#ifdef GGML_USE_CUDA #include "ggml-cuda.h" #endif #ifdef GGML_USE_METAL #include "ggml-metal.h" #endif #ifdef GGML_USE_VULKAN #include "ggml-vulkan.h" #endif #ifdef GGML_USE_SYCL #include "ggml-sycl.h" #endif #include "ggml-rpc.h" #ifdef _WIN32 # define DIRECTORY_SEPARATOR '\\' # define NOMINMAX # include # include # include # include #else # define DIRECTORY_SEPARATOR '/' # include # include #endif #include #include #include #include #include #include #include #include namespace fs = std::filesystem; // NOTE: this is copied from common.cpp to avoid linking with libcommon // returns true if successful, false otherwise #ifdef _WIN32 static std::wstring utf8_to_wstring(const std::string& str) { if (str.empty()) { return std::wstring(); } int size = MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), NULL, 0); if (size <= 0) { return std::wstring(); } std::wstring wstr(size, 0); MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), &wstr[0], size); return wstr; } #endif static bool fs_create_directory_with_parents(const std::string& path) { #ifdef _WIN32 std::wstring wpath = utf8_to_wstring(path); // if the path already exists, check whether it's a directory const DWORD attributes = GetFileAttributesW(wpath.c_str()); if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) { return true; } size_t pos_slash = 0; // process path from front to back, procedurally creating directories while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) { const std::wstring subpath = wpath.substr(0, pos_slash); const wchar_t* test = subpath.c_str(); const bool success = CreateDirectoryW(test, NULL); if (!success) { const DWORD error = GetLastError(); // if the path already exists, ensure that it's a directory if (error == ERROR_ALREADY_EXISTS) { const DWORD attributes = GetFileAttributesW(subpath.c_str()); if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) { return false; } } else { return false; } } pos_slash += 1; } return true; #else // if the path already exists, check whether it's a directory struct stat info; if (stat(path.c_str(), &info) == 0) { return S_ISDIR(info.st_mode); } size_t pos_slash = 1; // skip leading slashes for directory creation // process path from front to back, procedurally creating directories while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) { const std::string subpath = path.substr(0, pos_slash); struct stat info; // if the path already exists, ensure that it's a directory if (stat(subpath.c_str(), &info) == 0) { if (!S_ISDIR(info.st_mode)) { return false; } } else { // create parent directories const int ret = mkdir(subpath.c_str(), 0755); if (ret != 0) { return false; } } pos_slash += 1; } return true; #endif // _WIN32 } // NOTE: this is copied from common.cpp to avoid linking with libcommon static std::string fs_get_cache_directory() { std::string cache_directory = ""; auto ensure_trailing_slash = [](std::string p) { // Make sure to add trailing slash if (p.back() != DIRECTORY_SEPARATOR) { p += DIRECTORY_SEPARATOR; } return p; }; if (getenv("LLAMA_CACHE")) { cache_directory = std::getenv("LLAMA_CACHE"); } else { #if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX) if (std::getenv("XDG_CACHE_HOME")) { cache_directory = std::getenv("XDG_CACHE_HOME"); } else { cache_directory = std::getenv("HOME") + std::string("/.cache/"); } #elif defined(__APPLE__) cache_directory = std::getenv("HOME") + std::string("/Library/Caches/"); #elif defined(_WIN32) cache_directory = std::getenv("LOCALAPPDATA"); #else # error Unknown architecture #endif cache_directory = ensure_trailing_slash(cache_directory); cache_directory += "llama.cpp"; } return ensure_trailing_slash(cache_directory); } struct rpc_server_params { std::string host = "127.0.0.1"; int port = 50052; bool use_cache = false; bool use_cpu = false; int n_threads = std::max(1U, std::thread::hardware_concurrency() / 2); std::vector devices; }; static void print_usage(int /*argc*/, char** argv, rpc_server_params