* Implement function calling / tools for ik_llama.cpp for Kimi K2
* Implement basic tool choice
* Backport llama.cpp tool calls support
* Enhance function calls with improved chat parser and string utilities
- Add new chat.h/chat.cpp and chat-parser.h/chat-parser.cpp for better chat handling
- Improve function calls parsing with fallback to llama.cpp builder pattern
- Add string utility functions (starts_with, ends_with, find_partial_stop)
- Update README with function calls testing instructions
- Enhance Kimi K2 parser and function calls documentation
- Add comprehensive test suite for function calls
- Update CMakeLists.txt and Makefile for new components
* Enhance function calling with unified streaming and parser improvements
- Fix streaming content cleanup to prevent function syntax in output
- Unify content extraction patterns with llama.cpp approach
- Improve Kimi K2 parser robustness and partial content handling
- Add comprehensive test coverage for function call scenarios
- Optimize chat message parsing and diff computation
* Replace hardcoded values in kimi_k2_parser.hpp with named constants
- Add compile-time constants for all token format markers
- Add compile-time constants for XML format markers
- Add compile-time constants for simple format patterns
- Replace all hardcoded string literals with named constants
- Use compile-time length calculation to avoid manual counting
- Improve maintainability and reduce magic numbers throughout parser
* Fix duplicate common_chat_parse definition
- Remove duplicate implementation from chat-parser.cpp
- Keep single implementation in chat.cpp following llama.cpp patterns
- Resolves linker error: multiple definition of common_chat_parse
* Fix JSON assertion failure in function call parsing
- Add proper validation that 'function' field is an object before accessing nested keys
- Handle missing 'arguments' field gracefully with default "{}"
- Prevents crash when parsing malformed tool call JSON structures
* Add comprehensive Qwen3 XML tool calling support with unit tests
- Implement Qwen3 XML parser with <tool_call>{"name": "func", "arguments": {...}}</tool_call> format
- Add model detection and routing for Qwen3 vs Kimi-K2 formats
- Create 8 comprehensive unit tests covering parsing, streaming, error handling
- Fix token format cleaning bug in kimi_k2_parser.hpp processing order
- Remove progressive parsing code and related utilities
- Add tool injection support for Qwen3 format in server utils
* Add DeepSeek R1 function calling support with comprehensive unit tests
- Implement complete DeepSeek R1 tool call parsing in common_chat_parser.cpp
- Add DeepSeek R1 model detection and tool injection in deepseek_r1_tools.hpp
- Update function_calls.hpp with DeepSeek R1 integration and content extraction
- Update documentation to reflect support for Kimi-K2, Qwen3, and DeepSeek R1 models
- Add comprehensive unit tests for DeepSeek R1 reasoning, tool calls, and integration
- Port exact implementation patterns from original llama.cpp for compatibility
Key features:
- Native DeepSeek R1 format: <|tool▁calls▁begin|>function<|tool▁sep|>name```json{}```<|tool▁call▁end|><|tool▁calls▁end|>
- Reasoning content extraction from <think>...</think> tags
- Multiple tool calls support with separate call blocks
- Model detection for deepseek-r1, deepseek_r1 naming patterns
- Integration with incremental parsing and streaming support
* Add partial parsing support for JSON and regex
- json-partial.h/cpp: JSON partial parsing functionality
- regex-partial.h/cpp: Regex partial parsing functionality
* Add format_chat integration tests for Qwen3 tool injection
- Add test_qwen3_format_chat_integration() to validate tool injection pipeline
- Test tool injection conditions and system message enhancement
- Verify JSON formatting and anti-preamble instructions
- Add comprehensive test documentation
Tests confirm tool injection works correctly - conversational preamble
issue is not in ik_llama.cpp but likely in UI configuration.
* Fix Qwen3 tool call parsing - pass model name to parser
Server was not passing model name to parse_chat_message_incremental(),
causing Qwen3 to fall back to Kimi-K2 parser and return tool calls
as content instead of proper tool_calls array.
* Fix non-streaming path to use model-specific parsing
Non-streaming responses were hardcoded to use Kimi-K2 format,
causing Qwen3 XML tool calls to be returned as content instead
of proper tool_calls array. Now uses same model detection as
streaming path for consistency.
