Files
ik_llama.cpp/tests/test-grammar-integration.cpp
firecoperana 52adcf1e90 Update grammar (#1023)
* grammar : fix JSON Schema for string regex with top-level alt. (#9903)

Prior to this commit, using a JSON Schema containing a string
with `pattern` regular expression that uses top-level alternation
(e.g. `"pattern": "^A|B|C|D$"`) would result in invalid JSON
output from the constrained sampling grammar, because it
ended up creating a grammar rule like this for the string:

```
thing ::= "\"" "A" | "B" | "C" | "D" "\"" space
```

Note that this rule will only match a starting quote for the "A" case,
and will only match an ending quote for the "D" case,
so this rule will always produce invalid JSON when used for sampling
(that is, the JSON will always be lacking the starting quote,
the ending quote, or both).

This was fixed in a simple way by adding parentheses to the
generated rule (for all string pattern rules, to keep it simple),
such that the new generated rule looks like this (correct):

```
thing ::= "\"" ("A" | "B" | "C" | "D") "\"" space
```

* grammars : add English-only grammar (#10612)

* grammar : handle maxItems == 0 in JSON schema (#13117)

Co-authored-by: Richard Lyons <frob@cloudstaff.com>

* grammar-parser : fix possible null-deref (#9004)

Fixes: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=70680

Signed-off-by: David Korczynski <david@adalogics.com>

* llama : fix typo in llama-grammar.h [no ci] (#11816)

* * server: fix "--grammar-file" parameter (#12285)

* common : use std::string_view now that we target c++17 (#14319)

* json : support `enum` values within `allOf` (#15830)

* grammar : use int64_t to avoid int overflows in int schema to grammar conversion logic (#16626)

* grammar : support array references in json schema (#16792)

* grammar : support array references in json schema

* Update json-schema-to-grammar.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* grammar : improve regex when naming ref derived rules

* grammar : replace non-conformant definitions array with anyOf test case

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
# Conflicts:
#	tests/test-json-schema-to-grammar.cpp

* merge fix

* llama : minor grammar refactor (#10897)

* llama: fix error on bad grammar (#12628)

* grammar : fix integer overflow (#17381)

* Fix DoS / integer overflow

* Remove optional, use INT64_MAX instead as placeholder value (it's technically -1, so it fits :)

* White space

* Actually, since it's unsigned, use UINT64_MAX
# Conflicts:
#	src/llama-grammar.cpp

* grammar: fix regression caused by #17381 (#17412)

* grammar: fix regression caused by #17381

* more readable
# Conflicts:
#	src/llama-grammar.cpp

* Merge Fix

* Fix warnings

---------

Signed-off-by: David Korczynski <david@adalogics.com>
Co-authored-by: Joe Eli McIlvain <joe.eli.mac@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: frob <rick+github@frob.com.au>
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
Co-authored-by: DavidKorczynski <david@adalogics.com>
Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com>
Co-authored-by: firecoperana <firecoperana>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Aldehir Rojas <hello@alde.dev>
Co-authored-by: Olivier Chafik <olivier.chafik@gmail.com>
Co-authored-by: Piotr Wilkin (ilintar) <piotr.wilkin@syndatis.com>
Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-30 18:45:38 +01:00

