mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-01-26 09:09:50 +00:00
* Server: rename functions and refactor code rename functions refactor update slots rename params_base rename timings * change * Revert kv cache name changes * Revert 2 * fix test build error --------- Co-authored-by: firecoperana <firecoperana>
2234 lines
79 KiB
C++
2234 lines
79 KiB
C++
#include "server-common.h"
|
|
|
|
using raw_buffer = std::vector<uint8_t>;
|
|
|
|
|
|
server_grammar_trigger::server_grammar_trigger(const json& in) {
|
|
value.type = (common_grammar_trigger_type)in.at("type").get<int>();
|
|
value.value = in.at("value").get<std::string>();
|
|
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
|
|
value.token = (llama_token)in.at("token").get<int>();
|
|
}
|
|
}
|
|
|
|
json server_grammar_trigger::to_json() const {
|
|
json out{
|
|
{"type", (int)value.type},
|
|
{"value", value.value},
|
|
};
|
|
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
|
|
out["token"] = (int)value.token;
|
|
}
|
|
return out;
|
|
}
|
|
|
|
|
|
void server_log(const char* level, const char* function, int line, const char* message, const json& extra) {
|
|
std::stringstream ss_tid;
|
|
ss_tid << std::this_thread::get_id();
|
|
json log = json{
|
|
{"tid", ss_tid.str()},
|
|
{"timestamp", time(nullptr)},
|
|
};
|
|
|
|
if (server_log_json) {
|
|
log.merge_patch({
|
|
{"level", level},
|
|
{"function", function},
|
|
{"line", line},
|
|
{"msg", message},
|
|
});
|
|
|
|
if (!extra.empty()) {
|
|
log.merge_patch(extra);
|
|
}
|
|
|
|
printf("%s\n", log.dump(-1, ' ', false, json::error_handler_t::replace).c_str());
|
|
}
|
|
else {
|
|
char buf[1024];
|
|
snprintf(buf, 1024, "%4s [%24s] %s", level, function, message);
|
|
|
|
if (!extra.empty()) {
|
|
log.merge_patch(extra);
|
|
}
|
|
std::stringstream ss;
|
|
ss << buf << " |";
|
|
for (const auto& el : log.items())
|
|
{
|
|
const std::string value = el.value().dump(-1, ' ', false, json::error_handler_t::replace);
|
|
ss << " " << el.key() << "=" << value;
|
|
}
|
|
|
|
const std::string str = ss.str();
|
|
printf("%.*s\n", (int)str.size(), str.data());
|
|
}
|
|
fflush(stdout);
|
|
}
|
|
|
|
//
|
|
// chat template utils
|
|
//
|
|
|
|
|
|
bool is_base64(uint8_t c) {
|
|
return (isalnum(c) || (c == '+') || (c == '/'));
|
|
}
|
|
|
|
std::vector<uint8_t> base64_decode(const std::string& encoded_string) {
|
|
int i = 0;
|
|
int j = 0;
|
|
int in_ = 0;
|
|
|
|
int in_len = encoded_string.size();
|
|
|
|
uint8_t char_array_4[4];
|
|
uint8_t char_array_3[3];
|
|
|
|
std::vector<uint8_t> ret;
|
|
|
|
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
|
|
char_array_4[i++] = encoded_string[in_]; in_++;
|
|
if (i == 4) {
|
|
for (i = 0; i < 4; i++) {
|
|
char_array_4[i] = base64_chars.find(char_array_4[i]);
|
|
}
|
|
|
|
char_array_3[0] = ((char_array_4[0]) << 2) + ((char_array_4[1] & 0x30) >> 4);
|
|
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
|
|
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
|
|
|
|
for (i = 0; (i < 3); i++) {
|
|
ret.push_back(char_array_3[i]);
|
|
}
|
|
|
|
i = 0;
|
|
}
|
|
}
|
|
|
|
if (i) {
|
|
for (j = i; j < 4; j++) {
|
|
char_array_4[j] = 0;
|
|
}
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
char_array_4[j] = base64_chars.find(char_array_4[j]);
|
|
}
|
|
|
|
char_array_3[0] = ((char_array_4[0]) << 2) + ((char_array_4[1] & 0x30) >> 4);
|
|
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
|
|
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
|
|
|
|
for (j = 0; j < i - 1; j++) {
|
|
ret.push_back(char_array_3[j]);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
//
|
|
// random string / id
|
|
//
|
|
|
|
std::string random_string() {
|
|
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
|
|
|
|
std::random_device rd;
|
|
std::mt19937 generator(rd());
|
|
|
|
std::string result(32, ' ');
|
|
|
|
for (int i = 0; i < 32; ++i) {
|
|
result[i] = str[generator() % str.size()];
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
std::string gen_chatcmplid() {
|
|
std::stringstream chatcmplid;
|
|
chatcmplid << "chatcmpl-" << random_string();
|
|
|
|
return chatcmplid.str();
|
|
}
|
|
|
|
std::string gen_tool_call_id() {
|
|
return random_string();
|
|
}
|
|
|
|
//
|
|
// other common utils
|
|
//
|
|
float get_slot_similarity(size_t lcp, size_t prompt_length, size_t cache_length) {
|
|
float sim = float(lcp) * 2 / (prompt_length + cache_length);
|
|
return sim;
|
|
}
|
|
|
|
size_t common_part(const std::vector<llama_token>& a, const std::vector<llama_token>& b) {
|
|
size_t i;
|
|
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
|
|
|
|
return i;
|
|
}
|
|
|
|
size_t common_part(const std::string& a, const std::string& b) {
|
|
size_t i;
|
|
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
|
|
|
|
return i;
|
|
}
|
|
|
|
// return the last index of character that can form a valid string
|
|
// if the last character is potentially cut in half, return the index before the cut
|
|
// if validate_utf8(text) == text.size(), then the whole text is valid utf8
|
|
size_t validate_utf8(const std::string& text) {
|
|
size_t len = text.size();
|
|
if (len == 0) return 0;
|
|
|
|
// Check the last few bytes to see if a multi-byte character is cut off
|
|
for (size_t i = 1; i <= 4 && i <= len; ++i) {
|
|
unsigned char c = text[len - i];
|
|
// Check for start of a multi-byte sequence from the end
|
|
if ((c & 0xE0) == 0xC0) {
|
|
// 2-byte character start: 110xxxxx
|
|
// Needs at least 2 bytes
|
|
if (i < 2) return len - i;
|
|
}
|
|
else if ((c & 0xF0) == 0xE0) {
|
|
// 3-byte character start: 1110xxxx
|
|
// Needs at least 3 bytes
|
|
if (i < 3) return len - i;
|
|
}
|
|
else if ((c & 0xF8) == 0xF0) {
|
|
// 4-byte character start: 11110xxx
|
|
// Needs at least 4 bytes
|
|
if (i < 4) return len - i;
|
|
}
|
|
}
|
|
|
|
// If no cut-off multi-byte character is found, return full length
|
|
return len;
|
|
}
|
|
|
|
// TODO: reuse common_token_to_piece
|
|
template <class Iter>
|
|
static std::string tokens_to_str(llama_context* ctx, Iter begin, Iter end) {
|
|
std::string ret;
|
|
for (; begin != end; ++begin) {
|
|
ret += common_token_to_piece(ctx, *begin);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
std::string tokens_to_str(llama_context* ctx, const llama_tokens& tokens) {
|
|
return tokens_to_str(ctx, tokens.begin(), tokens.end());
|
|
}
|
|
|
|
// format incomplete utf-8 multibyte character for output