* Update Qwen3 function call handling in server and tests
- Enhanced server function call detection and response formatting
- Improved test coverage for Qwen3 tool call scenarios
- Refined XML parsing for better tool execution support
* Add DeepSeek-R1 function call parsing support
Implements comprehensive parsing for all 4 DeepSeek-R1 function call formats:
- Format 1: Standard function call syntax (already supported)
- Format 2: Alternative function call patterns (already supported)
- Format 3: Tools array format - function\n```json\n{"tools": [...]}
- Format 4: XML wrapped format - <tool_call>function</think>Name\n```json\n{...}```</tool_call>
Key changes:
- Added parse_deepseek_r1_tools_array() following original parse_prefixed_json_tool_call_array pattern
- Added parse_deepseek_r1_xml_wrapped() following Hermes-2-Pro XML wrapper patterns
- Integrated both parsers into exception handling chain for robust fallback
- Added comprehensive TDD test coverage for all formats
- Anonymized all confidential information while preserving functionality
Resolves tool_calls_count=0 issue where DeepSeek-R1 models generated valid tool calls
but server failed to parse them correctly.
* Update function_calls.md documentation for DeepSeek-R1 Format 4
- Added Format 4 (XML wrapped) documentation with examples
- Updated implementation notes with correct parser order (3→4→1→2)
- Marked all DeepSeek-R1 formats as working (July 2025 update)
- Updated test status for Format 3 and 4 as passing
- Added parse_deepseek_r1_xml_wrapped() function reference
- Corrected implementation file line numbers
* Fix merge conflict in test-function-calls.cpp
- Removed incomplete merge conflict marker from line 3027
- Ensured all tests compile and pass successfully
- All DeepSeek-R1 formats (1-4) working correctly
- All streaming and content cleaning tests passing
* Fix DeepSeek R1 parsing issue with responses wrapped in think tags
Restore missing consume_rest() call from working PR #648 implementation.
When responses don't contain tool calls, remaining content after reasoning
parsing must be preserved as displayable content.
Fixes issue where entire responses wrapped in <think> tags resulted in
empty content output.
* Implement proper reasoning handling following original llama.cpp patterns
- Add missing reasoning_format and reasoning_in_content fields to common_chat_syntax
- Update try_parse_reasoning to match original llama.cpp logic exactly
- Add TDD test case with reasoning_in_content=true for DeepSeek R1
- Following TDD: test should now pass with proper syntax configuration
Based on original llama.cpp implementation patterns.
* TDD SUCCESS: Fix DeepSeek R1 thinking tag termination issue
✅ Test passes with reasoning_in_content=true configuration
- Content properly preserved: '<think>content</think>' displays fully
- Reasoning field empty as expected
- Following TDD: test-first approach validates the fix
Next: Update server to automatically apply this configuration.
* Complete server integration fix for DeepSeek R1 thinking tag termination
- Server now automatically sets reasoning_in_content=true for DeepSeek R1 models
- Fixes issue where responses wrapped in <think> tags appear empty to users
* Add TDD test case for DeepSeek R1 thinking tag termination issue
- Test reproduces the exact failure scenario reported by user
- Validates that reasoning_in_content=true fixes the issue
- Demonstrates empty content problem and working solution
* Add remaining TDD test changes for DeepSeek R1 thinking tag fix
* Add debug output after upstream merge
* Remove temporary benchmark and debug files
- Remove tests/benchmark-progressive-parsing.cpp (development tool, not part of core functionality)
- Remove tests/reproduce_bug.sh (debugging script, not needed for PR)
* Implement function calling / tools for ik_llama.cpp for Kimi K2
* Implement basic tool choice
* Backport llama.cpp tool calls support
* Enhance function calls with improved chat parser and string utilities
- Add new chat.h/chat.cpp and chat-parser.h/chat-parser.cpp for better chat handling
- Improve function calls parsing with fallback to llama.cpp builder pattern
- Add string utility functions (starts_with, ends_with, find_partial_stop)
- Update README with function calls testing instructions
- Enhance Kimi K2 parser and function calls documentation
- Add comprehensive test suite for function calls
- Update CMakeLists.txt and Makefile for new components
* Enhance function calling with unified streaming and parser improvements
- Fix streaming content cleanup to prevent function syntax in output
- Unify content extraction patterns with llama.cpp approach
- Improve Kimi K2 parser robustness and partial content handling
- Add comprehensive test coverage for function call scenarios
