mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-01-27 09:39:53 +00:00
* POC: per row scale This is a POC how to work around opinionated ggml to have scales per row rather than per block. Only implemened for Zen4 and only for iq2_tn. * POC per row scale: iq2_tn on NEON * POC per row scale: iq2_tn on Metal * Per row scale Metal templates * iq1_tn: shrink to 1.625 bpw (NEON and Metal) * POC per row scale: CUDA * POC per row scale: add CUDA TODOs There are two places in ggml-cuda.cu left where it is assumed that type_size * n_per_row / block_size is the way to compute and handle row sizes. This does not affect simple usage, but will lead to issues when tensors are split between GPUs. * Per row scales - CUDA The only place left where there are unnecessary assumptions being made is in the Flash Attention code. As we are not using any quants that use per row scales for quantized KV cache, it should be OK for now. * Update IQ1_TN and IQ2_TN bpw shown to user --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
quantize
You can also use the GGUF-my-repo space on Hugging Face to build your own quants without any setup.
Note: It is synced from llama.cpp main every 6 hours.
Example usage:
# obtain the official LLaMA model weights and place them in ./models
ls ./models
llama-2-7b tokenizer_checklist.chk tokenizer.model
# [Optional] for models using BPE tokenizers
ls ./models
<folder containing weights and tokenizer json> vocab.json
# [Optional] for PyTorch .bin models like Mistral-7B
ls ./models
<folder containing weights and tokenizer json>
# install Python dependencies
python3 -m pip install -r requirements.txt
# convert the model to ggml FP16 format
python3 convert_hf_to_gguf.py models/mymodel/
# quantize the model to 4-bits (using Q4_K_M method)
./llama-quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M
# update the gguf filetype to current version if older version is now unsupported
./llama-quantize ./models/mymodel/ggml-model-Q4_K_M.gguf ./models/mymodel/ggml-model-Q4_K_M-v2.gguf COPY
Run the quantized model:
# start inference on a gguf model
./llama-cli -m ./models/mymodel/ggml-model-Q4_K_M.gguf -n 128
When running the larger models, make sure you have enough disk space to store all the intermediate files.
Memory/Disk Requirements
As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same.
| Model | Original size | Quantized size (Q4_0) |
|---|---|---|
| 7B | 13 GB | 3.9 GB |
| 13B | 24 GB | 7.8 GB |
| 30B | 60 GB | 19.5 GB |
| 65B | 120 GB | 38.5 GB |
Quantization
Several quantization methods are supported. They differ in the resulting model disk size and inference speed.
(outdated)
| Model | Measure | F16 | Q4_0 | Q4_1 | Q5_0 | Q5_1 | Q8_0 |
|---|---|---|---|---|---|---|---|
| 7B | perplexity | 5.9066 | 6.1565 | 6.0912 | 5.9862 | 5.9481 | 5.9070 |
| 7B | file size | 13.0G | 3.5G | 3.9G | 4.3G | 4.7G | 6.7G |
| 7B | ms/tok @ 4th | 127 | 55 | 54 | 76 | 83 | 72 |
| 7B | ms/tok @ 8th | 122 | 43 | 45 | 52 | 56 | 67 |
| 7B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
| 13B | perplexity | 5.2543 | 5.3860 | 5.3608 | 5.2856 | 5.2706 | 5.2548 |
| 13B | file size | 25.0G | 6.8G | 7.6G | 8.3G | 9.1G | 13G |
| 13B | ms/tok @ 4th | - | 103 | 105 | 148 | 160 | 131 |
| 13B | ms/tok @ 8th | - | 73 | 82 | 98 | 105 | 128 |
| 13B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
- k-quants
- recent k-quants improvements and new i-quants
- #2707
- #2807
- #4773 - 2-bit i-quants (inference)
- #4856 - 2-bit i-quants (inference)
- #4861 - importance matrix
- #4872 - MoE models
- #4897 - 2-bit quantization
- #4930 - imatrix for all k-quants
- #4951 - imatrix on the GPU
- #4969 - imatrix for legacy quants
- #4996 - k-qunats tuning
- #5060 - Q3_K_XS
- #5196 - 3-bit i-quants
- quantization tuning, another one, and another one
Llama 2 7B
| Quantization | Bits per Weight (BPW) |
|---|---|
| Q2_K | 3.35 |
| Q3_K_S | 3.50 |
| Q3_K_M | 3.91 |
| Q3_K_L | 4.27 |
| Q4_K_S | 4.58 |
| Q4_K_M | 4.84 |
| Q5_K_S | 5.52 |
| Q5_K_M | 5.68 |
| Q6_K | 6.56 |
Llama 2 13B
| Quantization | Bits per Weight (BPW) |
|---|---|
| Q2_K | 3.34 |
| Q3_K_S | 3.48 |
| Q3_K_M | 3.89 |
| Q3_K_L | 4.26 |
| Q4_K_S | 4.56 |
| Q4_K_M | 4.83 |
| Q5_K_S | 5.51 |
| Q5_K_M | 5.67 |
| Q6_K | 6.56 |
Llama 2 70B
| Quantization | Bits per Weight (BPW) |
|---|---|
| Q2_K | 3.40 |
| Q3_K_S | 3.47 |
| Q3_K_M | 3.85 |
| Q3_K_L | 4.19 |
| Q4_K_S | 4.53 |
| Q4_K_M | 4.80 |
| Q5_K_S | 5.50 |
| Q5_K_M | 5.65 |
| Q6_K | 6.56 |