|
|
std::string tokens_to_output_formatted_string(const llama_context* ctx, const llama_token token) {
|
|
std::string out = token == -1 ? "" : common_token_to_piece(ctx, token);
|
|
|
|
// if the size is 1 and first bit is 1, meaning it's a partial character
|
|
// (size > 1 meaning it's already a known token)
|
|
if (out.size() == 1 && (out[0] & 0x80) == 0x80) {
|
|
std::stringstream ss;
|
|
ss << std::hex << (out[0] & 0xff);
|
|
std::string res(ss.str());
|
|
out = "byte: \\x" + res;
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
|
|
common_prefix common_prefix_add(const common_prefix& a, const common_prefix& b) {
|
|
common_prefix prefix;
|
|
prefix.first = a.first + b.first;
|
|
prefix.second = a.second + b.second;
|
|
return prefix;
|
|
}
|
|
|
|
common_prefix find_common_string_prefix(const std::string& a_str, const std::string& b_str, const std::set<char>& ignore_set) {
|
|
size_t i = 0;
|
|
size_t j = 0;
|
|
while (i < a_str.size() && j < b_str.size()) {
|
|
auto a_chr = a_str[i];
|
|
auto b_chr = b_str[j];
|
|
if (a_chr == b_chr) {
|
|
++i;
|
|
++j;
|
|
}
|
|
else if (ignore_set.count(a_chr) && ignore_set.count(b_chr)) {
|
|
++i;
|
|
++j;
|
|
}
|
|
else if (ignore_set.count(a_chr)) {
|
|
++i;
|
|
}
|
|
else if (ignore_set.count(b_chr)) {
|
|
++j;
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
common_prefix string_prefix;
|
|
string_prefix.first = i;
|
|
string_prefix.second = j;
|
|
return string_prefix;
|
|
}
|
|
|
|
size_t find_n_tokens_from_string(const llama_context* ctx, const llama_tokens& a, const size_t max_size, size_t start,
|
|
std::vector<size_t>& map) {
|
|
size_t n = 0;
|
|
size_t string_len = 0;
|
|
std::string str;
|
|
auto model = llama_get_model(ctx);
|
|
for (n = start; n < a.size(); ++n) {
|
|
str = llama_token_to_piece(model, a[n], true);
|
|
string_len = string_len + str.size();
|
|
if (string_len <= max_size) {
|
|
map.push_back(string_len);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
return map.size();
|
|
}
|
|
|
|
std::string remove_with_set(std::string str, const std::set<char>& chars_to_remove) {
|
|
str.erase(std::remove_if(str.begin(), str.end(),
|
|
[&chars_to_remove](char c) { return chars_to_remove.find(c) != chars_to_remove.end(); }),
|
|
str.end());
|
|
return str;
|
|
}
|
|
|
|
common_prefix find_largest_common_number(const std::vector<size_t>& a_list, const std::vector<size_t>& b_list) {
|
|
common_prefix token_prefix;
|
|
token_prefix.first = 0;
|
|
token_prefix.second = 0;
|
|
int i = a_list.size() - 1; // start from end of a
|
|
int j = b_list.size() - 1; // start from end of b
|
|
if (i < 0 || j < 0) {
|
|
return token_prefix;
|
|
}
|
|
while (i >= 0 && j >= 0) {
|
|
if (a_list[i] == b_list[j]) {
|
|
// found largest common value
|
|
token_prefix.first = (size_t)i + 1;
|
|
token_prefix.second = (size_t)j + 1;
|
|
break;
|
|
}
|
|
else if (a_list[i] > b_list[j]) {
|
|
--i;
|
|
}
|
|
else {
|
|
--j;
|
|
}
|
|
}
|
|
return token_prefix;
|
|
}
|
|
|
|
size_t find_n_tokens_from_string_with_ignore(const llama_context* ctx, const llama_tokens& a, const size_t max_size, size_t start, const std::set<char>& ignore_set,
|
|
std::vector<size_t>& map) {
|
|
bool use_ignore = ignore_set.size() > 0;
|
|
size_t n = 0;
|
|
size_t string_len = 0;
|
|
size_t string_len_ignore = 0;
|
|
std::string str;
|
|
std::string str_ignore;
|
|
auto model = llama_get_model(ctx);
|
|
for (n = start; n < a.size(); ++n) {
|
|
str = llama_token_to_piece(model, a[n], true);
|
|
string_len = string_len + str.size();
|
|
if (use_ignore) {
|
|
str_ignore = remove_with_set(str, ignore_set);
|
|
}
|
|
else {
|
|
str_ignore = str;
|
|
}
|
|
string_len_ignore = string_len_ignore + str_ignore.size();
|
|
if (string_len <= max_size) {
|
|
map.push_back(string_len_ignore);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
return map.size();
|
|
}
|
|
|
|
common_prefix find_common_text_token_prefix(const llama_context* ctx, const llama_tokens& a, const llama_tokens& b,
|
|
size_t start, bool exact) {
|
|
common_prefix token_prefix;
|
|
if (a.size() <= start || b.size() <= start) {
|
|
return token_prefix;
|
|
}
|
|
std::set<char> ignore_set = { ' ', '\n' ,'\r' };
|
|
|
|
llama_tokens a_sub(a.begin() + start, a.end());
|
|
llama_tokens b_sub(b.begin() + start, b.end());
|
|
|
|
std::string a_str = common_token_to_piece(ctx, a_sub, true);
|
|
std::string b_str = common_token_to_piece(ctx, b_sub, true);
|
|
common_prefix string_prefix;
|
|
|
|
std::vector<size_t> a_list;
|
|
std::vector<size_t> b_list;
|
|
|
|
if (exact) {
|
|
size_t lcp = common_part(a_str, b_str);
|
|
string_prefix.first = lcp;
|
|
string_prefix.second = lcp;
|
|
token_prefix.first = find_n_tokens_from_string(ctx, a_sub, string_prefix.first, 0, a_list);
|
|
token_prefix.second = find_n_tokens_from_string(ctx, b_sub, string_prefix.second, 0, b_list);
|
|
}
|
|
else {
|
|
string_prefix = find_common_string_prefix(a_str, b_str, ignore_set);
|
|
token_prefix.first = find_n_tokens_from_string_with_ignore(ctx, a_sub, string_prefix.first, 0, ignore_set, a_list);
|
|
token_prefix.second = find_n_tokens_from_string_with_ignore(ctx, b_sub, string_prefix.second, 0, ignore_set, b_list);
|
|
}
|
|
|
|
token_prefix = find_largest_common_number(a_list, b_list);
|
|
return token_prefix;
|
|
}
|
|
|
|
|
|
|
|
json completion_token_output::to_json(bool post_sampling_probs) const {
|
|
json probs_for_token = json::array();
|
|
for (const auto& p : probs) {
|
|
std::string txt(p.txt);
|
|
txt.resize(validate_utf8(txt));
|
|
probs_for_token.push_back(json{
|
|
{"id", p.tok},
|
|
{"token", txt},
|
|
{"bytes", str_to_bytes(p.txt)},
|
|
{
|
|
post_sampling_probs ? "prob" : "logprob",
|
|
post_sampling_probs ? p.prob : logarithm(p.prob)
|
|
},
|
|
});
|
|
}
|
|
return probs_for_token;
|
|
}
|
|
|
|
float completion_token_output::logarithm(float x) {
|
|
// nlohmann::json converts -inf to null, so we need to prevent that
|
|
return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
|
|
}
|
|
|
|
std::vector<unsigned char> completion_token_output::str_to_bytes(const std::string& str) {
|
|
std::vector<unsigned char> bytes;
|
|
for (unsigned char c : str) {
|
|
bytes.push_back(c);
|
|
}
|
|
return bytes;
|
|
}
|
|
|
|
|
|
json completion_token_output::probs_vector_to_json(const std::vector<completion_token_output>& probs, bool post_sampling_probs) {
|
|
json out = json::array();
|
|
for (const auto& p : probs) {
|
|
std::string txt(p.text_to_send);