- Optimize chat message parsing and diff computation
* Replace hardcoded values in kimi_k2_parser.hpp with named constants
- Add compile-time constants for all token format markers
- Add compile-time constants for XML format markers
- Add compile-time constants for simple format patterns
- Replace all hardcoded string literals with named constants
- Use compile-time length calculation to avoid manual counting
- Improve maintainability and reduce magic numbers throughout parser
* Fix duplicate common_chat_parse definition
- Remove duplicate implementation from chat-parser.cpp
- Keep single implementation in chat.cpp following llama.cpp patterns
- Resolves linker error: multiple definition of common_chat_parse
* Fix JSON assertion failure in function call parsing
- Add proper validation that 'function' field is an object before accessing nested keys
- Handle missing 'arguments' field gracefully with default "{}"
- Prevents crash when parsing malformed tool call JSON structures
* Add comprehensive Qwen3 XML tool calling support with unit tests
- Implement Qwen3 XML parser with <tool_call>{"name": "func", "arguments": {...}}</tool_call> format
- Add model detection and routing for Qwen3 vs Kimi-K2 formats
- Create 8 comprehensive unit tests covering parsing, streaming, error handling
- Fix token format cleaning bug in kimi_k2_parser.hpp processing order
- Remove progressive parsing code and related utilities
- Add tool injection support for Qwen3 format in server utils
* Add DeepSeek R1 function calling support with comprehensive unit tests
- Implement complete DeepSeek R1 tool call parsing in common_chat_parser.cpp
- Add DeepSeek R1 model detection and tool injection in deepseek_r1_tools.hpp
- Update function_calls.hpp with DeepSeek R1 integration and content extraction
- Update documentation to reflect support for Kimi-K2, Qwen3, and DeepSeek R1 models
- Add comprehensive unit tests for DeepSeek R1 reasoning, tool calls, and integration
- Port exact implementation patterns from original llama.cpp for compatibility
Key features:
- Native DeepSeek R1 format: <|tool▁calls▁begin|>function<|tool▁sep|>name```json{}```<|tool▁call▁end|><|tool▁calls▁end|>
- Reasoning content extraction from <think>...</think> tags
- Multiple tool calls support with separate call blocks
- Model detection for deepseek-r1, deepseek_r1 naming patterns
- Integration with incremental parsing and streaming support
* Add partial parsing support for JSON and regex
- json-partial.h/cpp: JSON partial parsing functionality
- regex-partial.h/cpp: Regex partial parsing functionality
* Add format_chat integration tests for Qwen3 tool injection
- Add test_qwen3_format_chat_integration() to validate tool injection pipeline
- Test tool injection conditions and system message enhancement
- Verify JSON formatting and anti-preamble instructions
- Add comprehensive test documentation
Tests confirm tool injection works correctly - conversational preamble
issue is not in ik_llama.cpp but likely in UI configuration.
* Fix Qwen3 tool call parsing - pass model name to parser
Server was not passing model name to parse_chat_message_incremental(),
causing Qwen3 to fall back to Kimi-K2 parser and return tool calls
as content instead of proper tool_calls array.
* Fix non-streaming path to use model-specific parsing
Non-streaming responses were hardcoded to use Kimi-K2 format,
causing Qwen3 XML tool calls to be returned as content instead
of proper tool_calls array. Now uses same model detection as
streaming path for consistency.
* Update Qwen3 function call handling in server and tests
- Enhanced server function call detection and response formatting
- Improved test coverage for Qwen3 tool call scenarios
- Refined XML parsing for better tool execution support
* Add DeepSeek-R1 function call parsing support
Implements comprehensive parsing for all 4 DeepSeek-R1 function call formats:
- Format 1: Standard function call syntax (already supported)
- Format 2: Alternative function call patterns (already supported)
- Format 3: Tools array format - function\n```json\n{"tools": [...]}
- Format 4: XML wrapped format - <tool_call>function</think>Name\n```json\n{...}```</tool_call>
Key changes:
- Added parse_deepseek_r1_tools_array() following original parse_prefixed_json_tool_call_array pattern
- Added parse_deepseek_r1_xml_wrapped() following Hermes-2-Pro XML wrapper patterns
- Integrated both parsers into exception handling chain for robust fallback
- Added comprehensive TDD test coverage for all formats
- Anonymized all confidential information while preserving functionality
Resolves tool_calls_count=0 issue where DeepSeek-R1 models generated valid tool calls
but server failed to parse them correctly.