1350 lines
36 KiB
C++

#ifdef NDEBUG
#undef NDEBUG
#endif
#define LLAMA_API_INTERNAL
#include "ggml.h"
#include "llama.h"
#include "grammar-parser.h"
#include "json-schema-to-grammar.h"
#include "unicode.h"
#include <cassert>
#include <string>
#include <vector>
using json = nlohmann::ordered_json;
static llama_grammar* build_grammar(const std::string & grammar_str) {
auto parsed_grammar = grammar_parser::parse(grammar_str.c_str());
// Ensure we parsed correctly
assert(!parsed_grammar.rules.empty());
// Ensure we have a root node
assert(!(parsed_grammar.symbol_ids.find("root") == parsed_grammar.symbol_ids.end()));
std::vector<const llama_grammar_element*> grammar_rules(parsed_grammar.c_rules());
llama_grammar* grammar = llama_grammar_init(
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
return grammar;
}
static bool test_build_grammar_fails(const std::string & grammar_str) {
fprintf(stderr, "⚫ Testing failure for grammar: %s\n", grammar_str.c_str());
bool grammar_fails = false;
llama_grammar * grammar = build_grammar(grammar_str);
if (grammar != nullptr) {
fprintf(stderr, " ❌ Expected build failure, but succeeded\n");
} else {
grammar_fails = true;
fprintf(stdout, " ✅︎\n");
}
return grammar_fails;
}
static bool match_string(const std::string & input, llama_grammar * grammar) {
auto decoded = decode_utf8(input, {});
const auto & code_points = decoded.first;
const llama_grammar_rules & rules = llama_grammar_get_rules (grammar);
llama_grammar_stacks & cur_stacks = llama_grammar_get_stacks(grammar);
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
const llama_grammar_stacks prev_stacks = llama_grammar_get_stacks(grammar); // copy
llama_grammar_accept(rules, prev_stacks, *it, cur_stacks);
if (cur_stacks.empty()) {
// no stacks means that the grammar failed to match at this point
return false;
}
}
for (const auto & stack : cur_stacks) {
if (stack.empty()) {
// An empty stack means that the grammar has been completed
return true;
}
}
return false;
}
static void test(const std::string & test_desc, const std::string & grammar_str, const std::vector<std::string> & passing_strings, const std::vector<std::string> & failing_strings) {
fprintf(stderr, "⚫ Testing %s\n%s\n", test_desc.c_str(), grammar_str.c_str());
fflush(stderr);
auto grammar = build_grammar(grammar_str);
// Save the original grammar stacks so that we can reset after every new string we want to test
const llama_grammar_stacks original_stacks = llama_grammar_get_stacks(grammar);
llama_grammar_stacks & cur_stacks = llama_grammar_get_stacks(grammar);
fprintf(stderr, " 🔵 Valid strings:\n");
// Passing strings
for (const auto & test_string : passing_strings) {
fprintf(stderr, " \"%s\" ", test_string.c_str());
fflush(stderr);
bool matched = match_string(test_string, grammar);
if (!matched) {
fprintf(stderr, "❌ (failed to match)\n");
// DEBUG: Write strings to files so that we can analyze more easily with gbnf-validator program to see exactly where things failed.
// DEBUG: Write the grammar_str to test-grammar-integration.grammar.gbnf
FILE* grammar_file = fopen("test-grammar-integration.grammar.gbnf", "w");
if (grammar_file) {
fprintf(grammar_file, "%s", grammar_str.c_str());
fclose(grammar_file);
}
// DEBUG: Write the test string to test-grammar-integration.string.txt
FILE* string_file = fopen("test-grammar-integration.string.txt", "w");
if (string_file) {
fprintf(string_file, "%s", test_string.c_str());
fclose(string_file);
}
fprintf(stderr, "\n NOTE: Debug grammar file generated. To analyze this failure in detail, run the following command: ./llama-gbnf-validator test-grammar-integration.grammar.gbnf test-grammar-integration.string.txt\n\n");