|
|
txt.resize(validate_utf8(txt));
|
|
out.push_back(json{
|
|
{"id", p.tok},
|
|
{"token", txt},
|
|
{"bytes", str_to_bytes(p.text_to_send)},
|
|
{
|
|
post_sampling_probs ? "prob" : "logprob",
|
|
post_sampling_probs ? p.prob : logarithm(p.prob)
|
|
},
|
|
{
|
|
post_sampling_probs ? "top_probs" : "top_logprobs",
|
|
p.to_json(post_sampling_probs)
|
|
},
|
|
});
|
|
}
|
|
return out;
|
|
}
|
|
|
|
|
|
// convert a vector of completion_token_output to json
|
|
json probs_vector_to_json(const llama_context* ctx, const std::vector<completion_token_output>& probs) {
|
|
json out = json::array();
|
|
|
|
for (const auto& prob : probs) {
|
|
json probs_for_token = json::array();
|
|
|
|
for (const auto& p : prob.probs) {
|
|
const std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
|
|
probs_for_token.push_back(json{
|
|
{"tok_str", tok_str},
|
|
{"prob", p.prob},
|
|
});
|
|
}
|
|
|
|
const std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
|
|
out.push_back(json{
|
|
{"content", tok_str},
|
|
{"probs", probs_for_token},
|
|
});
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
|
|
// note: if data is a json array, it will be sent as multiple events, one per item
|
|
bool server_sent_event(httplib::DataSink& sink, const json& data) {
|
|
static auto send_single = [](httplib::DataSink& sink, const json& data) -> bool {
|
|
const std::string str =
|
|
"data: " +
|
|
data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n"; // required by RFC 8895 - A message is terminated by a blank line (two line terminators in a row).
|
|
|
|
LOG_DBG("data stream, to_send: %s", str.c_str());
|
|
return sink.write(str.c_str(), str.size());
|
|
};
|
|
|
|
if (data.is_array()) {
|
|
for (const auto& item : data) {
|
|
if (!send_single(sink, item)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
return send_single(sink, data);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool server_sent_anthropic_event(httplib::DataSink& sink, const json& data) {
|
|
static auto send_single = [](httplib::DataSink& sink, const json& data) -> bool {
|
|
const std::string str =
|
|
(data.contains("event") && data.contains("data")) ?
|
|
("event: " + data.at("event").get<std::string>() + "\n" +
|
|
"data: " + data.at("data").dump(-1, ' ', false, json::error_handler_t::replace) + "\n\n") :
|
|
("data: " + data.at("data").dump(-1, ' ', false, json::error_handler_t::replace) + "\n\n");
|
|
|
|
LOG_DBG("data stream, to_send: %s", str.c_str());
|
|
return sink.write(str.c_str(), str.size());
|
|
};
|
|
|
|
if (data.is_array()) {
|
|
for (const auto& item : data) {
|
|
if (!send_single(sink, item)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
return send_single(sink, data);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// OAI utils
|
|
//
|
|
// used by /completions endpoint
|
|
json oaicompat_chat_params_parse(const json& body) {
|
|
json llama_params;
|
|
|
|
if (!body.contains("prompt")) {
|
|
throw std::runtime_error("\"prompt\" is required");
|
|
}
|
|
|
|
// Handle "stop" field
|
|
if (body.contains("stop") && body.at("stop").is_string()) {
|
|
llama_params["stop"] = json::array({ body.at("stop").get<std::string>() });
|
|
}
|
|
else {
|
|
llama_params["stop"] = json_value(body, "stop", json::array());
|
|
}
|
|
|
|
// Handle "n" field
|
|
int n_choices = json_value(body, "n", 1);
|
|
if (n_choices != 1) {
|
|
throw std::runtime_error("Only one completion choice is allowed");
|
|
}
|
|
|
|
// Handle "echo" field
|
|
if (json_value(body, "echo", false)) {
|
|
throw std::runtime_error("Only no echo is supported");
|
|
}
|
|
|
|
// Handle "logprobs" field
|
|
int n_probs = json_value(body, "logprobs", 0);
|
|
if (n_probs > 0) {
|
|
llama_params["n_probs"] = n_probs;
|
|
}
|
|
|
|
// Params supported by OAI but unsupported by llama.cpp
|
|
static const std::vector<std::string> unsupported_params{ "best_of", "suffix" };
|
|
for (const auto& param : unsupported_params) {
|
|
if (body.contains(param)) {
|
|
throw std::runtime_error("Unsupported param: " + param);
|
|
}
|
|
}
|
|
|
|
// Copy remaining properties to llama_params
|
|
for (const auto& item : body.items()) {
|
|
// Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
|
|
if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
|
|
llama_params[item.key()] = item.value();
|
|
}
|
|
}
|
|
|
|
return llama_params;
|
|
}
|
|
|
|
|
|
// used by /chat/completions endpoint
|
|
json oaicompat_chat_params_parse(
|
|
const struct llama_model* model,
|
|
json& body, /* openai api json semantics */
|
|
const oaicompat_parser_options& opt,
|
|
std::vector<raw_buffer>& out_files)
|
|
{
|
|
json llama_params;
|
|
|
|
llama_params["__oaicompat"] = true;
|
|
auto tools = json_value(body, "tools", json());
|
|
auto has_tools = tools.is_array() && !tools.empty();
|
|
auto stream = json_value(body, "stream", false);
|
|
auto tool_choice = json_value(body, "tool_choice", std::string("auto"));
|
|
|
|
if (!opt.use_jinja) {
|
|
if (has_tools) {
|
|
throw std::runtime_error("tools param requires --jinja flag");
|
|
}
|
|
if (tool_choice != "auto") {
|
|
throw std::runtime_error("tool_choice param requires --jinja flag");
|
|
}
|
|
}
|
|
// Handle "stop" field
|
|
if (body.contains("stop") && body.at("stop").is_string()) {
|
|
llama_params["stop"] = json::array({ body.at("stop").get<std::string>() });
|
|
}
|
|
else {
|
|
llama_params["stop"] = json_value(body, "stop", json::array());
|
|
}
|
|
|
|
auto json_schema = json_value(body, "json_schema", json());
|
|
auto grammar = json_value(body, "grammar", std::string());
|
|
if (!json_schema.is_null() && !grammar.empty()) {
|
|
throw std::runtime_error("Cannot use both json_schema and grammar");
|
|
}
|
|
|
|
// Handle "response_format" field
|
|
if (body.contains("response_format")) {
|
|
json response_format = json_value(body, "response_format", json::object());
|
|
std::string response_type = json_value(response_format, "type", std::string());
|
|
if (response_type == "json_object") {
|
|
json_schema = json_value(response_format, "schema", json::object());
|
|
}
|
|
else if (response_type == "json_schema") {
|
|
auto schema_wrapper = json_value(response_format, "json_schema", json::object());
|
|
json_schema = json_value(schema_wrapper, "schema", json::object());
|
|
}
|
|
else if (!response_type.empty() && response_type != "text") {
|
|
json_schema = json_value(json_schema, "schema", json::object());
|
|
}
|
|
}
|