params) { fprintf(stderr, "Usage: %s [options]\n\n", argv[0]); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -t, --threads N number of threads for the CPU device (default: %d)\n", params.n_threads); fprintf(stderr, " -d, -dev, --device comma-separated list of devices\n"); fprintf(stderr, " -cpu enable cpu backend\n"); fprintf(stderr, " -h, -H, --host, --Host HOST host to bind to (default: %s)\n", params.host.c_str()); fprintf(stderr, " -p, -P, --port, --Port PORT port to bind to (default: %d)\n", params.port); fprintf(stderr, " -c, --cache enable local file cache\n"); fprintf(stderr, "\n"); } static bool rpc_server_params_parse(int argc, char** argv, rpc_server_params& params) { std::string arg; for (int i = 1; i < argc; i++) { arg = argv[i]; if (arg == "-H" || arg == "-h" || arg == "--host" || arg == "--Host") { if (++i >= argc) { return false; } params.host = argv[i]; } else if (arg == "-t" || arg == "--threads") { if (++i >= argc) { return false; } params.n_threads = std::stoi(argv[i]); if (params.n_threads <= 0) { fprintf(stderr, "error: invalid number of threads: %d\n", params.n_threads); return false; } } else if (arg == "-d" || arg == "-dev" || arg == "--device") { if (++i >= argc) { return false; } const std::regex regex{ R"([,/]+)" }; std::string dev_str = argv[i]; std::sregex_token_iterator iter(dev_str.begin(), dev_str.end(), regex, -1); std::sregex_token_iterator end; for (; iter != end; ++iter) { try { params.devices.push_back(*iter); } catch (const std::exception&) { fprintf(stderr, "error: invalid device: %s\n", iter->str().c_str()); return false; } } } else if (arg == "-p" || arg == "-P" || arg == "--port" || arg == "--Port") { if (++i >= argc) { return false; } params.port = std::stoi(argv[i]); if (params.port <= 0 || params.port > 65535) { return false; } } else if (arg == "-c" || arg == "--cache") { params.use_cache = true; } else if (arg == "-cpu") { params.use_cpu = true; } else if (arg == "-h" || arg == "--help") { print_usage(argc, argv, params); exit(0); } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); print_usage(argc, argv, params); exit(0); } } return true; } static ggml_backend_t create_cpu_backend(const rpc_server_params& params) { fprintf(stderr, "%s: using CPU backend\n", __func__); ggml_backend_t backend = ggml_backend_cpu_init(); ggml_backend_cpu_set_n_threads(backend, params.n_threads); return backend; } static ggml_backend_t create_gpu_backend(const rpc_server_params& params, uint32_t device) { ggml_backend_t backend = NULL; #ifdef GGML_USE_CUDA fprintf(stderr, "%s: using CUDA backend: CUDA%d\n", __func__, device); backend = ggml_backend_cuda_init(device, nullptr); // init device if (!backend) { fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__); } #elif GGML_USE_METAL fprintf(stderr, "%s: using Metal backend\n", __func__); backend = ggml_backend_metal_init(); if (!backend) { fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__); } #elif GGML_USE_VULKAN fprintf(stderr, "%s: using Vulkan backend\n", __func__); backend = ggml_backend_vk_init(device); // init device 0 if (!backend) { fprintf(stderr, "%s: ggml_backend_vulkan_init() failed\n", __func__); } #elif GGML_USE_SYCL fprintf(stderr, "%s: using SYCL backend\n", __func__); backend = ggml_backend_sycl_init(device); // init device 0 if (!backend) { fprintf(stderr, "%s: ggml_backend_sycl_init() failed\n", __func__); } #endif // if there aren't GPU Backends fallback to CPU backend //if (!backend) { // fprintf(stderr, "%s: using CPU backend\n", __func__); // backend = ggml_backend_cpu_init(); // ggml_backend_cpu_set_n_threads(backend, params.n_threads); //} return backend; } static int32_t find_device_idx(const std::string& str) { std::regex pattern(R"((\d+)$)"); // Match digits at the end std::smatch matches; int number = -1; if (std::regex_search(str, matches, pattern)) { number = std::stoi(matches[1]); } return number; } static size_t get_gpu_backend_count(const rpc_server_params& params) { size_t