} else {
fprintf(stdout, "✅︎\n");
}
assert(matched);
// Reset the grammar stacks
cur_stacks = original_stacks;
}
fprintf(stderr, " 🟠 Invalid strings:\n");
// Failing strings
for (const auto & test_string : failing_strings) {
fprintf(stderr, " \"%s\" ", test_string.c_str());
fflush(stderr);
bool matched = match_string(test_string, grammar);
if (matched) {
fprintf(stderr, "❌ (incorrectly matched)\n");
} else {
fprintf(stdout, "✅︎\n");
}
assert(!matched);
// Reset the grammar stacks
cur_stacks = original_stacks;
}
// Clean up allocated memory
llama_grammar_free(grammar);
}
static void test_grammar(const std::string & test_desc, const std::string & grammar_str, const std::vector<std::string> & passing_strings, const std::vector<std::string> & failing_strings) {
test(test_desc + ". Grammar: " + grammar_str, grammar_str, passing_strings, failing_strings);
}
static void test_schema(const std::string & test_desc, const std::string & schema_str, const std::vector<std::string> & passing_strings, const std::vector<std::string> & failing_strings) {
test(test_desc + ". Schema: " + schema_str, json_schema_to_grammar(json::parse(schema_str), true), passing_strings, failing_strings);
}
static void test_simple_grammar() {
test_schema(
"min 0",
R"""({
"type": "integer",
"minimum": 0
})""",
// Passing strings
{
"0",
"10",
"12",
"10000",
},
// Failing strings
{
"-1",
"-10",
"-10000",
"-100000000000000000000000000000000",
"100000000000000000000000000000000",
"00",
"01",
"-0",
}
);
test_schema(
"min 2",
// Schema
R"""({
"type": "integer",
"minimum": 2
})""",
// Passing strings
{
"2",
"3",
"4",
"10",
"20",
"1234567890000000",
},
// Failing strings
{
"0",
"1",
"-1",
"-100",
"0",
"1",
"01",
"02",
"12345678900000000",
}
);
test_schema(
"min 456",
R"""({
"type": "integer",
"minimum": 456
})""",
// Passing strings
{
"456",
"4560",
"457",
"460",
"500",
},
// Failing strings
{
"455",
"356",
"50",
"050",
"-1",
"-456",
}
);
test_schema(
"min -123",
R"""({
"type": "integer",
"minimum": -123
})""",
// Passing strings
{
"-123",
"-122",
"-11",
"-1",
"0",
"1",
"123",
"1234",
"2345",
},
// Failing strings
{
"-1234",
"-124",
}
);
test_schema(
"max 9999",
// Schema
R"""({
"type": "integer",
"maximum": 9999
})""",
// Passing strings
{
"-99999",
"0",
"9999",
},
// Failing strings
{
"10000",
"99991",
}
);
test_schema(
"max -9999",
// Schema
R"""({
"type": "integer",
"maximum": -9999
})""",
// Passing strings
{
"-10000",
"-9999",
},
// Failing strings
{
"-9998",
"0",
"9999",
}
);
test_schema(
"min 5 max 30",
// Schema
R"""({
"type": "integer",
"minimum": 5,
"maximum": 30
})""",
// Passing strings
{
"5",
"10",
"30",
},
// Failing strings
{
"05",
"4",
"-1",
"31",
"123",
"0123",
}
);
test_schema(
"min 1 max 900719925474091",
// Schema
R"""({
"type": "integer",
"exclusiveMinimum": 0,
"maximum": 900719925474091
})""",
// Passing strings
{
"1",
"2",
"10",
"900719925474090",
"900719925474091",
},
// Failing strings
{
"0",
"01",
"900719925474092",
"9007199254740910",
}
);
test_schema(
"min -1 max 1",
R"""({
"type": "integer",
"minimum": -1,
"maximum": 1
})""",
// Passing strings
{
"-1",
"0",
"1",
},
// Failing strings
{
"-11",
"-10",
"-2",
"2",
"10",
"11",
}
);
test_schema(
"min -123 max 42",
R"""({
"type": "integer",
"minimum": -123,
"maximum": 42
})""",
// Passing strings
{
"-123",
"-122",
"-13",
"-11",
"-2",
"-1",
"0",
"1",
"5",
"10",
"39",
"40",
"42",
},
// Failing strings
{
"-0123",
"-124",
"-1123",
"-200",
"43",
"123",
"0123",
}
);
test_schema(
