Files
ik_llama.cpp/examples/mtmd
firecoperana 0a3e1d1449 Update mtmd to improve accuracy of M-RoPE (#993)
* model : Granite docling + Idefics3 preprocessing (SmolVLM) (#16206)

* feat: Add granite-docling conversion using trillion pretokenizer

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add granite-docling vocab pre enum

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use granite-docling pre

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add clip_is_idefics3

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Allow multi-token boundary sequences for image templating

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add tiling support for idefices3 in clip.cpp

This should likely be moved into llava_uhd::get_slice_instructions, but for
now this avoids disrupting the logic there.

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Partial support for full templating for idefics3 in mtmd

There are still errors encoding some of the image chunks, but the token
sequence now matches transformers _almost_ perfectly, except for the double
newline before the global image which shows up as two consecutive newline
tokens instead of a single double-newline token. I think this is happening
because the blocks are tokenized separately then concatenated.

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Fully working image preprocessing for idefics3 w/ resize and slicing

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Parse the preprocessor config's longest side and add it to the mmproj hparams

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use the longest side instead of size * scale_factor

For Granite Docling, these come out to the same value, but that was just a
conicidence.

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Allow batch encoding and remove clip_is_idefics3

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove unnecessary conditionals for empty token vectors

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Use image_manipulation util

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* add test model

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
# Conflicts:
#	convert_hf_to_gguf.py
#	convert_hf_to_gguf_update.py
#	gguf-py/gguf/constants.py
#	gguf-py/gguf/gguf_writer.py
#	src/llama-vocab.cpp
#	src/llama-vocab.h

* mtmd : support home-cooked Mistral Small Omni (#14928)

* model : add LightOnOCR-1B model (#16764)

* model : add LightOnOCR-1B model

* add test
# Conflicts:
#	convert_hf_to_gguf.py
#	gguf-py/gguf/constants.py

* mtmd : fix idefics3 preprocessing (#16806)

* mtmd : fix idefics3 preprocessing

* disable granite test

* fix test for granite

* model: Add support for CogVLM model (#15002)

* Added GGUF mappings for CogVLM model

* Add tensor mapping for CogVLM visual encoder

* Add CogVLM to conversion script, no vision part yet

* Added CogVLM vision model to conversion script

* Add graph for CogVLM CLIP model

* Add graph for CogVLM

* Fixes for CogVLM. Now compiles.

* Model now runs

* Fixes for cogvlm graph

* Account for graph context change after rebase

* Changes for whitespace

* Changes in convert script according to comments

* Switch CogVLM LLM graph to merged QKV tensor

* Use rope_type variable instead of direct definition

* Change CogVLM CLIP encoder to use SWIGLU

* Switch CogVLM CLIP to use merged QKV

* Apply rebase edits and remove ggml_cont call that is now unnecessary

* clean up

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
# Conflicts:
#	convert_hf_to_gguf.py
#	examples/mtmd/clip.cpp
#	gguf-py/gguf/constants.py
#	gguf-py/gguf/tensor_mapping.py
#	src/llama-arch.cpp
#	src/llama-arch.h
#	src/llama-model.cpp
#	src/llama-model.h

* mtmd: refactor preprocessing + support max/min pixels (#16878)

* mtmd: refactor preprocessing + support max/min pixels

* fix mlp type

* implement mix/max pixels

* improve hparams

* better image preproc for qwen

* fix

* fix out of bound composite

* fix (2)

* fix token calculation

* get_merge_kernel_size()

* fix llama4 and lfm2

* gonna fix them all

* use simple resize for qwen

* qwen: increase min tokens

* no resize if dst size == src size

* restore to initial min/max tokens value for qwen
# Conflicts:
#	examples/mtmd/clip.cpp

* clip : use FA (#16837)

* clip : use FA

* cont : add warning about unsupported ops

* implement "auto" mode for clip flash attn

* clip : print more detailed op support info during warmup

* cont : remove obsolete comment [no ci]

* improve debugging message

* trailing space

* metal : remove stray return

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>

* model: add Janus Pro for image understanding (#16906)

* Add support for Janus Pro

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Address reviewer suggestions

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Add JANUS_PRO constant

* Update clip model handling

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

* Update tools/mtmd/clip.cpp

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* Refactor JANUS_PRO handling in clip.cpp

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

* Update tools/mtmd/clip.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* em whitespace

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
# Conflicts:
#	convert_hf_to_gguf.py
#	gguf-py/gguf/constants.py
#	gguf-py/gguf/tensor_mapping.py