count = 0; #if defined(GGML_USE_CUDA) count = ggml_backend_cuda_get_device_count(); #elif defined(GGML_USE_SYCL) count = ggml_backend_sycl_get_device_count(); #elif defined(GGML_USE_VULKAN) count = ggml_backend_vk_get_device_count(); #elif defined(GGML_USE_CANN) return ggml_backend_cann_get_device_count(); #endif return count; } static std::vector get_devices(const rpc_server_params& params) { std::vector devices; if (!params.devices.empty()) { for (auto device : params.devices) { int32_t device_id; ggml_backend_t dev; if (params.use_cpu && device == "CPU" ) { dev = create_cpu_backend(params); } else { device_id = find_device_idx(device); if (device_id < 0) { fprintf(stderr, "error: unknown device: %s\n", device.c_str()); continue; } dev = create_gpu_backend(params, device_id); } if (dev) { devices.push_back(dev); } else { fprintf(stderr, "error: unknown device: %s\n", device.c_str()); } } } else { for (size_t i = 0; i < get_gpu_backend_count(params); i++) { ggml_backend_t dev = create_gpu_backend(params, i); if (dev) { devices.push_back(dev); } } // cpu backend at last if (params.use_cpu || devices.empty()) { ggml_backend_t dev = create_cpu_backend(params); if (dev) { devices.push_back(dev); } } } return devices; } static void get_cpu_backend_memory(size_t * free_mem, size_t * total_mem) { #ifdef _WIN32 MEMORYSTATUSEX status; status.dwLength = sizeof(status); GlobalMemoryStatusEx(&status); *total_mem = status.ullTotalPhys; *free_mem = status.ullAvailPhys; #else long pages = sysconf(_SC_PHYS_PAGES); long page_size = sysconf(_SC_PAGE_SIZE); *total_mem = pages * page_size; *free_mem = *total_mem; #endif } static void get_backend_memory(uint32_t device, size_t * free_mem, size_t * total_mem) { #ifdef GGML_USE_CUDA ggml_backend_cuda_get_device_memory(device, free_mem, total_mem); #elif GGML_USE_VULKAN ggml_backend_vk_get_device_memory(device, free_mem, total_mem); #elif GGML_USE_SYCL ggml_backend_sycl_get_device_memory(device, free_mem, total_mem); #else #ifdef _WIN32 MEMORYSTATUSEX status; status.dwLength = sizeof(status); GlobalMemoryStatusEx(&status); *total_mem = status.ullTotalPhys; *free_mem = status.ullAvailPhys; #else long pages = sysconf(_SC_PHYS_PAGES); long page_size = sysconf(_SC_PAGE_SIZE); *total_mem = pages * page_size; *free_mem = *total_mem; #endif #endif } int main(int argc, char * argv[]) { rpc_server_params params; if (!rpc_server_params_parse(argc, argv, params)) { fprintf(stderr, "Invalid parameters\n"); return 1; } if (params.host != "127.0.0.1") { fprintf(stderr, "\n"); fprintf(stderr, "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"); fprintf(stderr, "WARNING: Host ('%s') is != '127.0.0.1'\n", params.host.c_str()); fprintf(stderr, " Never expose the RPC server to an open network!\n"); fprintf(stderr, " This is an experimental feature and is not secure!\n"); fprintf(stderr, "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"); fprintf(stderr, "\n"); } auto devices = get_devices(params); if (devices.empty()) { fprintf(stderr, "No backend found\n"); return 1; } std::string endpoint = params.host + ":" + std::to_string(params.port); std::vector free_mem, total_mem; for (size_t i = 0; i < devices.size(); i++) { size_t free, total; const char* name = ggml_backend_name(devices[i]); if (std::string(name) == "CPU") { get_cpu_backend_memory(&free, &total); } else { int32_t idx = find_device_idx(name); get_backend_memory((uint32_t) idx, &free, &total); } free_mem.push_back(free); total_mem.push_back(total); } const char * cache_dir = nullptr; std::string cache_dir_str; if (params.use_cache) { cache_dir_str = fs_get_cache_directory() + "rpc/"; if (!fs_create_directory_with_parents(cache_dir_str)) { fprintf(stderr, "Failed to create cache directory: %s\n", cache_dir_str.c_str()); return 1; } cache_dir = cache_dir_str.c_str(); } ggml_backend_rpc_start_server(endpoint.c_str(), cache_dir, devices.size(), devices.data(), free_mem.data(), total_mem.data()); return 0; }