"exclusive min / max",
// Schema
R"""({
"type": "integer",
"exclusiveMinimum": 0,
"exclusiveMaximum": 10000
})""",
// Passing strings
{
"1",
"9999",
},
// Failing strings
{
"0",
"01",
"10000",
"99999",
}
);
// Test case for a simple grammar
test_grammar(
"simple grammar",
R"""(
root ::= expr
expr ::= term ("+" term)*
term ::= number
number ::= [0-9]+)""",
// Passing strings
{
"42",
"1+2+3+4+5",
"123+456",
},
// Failing strings
{
"+",
"/ 3",
"1+2+3+4+5+",
"12a45",
}
);
}
static void test_complex_grammar() {
// Test case for a more complex grammar, with both failure strings and success strings
test_grammar(
"medium complexity grammar",
// Grammar
R"""(
root ::= expression
expression ::= term ws (("+"|"-") ws term)*
term ::= factor ws (("*"|"/") ws factor)*
factor ::= number | variable | "(" expression ")" | function-call
number ::= [0-9]+
variable ::= [a-zA-Z_][a-zA-Z0-9_]*
function-call ::= variable ws "(" (expression ("," ws expression)*)? ")"
ws ::= [ \t\n\r]?)""",
// Passing strings
{
"42",
"1*2*3*4*5",
"x",
"x+10",
"x1+y2",
"(a+b)*(c-d)",
"func()",
"func(x,y+2)",
"a*(b+c)-d/e",
"f(g(x),h(y,z))",
"x + 10",
"x1 + y2",
"(a + b) * (c - d)",
"func()",
"func(x, y + 2)",
"a * (b + c) - d / e",
"f(g(x), h(y, z))",
"123+456",
"123*456*789-123/456+789*123",
"123+456*789-123/456+789*123-456/789+123*456-789/123+456*789-123/456+789*123-456"
},
// Failing strings
{
"+",
"/ 3x",
"x + + y",
"a * / b",
"func(,)",
"func(x y)",
"(a + b",
"x + y)",
"a + b * (c - d",
"42 +",
"x +",
"x + 10 +",
"(a + b) * (c - d",
"func(",
"func(x, y + 2",
"a * (b + c) - d /",
"f(g(x), h(y, z)",
"123+456*789-123/456+789*123-456/789+123*456-789/123+456*789-123/456+789*123-456/",
}
);
}
static void test_special_chars() {
// A collection of tests to exercise special characters such as "."
test_grammar(
"special characters",
// Grammar
R"""(
root ::= ... "abc" ...
)""",
// Passing strings
{
"abcabcabc",
"aaaabcccc",
// NOTE: Also ensures that multi-byte characters still count as a single character
"🔵🟠✅abc❌🟠🔵"
},
// Failing strings
{
"aaabcccc",
"aaaaabcccc",
"aaaabccc",
"aaaabccccc",
"🔵🟠✅❌abc❌✅🟠🔵"
"🔵🟠abc🟠🔵"
}
);
}
static void test_quantifiers() {
// A collection of tests to exercise * + and ? quantifiers
test_grammar(
"* quantifier",
// Grammar
R"""(root ::= "a"*)""",
// Passing strings
{
"",
"a",
"aaaaa",
"aaaaaaaaaaaaaaaaaa",
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
// Failing strings
{
"b",
"ab",
"aab",
"ba",
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab"
}
);
test_grammar(
"+ quantifier",
// Grammar
R"""(root ::= "a"+)""",
// Passing strings
{
"a",
"aaaaa",
"aaaaaaaaaaaaaaaaaa",
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
// Failing strings
{
"",
"b",
"ab",
"aab",
"ba",
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab"
}
);
test_grammar(
"? quantifier",
// Grammar
R"""(root ::= "a"?)""",
// Passing strings
{
"",
"a"
},
// Failing strings
{
"b",
"ab",
"aa",
"ba",
}
);
test_grammar(
"mixed quantifiers",
// Grammar
R"""(
root ::= cons+ vowel* cons? (vowel cons)*
vowel ::= [aeiouy]
cons ::= [bcdfghjklmnpqrstvwxyz]
)""",
// Passing strings
{
"yes",
"no",
"noyes",
"crwth",
"four",
"bryyyy",
},
// Failing strings
{
"yess",
"yesno",
"forty",
"catyyy",
}
);
test_grammar(
"simple exact repetition",
// Grammar
R"""(
root ::= [ab]{4}
)""",
// Passing strings
{
"aaaa",
"bbbb",
"abab",
},
// Failing strings
{
"a",
"b",
"aaaaa",
}
);
test_grammar(
"simple min repetition",
// Grammar
R"""(
root ::= [ab]{4,}
)""",
// Passing strings
{
"aaaa",
"aaaaab",
"bbbb",
"ababab",
},
// Failing strings
{
"",
"aba",
}
);
test_grammar(