* Update function_calls.md documentation for DeepSeek-R1 Format 4
- Added Format 4 (XML wrapped) documentation with examples
- Updated implementation notes with correct parser order (3→4→1→2)
- Marked all DeepSeek-R1 formats as working (July 2025 update)
- Updated test status for Format 3 and 4 as passing
- Added parse_deepseek_r1_xml_wrapped() function reference
- Corrected implementation file line numbers
* Fix merge conflict in test-function-calls.cpp
- Removed incomplete merge conflict marker from line 3027
- Ensured all tests compile and pass successfully
- All DeepSeek-R1 formats (1-4) working correctly
- All streaming and content cleaning tests passing
* Implement function calling / tools for ik_llama.cpp for Kimi K2
* Implement basic tool choice
* Backport llama.cpp tool calls support
* Enhance function calls with improved chat parser and string utilities
- Add new chat.h/chat.cpp and chat-parser.h/chat-parser.cpp for better chat handling
- Improve function calls parsing with fallback to llama.cpp builder pattern
- Add string utility functions (starts_with, ends_with, find_partial_stop)
- Update README with function calls testing instructions
- Enhance Kimi K2 parser and function calls documentation
- Add comprehensive test suite for function calls
- Update CMakeLists.txt and Makefile for new components
* Enhance function calling with unified streaming and parser improvements
- Fix streaming content cleanup to prevent function syntax in output
- Unify content extraction patterns with llama.cpp approach
- Improve Kimi K2 parser robustness and partial content handling
- Add comprehensive test coverage for function call scenarios
- Optimize chat message parsing and diff computation
* Replace hardcoded values in kimi_k2_parser.hpp with named constants
- Add compile-time constants for all token format markers
- Add compile-time constants for XML format markers
- Add compile-time constants for simple format patterns
- Replace all hardcoded string literals with named constants
- Use compile-time length calculation to avoid manual counting
- Improve maintainability and reduce magic numbers throughout parser
* Fix duplicate common_chat_parse definition
- Remove duplicate implementation from chat-parser.cpp
- Keep single implementation in chat.cpp following llama.cpp patterns
- Resolves linker error: multiple definition of common_chat_parse
* Fix JSON assertion failure in function call parsing
- Add proper validation that 'function' field is an object before accessing nested keys
- Handle missing 'arguments' field gracefully with default "{}"
- Prevents crash when parsing malformed tool call JSON structures
* Add comprehensive Qwen3 XML tool calling support with unit tests
- Implement Qwen3 XML parser with <tool_call>{"name": "func", "arguments": {...}}</tool_call> format
- Add model detection and routing for Qwen3 vs Kimi-K2 formats
- Create 8 comprehensive unit tests covering parsing, streaming, error handling
- Fix token format cleaning bug in kimi_k2_parser.hpp processing order
- Remove progressive parsing code and related utilities
- Add tool injection support for Qwen3 format in server utils
* Add DeepSeek R1 function calling support with comprehensive unit tests
- Implement complete DeepSeek R1 tool call parsing in common_chat_parser.cpp
- Add DeepSeek R1 model detection and tool injection in deepseek_r1_tools.hpp
- Update function_calls.hpp with DeepSeek R1 integration and content extraction
- Update documentation to reflect support for Kimi-K2, Qwen3, and DeepSeek R1 models
- Add comprehensive unit tests for DeepSeek R1 reasoning, tool calls, and integration
- Port exact implementation patterns from original llama.cpp for compatibility
Key features:
- Native DeepSeek R1 format: <|tool▁calls▁begin|>function<|tool▁sep|>name```json{}```<|tool▁call▁end|><|tool▁calls▁end|>
- Reasoning content extraction from <think>...</think> tags
- Multiple tool calls support with separate call blocks
- Model detection for deepseek-r1, deepseek_r1 naming patterns
- Integration with incremental parsing and streaming support
* Add partial parsing support for JSON and regex
- json-partial.h/cpp: JSON partial parsing functionality
- regex-partial.h/cpp: Regex partial parsing functionality
* Add format_chat integration tests for Qwen3 tool injection
- Add test_qwen3_format_chat_integration() to validate tool injection pipeline
- Test tool injection conditions and system message enhancement
- Verify JSON formatting and anti-preamble instructions
- Add comprehensive test documentation
Tests confirm tool injection works correctly - conversational preamble
issue is not in ik_llama.cpp but likely in UI configuration.