|
|
|
// get input files
|
|
if (!body.contains("messages")) {
|
|
throw std::runtime_error("'messages' is required");
|
|
}
|
|
json& messages = body.at("messages");
|
|
if (!messages.is_array()) {
|
|
throw std::runtime_error("Expected 'messages' to be an array");
|
|
}
|
|
for (auto& msg : messages) {
|
|
std::string role = json_value(msg, "role", std::string());
|
|
if (role != "assistant" && !msg.contains("content")) {
|
|
throw std::runtime_error("All non-assistant messages must contain 'content'");
|
|
}
|
|
if (role == "assistant") {
|
|
if (!msg.contains("content") && !msg.contains("tool_calls")) {
|
|
throw std::runtime_error("Assistant message must contain either 'content' or 'tool_calls'!");
|
|
}
|
|
if (!msg.contains("content")) {
|
|
continue; // avoid errors with no content
|
|
}
|
|
}
|
|
json& content = msg.at("content");
|
|
if (content.is_string() || content.is_null()) {
|
|
continue;
|
|
}
|
|
|
|
if (!content.is_array()) {
|
|
throw std::runtime_error("Expected 'content' to be a string or an array");
|
|
}
|
|
|
|
for (auto& p : content) {
|
|
std::string type = json_value(p, "type", std::string());
|
|
if (type == "image_url") {
|
|
if (!opt.allow_image) {
|
|
throw std::runtime_error("image input is not supported - hint: if this is unexpected, you may need to provide the mmproj");
|
|
}
|
|
|
|
json image_url = json_value(p, "image_url", json::object());
|
|
std::string url = json_value(image_url, "url", std::string());
|
|
if (string_starts_with(url, "http")) {
|
|
// download remote image
|
|
// TODO @ngxson : maybe make these params configurable
|
|
common_remote_params params;
|
|
params.headers.push_back("User-Agent: ik_llama.cpp/");
|
|
params.max_size = 1024 * 1024 * 10; // 10MB
|
|
params.timeout = 10; // seconds
|
|
LOG_INFO("downloading image from '%s'\n", url.c_str());
|
|
auto res = common_remote_get_content(url, params);
|
|
if (200 <= res.first && res.first < 300) {
|
|
LOG_INFO("downloaded %ld bytes\n", res.second.size());
|
|
raw_buffer data;
|
|
data.insert(data.end(), res.second.begin(), res.second.end());
|
|
out_files.push_back(data);
|
|
}
|
|
else {
|
|
throw std::runtime_error("Failed to download image");
|
|
}
|
|
|
|
}
|
|
else {
|
|
// try to decode base64 image
|
|
std::vector<std::string> parts = string_split<std::string>(url, /*separator*/ ',');
|
|
if (parts.size() != 2) {
|
|
throw std::runtime_error("Invalid image_url.url value");
|
|
}
|
|
else if (!string_starts_with(parts[0], "data:image/")) {
|
|
throw std::runtime_error("Invalid image_url.url format: " + parts[0]);
|
|
}
|
|
else if (!string_ends_with(parts[0], "base64")) {
|
|
throw std::runtime_error("image_url.url must be base64 encoded");
|
|
}
|
|
else {
|
|
auto base64_data = parts[1];
|
|
auto decoded_data = base64_decode(base64_data);
|
|
out_files.push_back(decoded_data);
|
|
}
|
|
}
|
|
|
|
// replace this chunk with a marker
|
|
p["type"] = "text";
|
|
p["text"] = mtmd_default_marker();
|
|
p.erase("image_url");
|
|
|
|
}
|
|
else if (type == "input_audio") {
|
|
if (!opt.allow_audio) {
|
|
throw std::runtime_error("audio input is not supported - hint: if this is unexpected, you may need to provide the mmproj");
|
|
}
|
|
|
|
json input_audio = json_value(p, "input_audio", json::object());
|
|
std::string data = json_value(input_audio, "data", std::string());
|
|
std::string format = json_value(input_audio, "format", std::string());
|
|
// while we also support flac, we don't allow it here so we matches the OAI spec
|
|
if (format != "wav" && format != "mp3") {
|
|
throw std::runtime_error("input_audio.format must be either 'wav' or 'mp3'");
|
|
}
|
|
auto decoded_data = base64_decode(data); // expected to be base64 encoded
|
|
out_files.push_back(decoded_data);
|
|
|
|
// replace this chunk with a marker
|
|
p["type"] = "text";
|
|
p["text"] = mtmd_default_marker();
|
|
p.erase("input_audio");
|
|
|
|
}
|
|
else if (type != "text") {
|
|
throw std::runtime_error("unsupported content[].type");
|
|
}
|
|
}
|
|
}
|
|
|
|
common_chat_templates_inputs inputs;
|
|
inputs.messages = common_chat_msgs_parse_oaicompat(messages);
|
|
inputs.tools = common_chat_tools_parse_oaicompat(tools);
|
|
inputs.tool_choice = common_chat_tool_choice_parse_oaicompat(tool_choice);
|
|
inputs.json_schema = json_schema.is_null() ? "" : json_schema.dump();
|
|
inputs.grammar = grammar;
|
|
inputs.use_jinja = opt.use_jinja;
|
|
inputs.parallel_tool_calls = json_value(body, "parallel_tool_calls", false);
|
|
inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true);
|
|
inputs.reasoning_format = opt.reasoning_format;
|
|
inputs.enable_thinking = opt.enable_thinking;
|
|
if (!inputs.tools.empty() && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE) {
|
|
if (body.contains("grammar")) {
|
|
throw std::runtime_error("Cannot use custom grammar constraints with tools.");
|
|
}
|
|
llama_params["parse_tool_calls"] = true;
|
|
}
|
|
|
|
// merge the template args provided from command line with the args provided in the user request
|
|
auto chat_template_kwargs_object = json_value(body, "chat_template_kwargs", json::object());
|
|
inputs.chat_template_kwargs = opt.chat_template_kwargs;
|
|
for (const auto& item : chat_template_kwargs_object.items()) {
|
|
inputs.chat_template_kwargs[item.key()] = item.value().dump();
|
|
}
|
|
|
|
// parse the "enable_thinking" kwarg to override the default value
|
|
auto enable_thinking_kwarg = json_value(inputs.chat_template_kwargs, "enable_thinking", std::string(""));
|
|
if (enable_thinking_kwarg == "true") {
|
|
inputs.enable_thinking = true;
|
|
}
|
|
else if (enable_thinking_kwarg == "false") {
|
|
inputs.enable_thinking = false;
|
|
}
|
|
else if (!enable_thinking_kwarg.empty() && enable_thinking_kwarg[0] == '"') {
|
|
throw std::runtime_error("invalid type for \"enable_thinking\" (expected boolean, got string)");
|
|
}
|
|
|
|
/*"whether to prefill the assistant's response if the last message is an assistant message (default: prefill enabled)\n"
|
|
"when this flag is set, if the last message is an assistant message then it will be treated as a full message and not prefilled\n"*/
|
|
bool prefill_assistant_message = !inputs.messages.empty() && inputs.messages.back().role == "assistant" && opt.prefill_assistant;
|
|
common_chat_msg last_message;
|
|
if (prefill_assistant_message) {
|
|
last_message = inputs.messages.back();
|
|
inputs.messages.pop_back();
|
|
|
|