"simple max repetition",
// Grammar
R"""(
root ::= [ab]{0,4}
)""",
// Passing strings
{
"",
"a",
"aa",
"aaa",
"aaab",
},
// Failing strings
{
"aaaaa",
}
);
test_grammar(
"min / max repetition",
// Grammar
R"""(
root ::= ("0x" [A-F0-9]{2} " "?){3,5}
)""",
// Passing strings
{
"0xFF 0x12 0xAB",
"0xFF 0x12 0xAB 0x00 0x00",
},
// Failing strings
{
"",
"0xFF",
"0xFF 0x12",
"0xFF 0x12 0xAB 0x00 0x00 0x00",
}
);
}
static void test_failure_missing_root() {
fprintf(stderr, "⚫ Testing missing root node:\n");
// Test case for a grammar that is missing a root rule
const std::string grammar_str = R"""(
rot ::= expr
expr ::= term ("+" term)*
term ::= number
number ::= [0-9]+)""";
grammar_parser::parse_state parsed_grammar = grammar_parser::parse(grammar_str.c_str());
// Ensure we parsed correctly
assert(!parsed_grammar.rules.empty());
// Ensure we do NOT have a root node
assert(parsed_grammar.symbol_ids.find("root") == parsed_grammar.symbol_ids.end());
fprintf(stderr, " ✅︎ Passed\n");
}
static void test_failure_missing_reference() {
fprintf(stderr, "⚫ Testing missing reference node:\n");
// Test case for a grammar that is missing a referenced rule
const std::string grammar_str =
R"""(root ::= expr
expr ::= term ("+" term)*
term ::= numero
number ::= [0-9]+)""";
fprintf(stderr, " Expected error: ");
grammar_parser::parse_state parsed_grammar = grammar_parser::parse(grammar_str.c_str());
// Ensure we did NOT parsed correctly
assert(parsed_grammar.rules.empty());
fprintf(stderr, " End of expected error.\n");
fprintf(stderr, " ✅︎ Passed\n");
}
static void test_failure_left_recursion() {
fprintf(stderr, "⚫ Testing left recursion detection:\n");
// Test simple left recursion detection
const std::string simple_str = R"""(root ::= "a" | root "a")""";
assert(test_build_grammar_fails(simple_str));
// Test more complicated left recursion detection
const std::string medium_str = R"""(
root ::= asdf
asdf ::= "a" | asdf "a"
)""";
assert(test_build_grammar_fails(medium_str));
// Test even more complicated left recursion detection
const std::string hard_str = R"""(
root ::= asdf
asdf ::= "a" | foo "b"
foo ::= "c" | asdf "d" | "e")""";
assert(test_build_grammar_fails(hard_str));
// Test yet even more complicated left recursion detection
const std::string hardest_str = R"""(
root ::= asdf
asdf ::= "a" | foo "b"
foo ::= "c" | empty asdf "d" | "e"
empty ::= "blah" | )""";
assert(test_build_grammar_fails(hardest_str));
fprintf(stderr, " ✅︎ Passed\n");
}
static void test_json_schema() {
// Note that this is similar to the regular grammar tests,
// but we convert each json schema to a grammar before parsing.
// Otherwise, this test structure is the same.
test_schema(
"empty schema (object)",
// Schema
R"""(
{}
)""",
// Passing strings
{
R"""({})""",
R"""({"foo": "bar"})""",
},
// Failing strings
{
"",
"[]",
"null",
R"""("")""",
"true",
}
);
test_schema(
"exotic formats (list)",
// Schema
R"""({
"items": [
{ "format": "date" },
{ "format": "uuid" },
{ "format": "time" },
{ "format": "date-time" }
]
})""",
// Passing strings
{
// "{}", // NOTE: This string passes for this schema on https://www.jsonschemavalidator.net/ -- should it?
// "[]", // NOTE: This string passes for this schema on https://www.jsonschemavalidator.net/ -- should it?
R"""(["2012-04-23", "12345678-1234-1234-1234-1234567890ab", "18:25:43.511Z", "2012-04-23T18:25:43.511Z"])""",
//R"""(["2012-04-23","12345678-1234-1234-1234-1234567890ab"])""", // NOTE: This string passes for this schema on https://www.jsonschemavalidator.net/ -- should it?