* mtmd: pad mask for qwen2.5vl (#16954)

* mtmd: pad mask for qwen2.5vl

* improve

* mtmd: add --image-min/max-tokens (#16921)

* mtmd: improve struct initialization (#16981)

* mtmd: allow QwenVL to process larger image by default (#17020)

* Disable flash attention

* mtmd : fix embedding size for image input (#17123)

* mtmd: fix patch_size initialized to random value in audio models (#17128)

* mtmd: fix patch_size initialized to random value in audio models

* add default hparams

* add llama_model_n_embd_inp

* Fix load qwen3 vl

Change batch size

* Add description

* Fix cli build error

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Tianyue-Zhao <zhaotianyue@outlook.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Zhiyong Wang <85110830+ravenouse@users.noreply.github.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
Co-authored-by: firecoperana <firecoperana>
2025-11-29 07:27:15 +01:00
..

Multimodal Support in llama.cpp

This directory provides multimodal capabilities for llama.cpp. Initially intended as a showcase for running LLaVA models, its scope has expanded significantly over time to include various other vision-capable models. As a result, LLaVA is no longer the only multimodal architecture supported.

Important

Multimodal support can be viewed as a sub-project within llama.cpp. It is under very heavy development, and breaking changes are expected.

The naming and structure related to multimodal support have evolved, which might cause some confusion. Here's a brief timeline to clarify:

  • #3436: Initial support for LLaVA 1.5 was added, introducing llava.cpp and clip.cpp. The llava-cli binary was created for model interaction.
  • #4954: Support for MobileVLM was added, becoming the second vision model supported. This built upon the existing llava.cpp, clip.cpp, and llava-cli infrastructure.
  • Expansion & Fragmentation: Many new models were subsequently added (e.g., #7599, #10361, #12344, and others). However, llava-cli lacked support for the increasingly complex chat templates required by these models. This led to the creation of model-specific binaries like qwen2vl-cli, minicpmv-cli, and gemma3-cli. While functional, this proliferation of command-line tools became confusing for users.
  • #12849: libmtmd was introduced as a replacement for llava.cpp. Its goals include providing a single, unified command-line interface, improving the user/developer experience (UX/DX), and supporting both audio and image inputs.
  • #13012: mtmd-cli was added, consolidating the various model-specific CLIs into a single tool powered by libmtmd.

Pre-quantized models

See the list of pre-quantized model here

How it works and what is mmproj?

Multimodal support in llama.cpp works by encoding images into embeddings using a separate model component, and then feeding these embeddings into the language model.

This approach keeps the multimodal components distinct from the core libllama library. Separating these allows for faster, independent development cycles. While many modern vision models are based on Vision Transformers (ViTs), their specific pre-processing and projection steps can vary significantly. Integrating this diverse complexity directly into libllama is currently challenging.

Consequently, running a multimodal model typically requires two GGUF files:

  1. The standard language model file.
  2. A corresponding multimodal projector (mmproj) file, which handles the image encoding and projection.

What is libmtmd?

As outlined in the history, libmtmd is the modern library designed to replace the original llava.cpp implementation for handling multimodal inputs.

Built upon clip.cpp (similar to llava.cpp), libmtmd offers several advantages:

  • Unified Interface: Aims to consolidate interaction for various multimodal models.
  • Improved UX/DX: Features a more intuitive API, inspired by the Processor class in the Hugging Face transformers library.
  • Flexibility: Designed to support multiple input types (text, audio, images) while respecting the wide variety of chat templates used by different models.

How to obtain mmproj

Multimodal projector (mmproj) files are specific to each model architecture.

For the following models, you can use convert_hf_to_gguf.py with --mmproj flag to get the mmproj file:

  • Gemma 3 ; See the guide here - Note: 1B variant does not have vision support
  • SmolVLM (from HuggingFaceTB)
  • SmolVLM2 (from HuggingFaceTB)
  • Pixtral 12B - only works with transformers-compatible checkpoint
  • Qwen 2 VL and Qwen 2.5 VL (from Qwen)
  • Mistral Small 3.1 24B
  • InternVL 2.5 and InternVL 3 from OpenGVLab (note: we don't support conversion of InternVL3-*-hf model, only non-HF version is supported ; InternLM2Model text model is not supported)

For older models, please refer to the relevant guide for instructions on how to obtain or create them:

NOTE: conversion scripts are located under tools/mtmd/legacy-models