921afa4a benchmark : fix result validation in benchmark-q4_0-matmult (#987) 2023-04-15 08:51:54 +03:00
katsu560
05d97008d3 cmake : add finding the OpenBLAS header file (#992) 2023-04-15 08:51:11 +03:00
Pavol Rusnak
87bb0f74bd Revert "main : alternative instruct mode (Vicuna support, etc.) (#863)" (#982)
This reverts commit f4d277ae17.
2023-04-14 22:58:43 +03:00
Pavol Rusnak
66cf09af08 py : bump sentencepiece to 0.1.98 to support Python 3.11 (#976) 2023-04-14 19:46:49 +00:00
Stephan Walter
50879f9f5b make : fix dependencies, use auto variables (#983) 2023-04-14 22:39:48 +03:00
Pavol Rusnak
5de4cdb1fb Expose type name from ggml (#970)
Avoid duplication of type names in utils

Co-authored-by: Håkon H. Hitland <haakon@likedan.net>
2023-04-14 20:05:37 +02:00
Tomáš Pazdiora
e5fe7fa65c main : alternative instruct mode (Vicuna support, etc.) (#863)
* Add support for configs, add configurable prefixes / suffixes, deprecate instruct mode, add stop prompt

* Add multiline mode, update text input.

* bugfix

* update implementation

* typos

* Change --multiline implementation to be toggled by EOF.

* bugfix

* default multiline mode

* add more configs

* update formating

* update formatting

* apply suggestions
2023-04-14 18:19:17 +03:00
Kerfuffle
0c6e3a6e6f ggml : add unary and binary map operations (#874)
* GGML map ops proof of concept.

* Various cleanups.

Add handling for task setting.

Add handling for ggml_compute_backward.

Rename functions to ggml_map_unary_f32 and ggml_map_binary_f32

Fix compiler warnings related to casting function pointers and `void *`

Reorder functions and definitions based on the GGML op number.

Use typedefs for map op function pointer types.

* Fix position of map ops cases in ggml_compute_forward
2023-04-14 17:43:55 +03:00
Pavol Rusnak
147f0b769c py : cleanup dependencies (#962)
after #545 we do not need torch, tqdm and requests in the dependencies
2023-04-14 15:37:11 +02:00
Pavol Rusnak
dd9b2450a6 py : fix flake8 and isort nitpicks (#960) 2023-04-14 14:23:21 +02:00
Georgi Gerganov
64179095f2 ggml : minor 2023-04-14 13:31:29 +03:00
Georgi Gerganov
ebc6e99a4a ggml : always allocate buffers with size multiple of GGML_MEM_ALIGN 2023-04-14 13:31:15 +03:00
comex
3573ed90b8 py : new conversion script (#545)
Current status: Working, except for the latest GPTQ-for-LLaMa format
  that includes `g_idx`.  This turns out to require changes to GGML, so
  for now it only works if you use the `--outtype` option to dequantize it
  back to f16 (which is pointless except for debugging).

  I also included some cleanup for the C++ code.

  This script is meant to replace all the existing conversion scripts
  (including the ones that convert from older GGML formats), while also
  adding support for some new formats.  Specifically, I've tested with:

  - [x] `LLaMA` (original)
  - [x] `llama-65b-4bit`
  - [x] `alpaca-native`
  - [x] `alpaca-native-4bit`
  - [x] LLaMA converted to 'transformers' format using
        `convert_llama_weights_to_hf.py`
  - [x] `alpaca-native` quantized with `--true-sequential --act-order
        --groupsize 128` (dequantized only)
  - [x] same as above plus `--save_safetensors`
  - [x] GPT4All
  - [x] stock unversioned ggml
  - [x] ggmh

  There's enough overlap in the logic needed to handle these different
  cases that it seemed best to move to a single script.

  I haven't tried this with Alpaca-LoRA because I don't know where to find
  it.

  Useful features:

  - Uses multiple threads for a speedup in some cases (though the Python
    GIL limits the gain, and sometimes it's disk-bound anyway).

  - Combines split models into a single file (both the intra-tensor split
    of the original and the inter-tensor split of 'transformers' format
    files).  Single files are more convenient to work with and more
    friendly to future changes to use memory mapping on the C++ side.  To
    accomplish this without increasing memory requirements, it has some
    custom loading code which avoids loading whole input files into memory
    at once.

  - Because of the custom loading code, it no longer depends in PyTorch,
    which might make installing dependencies slightly easier or faster...
    although it still depends on NumPy and sentencepiece, so I don't know
    if there's any meaningful difference.  In any case, I also added a
    requirements.txt file to lock the dependency versions in case of any
    future breaking changes.

  - Type annotations checked with mypy.

  - Some attempts to be extra user-friendly:

      - The script tries to be forgiving with arguments, e.g. you can
        specify either the model file itself or the directory containing
        it.

      - The script doesn't depend on config.json / params.json, just in
        case the user downloaded files individually and doesn't have those
        handy.  But you still need tokenizer.model and, for Alpaca,
        added_tokens.json.

      - The script tries to give a helpful error message if
        added_tokens.json is missing.
2023-04-14 10:03:03 +03:00
Georgi Gerganov
d7f330d1c4 ggml : fix q4_1 dot product types 2023-04-14 09:45:42 +03:00
Howard Su
e0dbf8218f ggml : optimize rope function to avoid call powf in the tight loop (#807) 2023-04-14 09:24:52 +03:00
Gary Linscott
5d44c13ecb perplexity : add support for batch size to --perplexity (#407)
* Add support to batch size for perplexity

* Revert "Fix memory allocation issues and seg faults"

This reverts commit 4870e455b3.

* update from merge

* Remove perplexity from main

* updates

* Update batch size for efficiency
2023-04-14 00:50:42 +03:00