/* sanity check, max one assistant message at the end of the list */
|
|
if (!inputs.messages.empty() && inputs.messages.back().role == "assistant") {
|
|
throw std::runtime_error("Cannot have 2 or more assistant messages at the end of the list.");
|
|
}
|
|
|
|
/* TODO: test this properly */
|
|
inputs.reasoning_format = COMMON_REASONING_FORMAT_NONE;
|
|
if (inputs.enable_thinking) {
|
|
throw std::runtime_error("Assistant response prefill is incompatible with enable_thinking.");
|
|
}
|
|
inputs.add_generation_prompt = true;
|
|
}
|
|
|
|
// Apply chat template to the list of messages
|
|
auto chat_params = common_chat_templates_apply(opt.tmpls, inputs);
|
|
|
|
/* Append assistant prefilled message */
|
|
if (prefill_assistant_message) {
|
|
if (!last_message.content_parts.empty()) {
|
|
for (auto& p : last_message.content_parts) {
|
|
chat_params.prompt += p.text;
|
|
}
|
|
}
|
|
else {
|
|
chat_params.prompt += last_message.content;
|
|
}
|
|
}
|
|
|
|
llama_params["chat_format"] = static_cast<int>(chat_params.format);
|
|
llama_params["prompt"] = chat_params.prompt;
|
|
if (!chat_params.grammar.empty()) {
|
|
llama_params["grammar"] = chat_params.grammar;
|
|
}
|
|
llama_params["grammar_lazy"] = chat_params.grammar_lazy;
|
|
auto grammar_triggers = json::array();
|
|
for (const auto& trigger : chat_params.grammar_triggers) {
|
|
server_grammar_trigger ct(trigger);
|
|
grammar_triggers.push_back(ct.to_json());
|
|
}
|
|
llama_params["grammar_triggers"] = grammar_triggers;
|
|
llama_params["preserved_tokens"] = chat_params.preserved_tokens;
|
|
llama_params["thinking_forced_open"] = chat_params.thinking_forced_open;
|
|
for (const auto& stop : chat_params.additional_stops) {
|
|
llama_params["stop"].push_back(stop);
|
|
}
|
|
|
|
// Handle "n" field
|
|
int n_choices = json_value(body, "n", 1);
|
|
if (n_choices != 1) {
|
|
throw std::runtime_error("Only one completion choice is allowed");
|
|
}
|
|
|
|
// Handle "logprobs" field
|
|
// TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
|
|
if (json_value(body, "logprobs", false)) {
|
|
if (has_tools && stream) {
|
|
throw std::runtime_error("logprobs is not supported with tools + stream");
|
|
}
|
|
llama_params["n_probs"] = json_value(body, "top_logprobs", 20);
|
|
}
|
|
else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) {
|
|
throw std::runtime_error("top_logprobs requires logprobs to be set to true");
|
|
}
|
|
|
|
|
|
// Copy remaining properties to llama_params
|
|
// This allows user to use llama.cpp-specific params like "mirostat", "tfs_z",... via OAI endpoint.
|
|
// See "launch_slot_with_task()" for a complete list of params supported by llama.cpp
|
|
for (const auto& item : body.items()) {
|
|
// Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
|
|
if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
|
|
llama_params[item.key()] = item.value();
|
|
}
|
|
}
|
|
|
|
return llama_params;
|
|
}
|
|
|
|
json anthropic_params_from_json(
|
|
const struct llama_model* model,
|
|
const json& body_in, /* anthropic messages api json semantics */
|
|
const oaicompat_parser_options& opt,
|
|
std::vector<raw_buffer>& out_files)
|
|
{
|
|
json body = body_in;
|
|
json llama_params;
|
|
|
|
if (body.contains("stop_sequences")) {
|
|
llama_params["stop"] = body.at("stop_sequences");
|
|
}
|
|
else {
|
|
llama_params["stop"] = json::array();
|
|
}
|
|
|
|
// handle max_tokens (required in Anthropic, but we're permissive)
|
|
if (!body.contains("max_tokens")) {
|
|
llama_params["n_predict"] = 4096;
|
|
}
|
|
else {
|
|
llama_params["n_predict"] = body.at("max_tokens");
|
|
}
|
|
|
|
if (body.contains("top_k")) {
|
|
llama_params["top_k"] = body.at("top_k");
|
|
}
|
|
|
|
if (body.contains("thinking")) {
|
|
json thinking = json_value(body, "thinking", json::object());
|
|
std::string thinking_type = json_value(thinking, "type", std::string());
|
|
if (thinking_type == "enabled") {
|
|
int budget_tokens = json_value(thinking, "budget_tokens", 10000);
|
|
llama_params["thinking_budget_tokens"] = budget_tokens;
|
|
}
|
|
}
|
|
|
|
if (body.contains("metadata")) {
|
|
json metadata = json_value(body, "metadata", json::object());
|
|
std::string user_id = json_value(metadata, "user_id", std::string());
|
|
if (!user_id.empty()) {
|
|
llama_params["__metadata_user_id"] = user_id;
|
|
}
|
|
}
|
|
|
|
json oai_messages = json::array();
|
|
auto system_param = json_value(body, "system", json());
|
|
if (!system_param.is_null()) {
|
|
std::string system_content;
|
|
|
|
if (system_param.is_string()) {
|
|
system_content = system_param.get<std::string>();
|
|
}
|
|
else if (system_param.is_array()) {
|
|
for (const auto& block : system_param) {
|
|
if (json_value(block, "type", std::string()) == "text") {
|
|
system_content += json_value(block, "text", std::string());
|
|
}
|
|
}
|
|
}
|
|
|
|
oai_messages.push_back({
|
|
{"role", "system"},
|
|
{"content", system_content}
|
|
});
|
|
}
|
|
|
|
if (!body.contains("messages")) {
|
|
throw std::runtime_error("'messages' is required");
|
|
}
|
|
json& messages = body.at("messages");
|
|
if (!messages.is_array()) {
|
|
throw std::runtime_error("Expected 'messages' to be an array");
|
|
}
|
|
|
|
for (auto& msg : messages) {
|
|
std::string role = json_value(msg, "role", std::string());
|
|
if (role != "assistant" && !msg.contains("content")) {
|
|
throw std::runtime_error("All non-assistant messages must contain 'content'");
|
|
}
|
|
if (role == "assistant") {
|
|
if (!msg.contains("content")) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
json& content = msg.at("content");
|
|
|
|
if (content.is_string()) {
|
|
oai_messages.push_back(msg);
|
|
continue;
|
|
}
|
|
|
|
if (!content.is_array()) {
|
|
throw std::runtime_error("Expected 'content' to be a string or an array");
|
|
}
|
|
|
|
json tool_calls = json::array();
|
|
json converted_content = json::array();
|
|
json tool_results = json::array();
|
|
bool has_tool_calls = false;
|
|
|
|
for (auto& block : content) {
|
|
std::string type = json_value(block, "type", std::string());
|
|
|
|
if (type == "text") {
|
|
converted_content.push_back(block);
|
|
}
|
|
else if (type == "image") {
|
|
json source = json_value(block, "source", json::object());
|
|
std::string source_type = json_value(source, "type", std::string());
|
|
|
|
if (source_type == "base64") {
|
|
std::string media_type = json_value(source, "media_type", std::string("image/jpeg"));
|
|