* Fix Qwen3 tool call parsing - pass model name to parser
Server was not passing model name to parse_chat_message_incremental(),
causing Qwen3 to fall back to Kimi-K2 parser and return tool calls
as content instead of proper tool_calls array.
* Fix non-streaming path to use model-specific parsing
Non-streaming responses were hardcoded to use Kimi-K2 format,
causing Qwen3 XML tool calls to be returned as content instead
of proper tool_calls array. Now uses same model detection as
streaming path for consistency.
* soft_cap_max: initial CPU version of fused softcap + soft_max
With this vanilla CPU implementation I'm already getting a ~3% speedup
for Gemma-2-9b and a prompt of 8192 tokens.
* soft_cap_max: WIP - something is wrong with CUDA
* soft_cap_max: looks good on CPU and CUDA
* Add softcap to flash attention
Just CPU and CUDA for now (but, as we know, flash attention
on the CPU is useless in llama.cpp).
On CUDA this improves PP performance quite a bit, especially for
long contexts. E.g., for PP-16384, I now get 3777 t/s.
Without this change, one cannot use FA, and one gets 2300 t/s
(after fusing softcap and softmax), or 2000 t/s without the
fused softcap+softmax.
In comparison, mainline llama.cpp has PP-16384 = 1549 t/s before
PR-8542 (where Johannes Gaessler has also added softcap to FA),
and PP-16384 = 3097 t/s after this PR.
* soft_cap_max: Metal
* Flash attention with softcap: Metal
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Merging mainline - WIP
* Merging mainline - WIP
AVX2 and CUDA appear to work.
CUDA performance seems slightly (~1-2%) lower as it is so often
the case with llama.cpp/ggml after some "improvements" have been made.
* Merging mainline - fix Metal
* Remove check
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Adding simple bare-bones test for end-to-end integration test for json validation against auto-generated JSON-schema grammars.
* Adding additional examples as documented in #7789 . Also adding the ability to automatically output improperly failing grammars to debug output files so they can more easily be examined in the gbnf-validator program.
* Uncommenting formerly commented tests so that they fail for others who are attempting to reproduce the bugs.
* Merging improved schema test methods added by @ochafik in #7797
* Adding #define to temporarily remove failing tests so that this PR can pass CI, but still be useful for other PRs that want to leverage the framework.
* Fixing nits from ochafik. Removing escape slashes, adding additional failing cases, fixing some other strings.
* Fixing grammar indentation to be consistent throughout file.
* cuda sqrt support
* enable cuda in pca
* fix comments in pca
* add test
* add sqrt to ggml_backend_cuda_supports_op
* fix test
* new line
* Use F32 sqrtf instead of F64 sqrt
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Add per token attributes enum
* Using phi-3 for testing 'rstrip'
* Using jina-v2 for testing 'lstrip'
* Brute force test for 'lstrip' and 'rstrip'
* Implement 'rstrip' and 'lstrip'
* Update phi-3 GGUF file (obsolete since 917dc8c)
* Replace llama_token_type with llama_token_attribs
* ggml : fix loongson compile warnings
ggml-ci
* Fix loongarch quantize test fail.
Fix unexpected error introduced during rebase code.
* tests : disable json test due to lack of python on the CI node
ggml-ci
---------
Co-authored-by: junchao-loongson <zhaojunchao@loongson.cn>
* Update random test: add_bos_token.
* Update random test: add WPM models for testing.
* Build vocab.special_tokens_cache using vocab token types.
* Fix and improve WPM preprocessing.
- Fix unicode edge case combinations.
- Split by whitspace in the same pass.
* Discard all tokens when no matching found.