//R"""({"foo": "bar"})""", // NOTE: This string passes for this schema on https://www.jsonschemavalidator.net/ -- should it?
},
// Failing strings
{
R"""(["foo", "bar"])""",
R"""(["12345678-1234-1234-1234-1234567890ab"])""",
}
);
test_schema(
"string",
// Schema
R"""({
"type": "string"
})""",
// Passing strings
{
R"""("foo")""",
R"""("bar")""",
R"""("")""",
},
// Failing strings
{
R"""({})""",
R"""("foo": "bar")""",
}
);
test_schema(
"string w/ min length 1",
// Schema
R"""({
"type": "string",
"minLength": 1
})""",
// Passing strings
{
R"""("foo")""",
R"""("bar")""",
},
// Failing strings
{
R"""("")""",
R"""({})""",
R"""("foo": "bar")""",
}
);
test_schema(
"string w/ min length 3",
// Schema
R"""({
"type": "string",
"minLength": 3
})""",
// Passing strings
{
R"""("foo")""",
R"""("bar")""",
R"""("foobar")""",
},
// Failing strings
{
R"""("")""",
R"""("f")""",
R"""("fo")""",
}
);
test_schema(
"string w/ max length",
// Schema
R"""({
"type": "string",
"maxLength": 3
})""",
// Passing strings
{
R"""("foo")""",
R"""("bar")""",
R"""("")""",
R"""("f")""",
R"""("fo")""",
},
// Failing strings
{
R"""("foobar")""",
}
);
test_schema(
"string w/ min & max length",
// Schema
R"""({
"type": "string",
"minLength": 1,
"maxLength": 4
})""",
// Passing strings
{
R"""("foo")""",
R"""("bar")""",
R"""("f")""",
R"""("barf")""",
},
// Failing strings
{
R"""("")""",
R"""("barfo")""",
R"""("foobar")""",
}
);
test_schema(
"boolean",
// Schema
R"""({
"type": "boolean"
})""",
// Passing strings
{
"true",
"false",
},
// Failing strings
{
R"""("")""",
R"""("true")""",
R"""(True)""",
R"""(FALSE)""",
}
);
test_schema(
"integer",
// Schema
R"""({
"type": "integer"
})""",
// Passing strings
{
R"""(0)""",
R"""(12345)""",
R"""(1234567890123456)""",
},
// Failing strings
{
R"""()""",
R"""(01)""",
R"""(007)""",
R"""(12345678901234567 )""",
}
);
test_schema(
"string const",
// Schema
R"""({
"const": "foo"
})""",
// Passing strings
{
R"""("foo")""",
},
// Failing strings
{
R"""(foo)""",
R"""("bar")""",
}
);
test_schema(
"non-string const",
// Schema
R"""({
"const": true
})""",
// Passing strings
{
R"""(true)""",
},
// Failing strings
{
R"""()""",
R"""(foo)""",
R"""("true")""",
}
);
test_schema(
"non-string const",
// Schema
R"""({
"enum": ["red", "amber", "green", null, 42, ["foo"]]
})""",
// Passing strings
{
R"""("red")""",
R"""(null)""",
R"""(42)""",
R"""(["foo"])""",
},
// Failing strings
{
R"""()""",
R"""(420)""",
R"""(true)""",
R"""(foo)""",
}
);
test_schema(
"simple pattern",
// Schema
R"""({
"pattern": "^[a-zA-Z0-9_-]*$"
})""",
// Passing strings
{
R"""("")""",
R"""("He_llo-12")""",
},
// Failing strings
{
R"""("!")""",
R"""("Hello World")""",
}
);
test_schema(
"pattern with escapes",
// Schema
R"""({
"pattern": "^a\\^\\$\\.\\[\\]\\(\\)\\|\\{\\}\\*\\+\\?b$"
})""",
// Passing strings
{
R"""("a^$.[]()|{}*+?b")""",
},
// Failing strings
{
R"""("ab")""",
}
);
test_schema(
"",
// Schema
R"""(
{
"type": ["array", "null"],
"items": { "type": "string" }
}
)""",
// Passing strings
{
"null",
"[]",
"[\"123\"]",
"[\"foo\", \"bar\"]",
},
// Failing strings
{
"",
"[123]",
"\"foo\"",
"[\"foo\", 42]",
}
);
test_schema(
"min+max items",
// Schema
R"""({
"items": {
"type": ["number", "integer"]
},
"minItems": 3,
"maxItems": 5
})""",
// Passing strings
{
R"""([1, 2, 3])""",
R"""([1, 2, 3, 4])""",
R"""([1, 2, 3, 4, 5])""",
},
// Failing strings
{
R"""([1, 2])""",
R"""([1, 2, 3, 4, 5, 6])""",
R"""(1)""",
}
);
// Properties (from: https://json-schema.org/understanding-json-schema/reference/object#properties)
test_schema(
"object properties",
// Schema
R"""({
"type": "object",
"properties": {