std::string data = json_value(source, "data", std::string());
|
|
|
|
converted_content.push_back({
|
|
{"type", "image_url"},
|
|
{"image_url", {
|
|
{"url", "data:" + media_type + ";base64," + data}
|
|
}}
|
|
});
|
|
}
|
|
else if (source_type == "url") {
|
|
std::string url = json_value(source, "url", std::string());
|
|
converted_content.push_back({
|
|
{"type", "image_url"},
|
|
{"image_url", {
|
|
{"url", url}
|
|
}}
|
|
});
|
|
}
|
|
}
|
|
else if (type == "tool_use") {
|
|
tool_calls.push_back({
|
|
{"id", json_value(block, "id", std::string())},
|
|
{"type", "function"},
|
|
{"function", {
|
|
{"name", json_value(block, "name", std::string())},
|
|
{"arguments", json_value(block, "input", json::object()).dump()}
|
|
}}
|
|
});
|
|
has_tool_calls = true;
|
|
}
|
|
else if (type == "tool_result") {
|
|
std::string tool_use_id = json_value(block, "tool_use_id", std::string());
|
|
|
|
auto result_content = json_value(block, "content", json());
|
|
std::string result_text;
|
|
if (result_content.is_string()) {
|
|
result_text = result_content.get<std::string>();
|
|
}
|
|
else if (result_content.is_array()) {
|
|
for (const auto& c : result_content) {
|
|
if (json_value(c, "type", std::string()) == "text") {
|
|
result_text += json_value(c, "text", std::string());
|
|
}
|
|
}
|
|
}
|
|
|
|
tool_results.push_back({
|
|
{"role", "tool"},
|
|
{"tool_call_id", tool_use_id},
|
|
{"content", result_text}
|
|
});
|
|
}
|
|
}
|
|
|
|
if (!tool_results.empty()) {
|
|
if (!converted_content.empty() || has_tool_calls) {
|
|
json new_msg = { {"role", role} };
|
|
if (!converted_content.empty()) {
|
|
new_msg["content"] = converted_content;
|
|
}
|
|
else if (has_tool_calls) {
|
|
new_msg["content"] = "";
|
|
}
|
|
if (!tool_calls.empty()) {
|
|
new_msg["tool_calls"] = tool_calls;
|
|
}
|
|
oai_messages.push_back(new_msg);
|
|
}
|
|
for (const auto& tool_msg : tool_results) {
|
|
oai_messages.push_back(tool_msg);
|
|
}
|
|
}
|
|
else {
|
|
if (!converted_content.empty() || has_tool_calls) {
|
|
json new_msg = { {"role", role} };
|
|
if (!converted_content.empty()) {
|
|
new_msg["content"] = converted_content;
|
|
}
|
|
else if (has_tool_calls) {
|
|
new_msg["content"] = "";
|
|
}
|
|
if (!tool_calls.empty()) {
|
|
new_msg["tool_calls"] = tool_calls;
|
|
}
|
|
oai_messages.push_back(new_msg);
|
|
}
|
|
}
|
|
}
|
|
|
|
json oai_tools = json::array();
|
|
if (body.contains("tools")) {
|
|
json& tools = body.at("tools");
|
|
if (tools.is_array()) {
|
|
for (auto& tool : tools) {
|
|
oai_tools.push_back({
|
|
{"type", "function"},
|
|
{"function", {
|
|
{"name", json_value(tool, "name", std::string())},
|
|
{"description", json_value(tool, "description", std::string())},
|
|
{"parameters", tool.contains("input_schema") ? tool.at("input_schema") : json::object()}
|
|
}}
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
std::string oai_tool_choice = "auto";
|
|
if (body.contains("tool_choice")) {
|
|
json& tc = body.at("tool_choice");
|
|
if (tc.is_object()) {
|
|
std::string type = json_value(tc, "type", std::string());
|
|
if (type == "auto") {
|
|
oai_tool_choice = "auto";
|
|
}
|
|
else if (type == "any") {
|
|
oai_tool_choice = "required";
|
|
}
|
|
else if (type == "tool") {
|
|
oai_tool_choice = "required";
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto& msg : oai_messages) {
|
|
if (!msg.contains("content")) {
|
|
continue;
|
|
}
|
|
json& content = msg.at("content");
|
|
if (content.is_string() || content.is_null()) {
|
|
continue;
|
|
}
|
|
if (!content.is_array()) {
|
|
continue;
|
|
}
|
|
|
|
for (auto& p : content) {
|
|
std::string type = json_value(p, "type", std::string());
|
|
if (type == "image_url") {
|
|
if (!opt.allow_image) {
|
|
throw std::runtime_error("image input is not supported - hint: if this is unexpected, you may need to provide the mmproj");
|
|
}
|
|
|
|
json image_url = json_value(p, "image_url", json::object());
|
|
std::string url = json_value(image_url, "url", std::string());
|
|
if (string_starts_with(url, "http")) {
|
|
// download remote image
|
|
common_remote_params params;
|
|
params.headers.push_back("User-Agent: ik_llama.cpp/");
|
|
params.max_size = 1024 * 1024 * 10; // 10MB
|
|
params.timeout = 10; // seconds
|
|
LOG_INFO("downloading image from '%s'\n", url.c_str());
|
|
auto res = common_remote_get_content(url, params);
|
|
if (200 <= res.first && res.first < 300) {
|
|
LOG_INFO("downloaded %ld bytes\n", res.second.size());
|
|
raw_buffer data;
|
|
data.insert(data.end(), res.second.begin(), res.second.end());
|
|
out_files.push_back(data);
|
|
}
|
|
else {
|
|
throw std::runtime_error("Failed to download image");
|
|
}
|
|
}
|
|
else {
|
|
// try to decode base64 image
|
|
std::vector<std::string> parts = string_split<std::string>(url, /*separator*/ ',');
|
|
if (parts.size() != 2) {
|
|
throw std::runtime_error("Invalid image_url.url value");
|
|
}
|
|
else if (!string_starts_with(parts[0], "data:image/")) {
|
|
throw std::runtime_error("Invalid image_url.url format: " + parts[0]);
|
|
}
|
|
else if (!string_ends_with(parts[0], "base64")) {
|
|
throw std::runtime_error("image_url.url must be base64 encoded");
|
|
}
|
|
else {
|
|
auto base64_data = parts[1];
|
|
auto decoded_data = base64_decode(base64_data);
|
|
out_files.push_back(decoded_data);
|
|
}
|
|
}
|
|
|
|
// replace this chunk with a marker
|
|
p["type"] = "text";
|
|
p["text"] = mtmd_default_marker();
|
|
p.erase("image_url");
|
|
}
|
|
else if (type == "input_audio") {
|
|
if (!opt.allow_audio) {
|
|
throw std::runtime_error("audio input is not supported - hint: if this is unexpected, you may need to provide the mmproj");
|
|
}
|
|
|
|
json input_audio = json_value(p, "input_audio", json::object());
|
|
std::string data = json_value(input_audio, "data", std::string());
|
|
std::string format = json_value(input_audio, "format", std::string());
|
|
if (format != "wav" && format != "mp3") {
|
|
throw std::runtime_error("input_audio.format must be either 'wav' or 'mp3'");
|
|
}
|
|
auto decoded_data = base64_decode(data);
|
|
out_files.push_back(decoded_data);
|
|
|
|
// replace this chunk with a marker
|
|
p["type"] = "text";
|
|
p["text"] = mtmd_default_marker();
|
|
p.erase("input_audio");
|
|
}
|
|
}
|
|
}
|
|
|
|
common_chat_templates_inputs inputs;
|
|
inputs.messages = common_chat_msgs_parse_oaicompat(oai_messages);
|
|
inputs.tools = common_chat_tools_parse_oaicompat(oai_tools);
|
|