* Fix phi3 template matching vs zephyr
* Add regression test for new phi3 chat template
* Implement review suggestions
* Fix phi3 jinja test templates & match by <|end|>
* Apply suggestion
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* Add all phi3 template variants in tests
* Remove unneeded message trimming
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* Fix tests to not expect trimmed messages
---------
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* cuda : fix rope pos data
ggml-ci
* ggml : drop mode & 1 == 1 support for ggml_rope
ggml-ci
* ggml : support freq_factors for f16 rope (CPU)
ggml-ci
* tests : add rope tests using frequency factors
ggml-ci
* add phi3 128k support in convert-hf-to-gguf
* add phi3 128k support in cuda
* address build warnings on llama.cpp
* adjust index value in cuda long rope freq factors
* add long rope support in ggml cpu backend
* make freq factors only depend on ctx size
* remove unused rope scaling type 'su' frin gguf converter
* fix flint warnings on convert-hf-to-gguf.py
* set to the short freq factor when context size is small than trained context size
* add one line of comments
* metal : support rope freq_factors
* ggml : update ggml_rope_ext API to support freq. factors
* backends : add dev messages to support rope freq. factors
* minor : style
* tests : update to use new rope API
* backends : fix pragma semicolons
* minor : cleanup
* llama : move rope factors from KV header to tensors
* llama : remove tmp assert
* cuda : fix compile warning
* convert : read/write n_head_kv
* llama : fix uninitialized tensors
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update brute force test: add_special
* Update brute force test: default values for add_bos_token and add_eos_token
* Enable rtrim when pre-inserting BOS
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Revert "server : fix test regexes"
* Update brute force test: special tokens
* Fix added tokens
- Try to read 'added_tokens.json'.
- Try to read 'tokenizer_config.json'.
- Try to read 'tokenizer.json'.
* Fix special tokens rtrim
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server : fix test regexes
* Replace CODEPOINT_TYPE_* with codepoint_flags
* Update and bugfix brute force random test
* Deterministic brute force random test
* Unicode normalization NFD
* Get rid of BOM
* initial commit with CPU implementation of upscale to shape and test, cuda implementation next
* experimental commit to see if dst shape is correct
* test version
* test
* removed unnecessary params
* refactor
* fixed tests
* ggml : metal impl + cleanup + sycl dev warnings
* patched ggml_upscale cuda op to handle non-contiguous tensors, added test for non-contiguous behavior
* metal : fix upsacle op to support nb00 + style
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Add left recursion check: quit early instead of going into an infinite loop
* Remove custom enum, rename left recursion check and move to "grammar internal" section, add handling for edge case where a leftmost nonterminal may be empty
* Remove unnecessary declaration
* Introduce bfloat16 support
Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as
their canonical floating point format.
┌sign
│
│ ┌exponent
│ │
│ │ ┌mantissa
│ │ │
│┌──┴───┐┌─┴───┐
0b0000000000000000 brain16
This encoding has the same number of exponent bits as float32. That
makes conversion relatively straightforward, even in the absence of
hardware support. For example, converting brain16 to binary32 means
simply shifting 16 bits to the left.
┌sign
│
│ ┌exponent
│ │
│ │ ┌mantissa
│ │ │
│┌──┴───┐┌─┴───────────────────┐
0b00000000000000000000000000000000 IEEE binary32
The issue is that converting bf16 to fp16 can result in information
loss. Only 13% of bf16 numbers can be precisely represented in fp16
which in practice ends up being 99.71% of Mistral 7b v0.2's weights
however there is currently no way other than fp32 to get the others
┌sign
│
│ ┌exponent
│ │
│ │ ┌mantissa
│ │ │
│┌─┴─┐┌─┴──────┐
0b0000000000000000 IEEE binary16
This change fixes that, by adding a bf16 data type to GGML. Support
for CPU inference has been implemented along with optimizations for
the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2
improves somewhere around -0.0024 to -0.0046 compared to using fp16
* Remove GGML code that's not needed
* Minimize the GGML API surface area for BF16
* Remove bf16 luts
* Make the GGML header look nicer
* Fix documentation
* Apply ggerganov's fixes for test-backend-ops
* Add BF16 code for new ggml_validate_row_data() function