"number": { "type": "number" },
"street_name": { "type": "string" },
"street_type": { "enum": ["Street", "Avenue", "Boulevard"] }
}
})""",
// Passing strings
{
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue"})""",
// "By default, leaving out properties is valid"
R"""({ "street_name": "Pennsylvania" })""",
R"""({ "number": 1600, "street_name": "Pennsylvania" })""",
// "By extension, even an empty object is valid"
R"""({})""",
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type": "Avenue" })""",
},
// Failing strings
{
// Change datatype from number to string
R"""({ "number": "1600", "street_name": "Pennsylvania", "street_type":"Avenue"})""",
// Reorder properties
R"""({ "street_name": "Pennsylvania", "number": 1600 })""",
// Reorder properties
R"""({ "number": "1600", "street_name": "Pennsylvania", "street_type":"Avenue"})""",
// "Additional properties default to false for generation, even though the spec says true.
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue", "direction":"NW"})""",
}
);
test_schema(
"additional properties can't override other properties",
R"""({
"properties": {
"a": {"type": "integer"},
"b": {"type": "integer"}
},
"additionalProperties": true
})""",
// Passing strings
{
R"""({"a": 42})""",
R"""({"c": ""})""",
R"""({"a": 42, "c": ""})""",
R"""({"a_": ""})""",
},
// Failing strings
{
R"""()""",
R"""({"a": ""})""",
R"""({"a": "", "b": ""})""",
}
);
// Properties (from: https://json-schema.org/understanding-json-schema/reference/object#properties)
test_schema(
"object properties, additionalProperties: true",
// Schema
R"""({
"type": "object",
"properties": {
"number": { "type": "number" },
"street_name": { "type": "string" },
"street_type": { "enum": ["Street", "Avenue", "Boulevard"] }
},
"additionalProperties": true
})""",
// Passing strings
{
// "By extension, even an empty object is valid"
R"""({})""",
R"""({"number":1600,"street_name":"Pennsylvania","street_type":"Avenue"})""",
// "By default, leaving out properties is valid"
R"""({ "street_name": "Pennsylvania" })""",
R"""({ "number": 1600, "street_name": "Pennsylvania" })""",
// "By default, providing additional properties is valid"
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue", "direction":"NW"})""",
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type": "Avenue" })""",
},
// Failing strings
{
// Change datatype from number to string
R"""({ "number": "1600", "street_name": "Pennsylvania", "street_type":"Avenue"})""",
// Reorder properties
R"""({ "street_name": "Pennsylvania", "number": 1600, "street_type":"Avenue"})""",
}
);
// Additional properties: false
test_schema(
"required + optional props each in original order",
// Schema
R"""({
"type": "object",
"properties": {
"number": { "type": "number" },
"street_name": { "type": "string" },
"street_type": { "enum": ["Street", "Avenue", "Boulevard"] }
},
"additionalProperties": false
})""",
// Passing strings
{
R"""({ "street_name": "Pennsylvania" })""",
R"""({ "number": 1600, "street_type":"Avenue"})""",
R"""({ "number": 1600, "street_name": "Pennsylvania" })""",
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue"})""",
// Spaces are permitted around enum values
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type": "Avenue" })""",
},
// Failing strings
{
// Reorder properties
R"""({ "street_type": "Avenue", "number": 1600 })""",
// Add "direction"
R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type": "Avenue", "direction": "NW" })""",
}
);
test_schema(
"required + optional props each in original order",
// Schema
R"""({