inputs.tool_choice = common_chat_tool_choice_parse_oaicompat(oai_tool_choice);
|
|
inputs.json_schema = "";
|
|
inputs.grammar = "";
|
|
inputs.use_jinja = opt.use_jinja;
|
|
inputs.parallel_tool_calls = json_value(body, "parallel_tool_calls", false);
|
|
inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true);
|
|
inputs.reasoning_format = opt.reasoning_format;
|
|
inputs.enable_thinking = opt.enable_thinking;
|
|
|
|
if (opt.enable_thinking && opt.prefill_assistant) {
|
|
if (!inputs.messages.empty() && inputs.messages.back().role == "assistant") {
|
|
inputs.enable_thinking = false;
|
|
}
|
|
}
|
|
|
|
if (!inputs.tools.empty() && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE) {
|
|
llama_params["parse_tool_calls"] = true;
|
|
}
|
|
|
|
// merge the template args provided from command line with the args provided in the user request
|
|
auto chat_template_kwargs_object = json_value(body, "chat_template_kwargs", json::object());
|
|
inputs.chat_template_kwargs = opt.chat_template_kwargs;
|
|
for (const auto& item : chat_template_kwargs_object.items()) {
|
|
inputs.chat_template_kwargs[item.key()] = item.value().dump();
|
|
}
|
|
|
|
// parse the "enable_thinking" kwarg to override the default value
|
|
auto enable_thinking_kwarg = json_value(inputs.chat_template_kwargs, "enable_thinking", std::string(""));
|
|
if (enable_thinking_kwarg == "true") {
|
|
inputs.enable_thinking = true;
|
|
}
|
|
else if (enable_thinking_kwarg == "false") {
|
|
inputs.enable_thinking = false;
|
|
}
|
|
else if (!enable_thinking_kwarg.empty() && enable_thinking_kwarg[0] == '"') {
|
|
throw std::runtime_error("invalid type for \"enable_thinking\" (expected boolean, got string)");
|
|
}
|
|
|
|
// if the assistant message appears at the end of list, we do not add end-of-turn token
|
|
bool prefill_assistant_message = !inputs.messages.empty() && inputs.messages.back().role == "assistant" && opt.prefill_assistant;
|
|
common_chat_msg last_message;
|
|
if (prefill_assistant_message) {
|
|
last_message = inputs.messages.back();
|
|
inputs.messages.pop_back();
|
|
|
|
// sanity check, max one assistant message at the end of the list
|
|
if (!inputs.messages.empty() && inputs.messages.back().role == "assistant") {
|
|
throw std::runtime_error("Cannot have 2 or more assistant messages at the end of the list.");
|
|
}
|
|
|
|
inputs.reasoning_format = COMMON_REASONING_FORMAT_NONE;
|
|
|
|
if (inputs.enable_thinking) {
|
|
throw std::runtime_error("Assistant response prefill is incompatible with enable_thinking.");
|
|
}
|
|
|
|
inputs.add_generation_prompt = true;
|
|
}
|
|
|
|
// Apply chat template to the list of messages
|
|
auto chat_params = common_chat_templates_apply(opt.tmpls, inputs);
|
|
|
|
// Append assistant prefilled message
|
|
if (prefill_assistant_message) {
|
|
if (!last_message.content_parts.empty()) {
|
|
for (auto& p : last_message.content_parts) {
|
|
chat_params.prompt += p.text;
|
|
}
|
|
}
|
|
else {
|
|
chat_params.prompt += last_message.content;
|
|
}
|
|
}
|
|
|
|
llama_params["chat_format"] = static_cast<int>(chat_params.format);
|
|
llama_params["prompt"] = chat_params.prompt;
|
|
if (!chat_params.grammar.empty()) {
|
|
llama_params["grammar"] = chat_params.grammar;
|
|
}
|
|
llama_params["grammar_lazy"] = chat_params.grammar_lazy;
|
|
auto grammar_triggers = json::array();
|
|
for (const auto& trigger : chat_params.grammar_triggers) {
|
|
server_grammar_trigger ct(trigger);
|
|
grammar_triggers.push_back(ct.to_json());
|
|
}
|
|
llama_params["grammar_triggers"] = grammar_triggers;
|
|
llama_params["preserved_tokens"] = chat_params.preserved_tokens;
|
|
llama_params["thinking_forced_open"] = chat_params.thinking_forced_open;
|
|
for (const auto& stop : chat_params.additional_stops) {
|
|
llama_params["stop"].push_back(stop);
|
|
}
|
|
|
|
// Handle "n" field
|
|
int n_choices = json_value(body, "n", 1);
|
|
if (n_choices != 1) {
|
|
throw std::runtime_error("Only one completion choice is allowed");
|
|
}
|
|
|
|
// Copy remaining properties to llama_params
|
|
// This allows user to use llama.cpp-specific params like "mirostat", ... via Anthropic endpoint.
|
|
// See "launch_slot_with_task()" for a complete list of params supported by llama.cpp
|
|
for (const auto& item : body.items()) {
|
|
// Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
|
|
if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
|
|
llama_params[item.key()] = item.value();
|
|
}
|
|
}
|
|
|
|
return llama_params;
|
|
}
|
|
|
|
|
|
//
|
|
// tokenizer and input processing utils
|
|
//
|
|
|
|
bool json_is_array_of_numbers(const json& data) {
|
|
if (data.is_array()) {
|
|
for (const auto& e : data) {
|
|
if (!e.is_number_integer()) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// is array having BOTH numbers & strings?
|
|
bool json_is_array_of_mixed_numbers_strings(const json& data) {
|
|
bool seen_string = false;
|
|
bool seen_number = false;
|
|
if (data.is_array()) {
|
|
for (const auto& e : data) {
|
|
seen_string |= e.is_string();
|
|
seen_number |= e.is_number_integer();
|
|
if (seen_number && seen_string) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// does array have any individual integers/tokens?
|
|
bool json_is_array_and_contains_numbers(const json& data) {
|
|
if (data.is_array()) {
|
|
for (const auto& e : data) {
|
|
if (e.is_number_integer()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// get value by path(key1 / key2)
|
|
json json_get_nested_values(const std::vector<std::string>& paths, const json& js) {
|
|
json result = json::object();
|
|
|
|
for (const std::string& path : paths) {
|
|
json current = js;
|
|
const auto keys = string_split<std::string>(path, /*separator*/ '/');
|
|
bool valid_path = true;
|
|
for (const std::string& k : keys) {
|
|
if (valid_path && current.is_object() && current.contains(k)) {
|
|
current = current[k];
|
|
}
|
|
else {
|
|
valid_path = false;
|
|
}
|
|
}
|
|
if (valid_path) {
|
|
result[path] = current;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
/**
|
|
* this handles 2 cases:
|
|
* - only string, example: "string"
|
|
* - mixed string and tokens, example: [12, 34, "string", 56, 78]
|
|
*/
|
|
std::vector<llama_token> tokenize_mixed(const llama_vocab* vocab, const json& json_prompt, bool add_special, bool parse_special) {
|
|
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
|
|
// or the first element of the json_prompt array is a string.