"properties": {
"b": {"type": "string"},
"a": {"type": "string"},
"d": {"type": "string"},
"c": {"type": "string"}
},
"required": ["a", "b"],
"additionalProperties": false
})""",
// Passing strings
{
R"""({"b": "foo", "a": "bar"})""",
R"""({"b":"foo","a":"bar","d":"qux"})""",
R"""({"b":"foo", "a":"bar", "d":"qux", "c":"baz"})""",
},
// Failing strings
{
R"""({"a": "foo", "b": "bar"})""",
R"""({"b": "bar"})""",
R"""({"a": "foo", "c": "baz"})""",
R"""({"a":"foo", "b":"bar", "c":"baz", "d":"qux"})""",
}
);
// NOTE: Example from https://json-schema.org/learn/getting-started-step-by-step#define-required-properties
test_schema(
"required props",
// Schema
R"""({
"$schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "https://example.com/product.schema.json",
"title": "Product",
"description": "A product from Acme's catalog",
"type": "object",
"properties": {
"productId": {
"description": "The unique identifier for a product",
"type": "integer"
},
"productName": {
"description": "Name of the product",
"type": "string"
},
"price": {
"description": "The price of the product",
"type": "number",
"exclusiveMinimum": 0
},
"tags": {
"description": "Tags for the product",
"type": "array",
"items": {
"type": "string"
},
"minItems": 1,
"uniqueItems": true
},
"dimensions": {
"type": "object",
"properties": {
"length": {
"type": "number"
},
"width": {
"type": "number"
},
"height": {
"type": "number"
}
},
"required": [ "length", "width", "height" ]
}
},
"required": [ "productId", "productName", "price" ]
})""",
// Passing strings
{
R"""({"productId": 1, "productName": "A green door", "price": 12.50})""",
R"""({"productId": 1, "productName": "A green door", "price": 12.50, "tags": ["home", "green"]})""",
R"""({"productId": 1, "productName": "A green door", "price": 12.50, "tags": ["home", "green"], "dimensions": {"length": 785, "width": 250.5, "height": -0.359}})""",
},
// Failing strings
{
R"""({})""", // Missing all required properties
R"""({"productName": "A green door", "price": 12.50, "productId": 1})""", // Out of order properties
// TODO: The following line should fail, but currently it passes. `exclusiveMinimum` is not supported, as it would likely be too difficult to implement.
// Perhaps special checks for minimum and maximum values of 0 could be added (since that's relatively easy to do with grammars), but anything else would likely be too complex.
// R"""({"productId": 1, "productName": "A green door", "price": -12.50})""",
R"""({"productId": 1, "productName": "A green door"})""", // Missing required property (price)
R"""({"productName": "A green door", "price": 12.50})""", // Missing required property (productId)
R"""({"productId": 1, "productName": "A green door", "price": 12.50, "tags": []})""", // tags is empty, but minItems is 1
R"""({"productId": 1, "productName": "A green door", "price": 12.50, "dimensions": {"length": 785, "width": 250.5, "height": -0.359}, "tags": ["home", "green"]})""", // Tags and dimensions are out of order
// TODO: The following line should fail, but currently it passes. `uniqueItems` is not supported, as it would likely be too difficult to implement.
// R"""({"productId": 1, "productName": "A green door", "price": 12.50, "tags": ["home", "green", "home"]})""",
}
);
}
int main() {
fprintf(stdout, "Running grammar integration tests...\n");
test_simple_grammar();
test_complex_grammar();
test_special_chars();
test_quantifiers();
test_failure_missing_root();
test_failure_missing_reference();
test_failure_left_recursion();
test_json_schema();
fprintf(stdout, "All tests passed.\n");
return 0;
}