|
|
std::vector<llama_token> prompt_tokens;
|
|
|
|
if (json_prompt.is_array()) {
|
|
bool first = true;
|
|
for (const auto& p : json_prompt) {
|
|
if (p.is_string()) {
|
|
auto s = p.template get<std::string>();
|
|
|
|
std::vector<llama_token> p;
|
|
if (first) {
|
|
p = llama_tokenize(vocab, s, add_special, parse_special);
|
|
first = false;
|
|
}
|
|
else {
|
|
p = llama_tokenize(vocab, s, false, parse_special);
|
|
}
|
|
|
|
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
|
|
}
|
|
else {
|
|
if (first) {
|
|
first = false;
|
|
}
|
|
|
|
prompt_tokens.push_back(p.template get<llama_token>());
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
auto s = json_prompt.template get<std::string>();
|
|
prompt_tokens = llama_tokenize(vocab, s, add_special, parse_special);
|
|
}
|
|
|
|
return prompt_tokens;
|
|
}
|
|
|
|
json format_tokenizer_response(const std::vector<llama_token>& tokens) {
|
|
return json{
|
|
{"tokens", tokens}
|
|
};
|
|
}
|
|
|
|
json format_detokenized_response(const std::string& content) {
|
|
return json{
|
|
{"content", content}
|
|
};
|
|
}
|
|
|
|
json format_error_response(const std::string& message, const enum error_type type) {
|
|
std::string type_str;
|
|
int code = 500;
|
|
switch (type) {
|
|
case ERROR_TYPE_INVALID_REQUEST:
|
|
type_str = "invalid_request_error";
|
|
code = 400;
|
|
break;
|
|
case ERROR_TYPE_AUTHENTICATION:
|
|
type_str = "authentication_error";
|
|
code = 401;
|
|
break;
|
|
case ERROR_TYPE_NOT_FOUND:
|
|
type_str = "not_found_error";
|
|
code = 404;
|
|
break;
|
|
case ERROR_TYPE_SERVER:
|
|
type_str = "server_error";
|
|
code = 500;
|
|
break;
|
|
case ERROR_TYPE_PERMISSION:
|
|
type_str = "permission_error";
|
|
code = 403;
|
|
break;
|
|
case ERROR_TYPE_NOT_SUPPORTED:
|
|
type_str = "not_supported_error";
|
|
code = 501;
|
|
break;
|
|
case ERROR_TYPE_UNAVAILABLE:
|
|
type_str = "unavailable_error";
|
|
code = 503;
|
|
break;
|
|
}
|
|
return json{
|
|
{"code", code},
|
|
{"message", message},
|
|
{"type", type_str},
|
|
};
|
|
}
|
|
|
|
|
|
token_probabilities get_token_probabilities(llama_context* ctx, int idx, llama_token sampled_token_id, int n_sorted) {
|
|
const auto* logits = llama_get_logits_ith(ctx, idx);
|
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
|
n_sorted = std::min(n_sorted, n_vocab);
|
|
|
|
std::vector<std::pair<float, llama_token>> sorted(n_vocab);
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) sorted[token_id] = { logits[token_id], token_id };
|
|
|
|
std::partial_sort(sorted.begin(), sorted.begin() + n_sorted, sorted.end(), std::greater<std::pair<float, llama_token>>{});
|
|
|
|
float max_l = sorted.front().first;
|
|
float cum_sum = 0.0f;
|
|
float sampled_token_p = 0.0f;
|
|
bool sampled_token_found = false;
|
|
std::vector<llama_token_data> cur(n_sorted);
|
|
for (int i = 0; i < n_vocab; ++i) {
|
|
float p = expf(sorted[i].first - max_l);
|
|
cum_sum += p;
|
|
if (i < n_sorted) {
|
|
cur[i] = { sorted[i].second, sorted[i].first, p };
|
|
}
|
|
if (!sampled_token_found && sorted[i].second == sampled_token_id) {
|
|
sampled_token_p = p;
|
|
sampled_token_found = true;
|
|
}
|
|
}
|
|
for (int i = n_sorted; i < n_vocab; ++i) cum_sum += expf(sorted[i].first - max_l);
|
|
|
|
float inv_cum_sum = 1 / cum_sum;
|
|
for (int i = 0; i < n_sorted; ++i) cur[i].p *= inv_cum_sum;
|
|
sampled_token_p *= inv_cum_sum;
|
|
|
|
return { sampled_token_p, cur };
|
|
}
|
|
|
|
/**
|
|
* server_tokens is a helper to manage the input tokens and image for the server.
|
|
* it is made this way to simplify the logic of KV cache management.
|
|
*/
|
|
|
|
server_tokens::server_tokens(mtmd::input_chunks& mtmd_chunks, bool has_mtmd) : has_mtmd(has_mtmd) {
|
|
for (size_t i = 0; i < mtmd_chunks.size(); ++i) {
|
|
push_back(mtmd_chunks[i]);
|
|
}
|
|
}
|
|
|
|
server_tokens::server_tokens(const llama_tokens& tokens, bool has_mtmd) : has_mtmd(has_mtmd), tokens(tokens) {
|
|
}
|
|
|
|
llama_pos server_tokens::pos_next() const {
|
|
if (!has_mtmd) {
|
|
return tokens.size();
|
|
}
|
|
|
|
llama_pos res = tokens.size();
|
|
|
|
for (auto it = map_idx_to_media.begin(); it != map_idx_to_media.end(); ++it) {
|
|
const auto& chunk = it->second;
|
|
res += mtmd_input_chunk_get_n_pos(chunk.get()) - mtmd_input_chunk_get_n_tokens(chunk.get());
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
// for debugging
|
|
std::string server_tokens::str() const {
|
|
std::ostringstream oss;
|
|
oss << "tokens: ";
|
|
for (size_t idx = 0; idx < tokens.size(); ++idx) {
|
|
llama_token t = tokens[idx];
|
|
oss << "idx:" << idx << " ";
|
|
if (t == LLAMA_TOKEN_NULL) {
|
|
oss << "<embd> ";
|
|
}
|
|
else {
|
|
oss << t << " ";
|
|
}
|
|
}
|
|
oss << "\n";
|
|
oss << "image idx: ";
|
|
for (const auto& it : map_idx_to_media) {
|
|
oss << it.first << ", ";
|
|
}
|
|
return oss.str();
|
|
}
|
|
|
|
const mtmd::input_chunk_ptr& server_tokens::find_chunk(size_t idx) const {
|
|
auto it = map_idx_to_media.find(idx);
|
|
if (it != map_idx_to_media.end()) {
|
|
return it->second;
|
|
}
|
|
throw std::runtime_error("Chunk not found");
|
|
}
|
|
|
|
void server_tokens::push_back(llama_token tok) {
|
|
if (tok == LLAMA_TOKEN_NULL) {
|
|
throw std::runtime_error("Invalid token");
|
|
}
|
|
tokens.emplace_back(tok);
|
|
}
|
|
|
|
// will create a copy of the chunk if it contains non-text data
|
|
void server_tokens::push_back(const mtmd_input_chunk* chunk) {
|
|
auto type = mtmd_input_chunk_get_type(chunk);
|
|
if (type == MTMD_INPUT_CHUNK_TYPE_IMAGE || type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
|
|
GGML_ASSERT(has_mtmd);
|
|
const size_t n_tokens = mtmd_input_chunk_get_n_tokens(chunk);
|
|
size_t start_idx = tokens.size();
|
|
for (size_t i = 0; i < n_tokens; ++i) {
|
|
tokens.emplace_back(LLAMA_TOKEN_NULL);
|
|
}
|
|
mtmd::input_chunk_ptr new_chunk(mtmd_input_chunk_copy(chunk));
|
|
map_idx_to_media[start_idx] = std::move(new_chunk);
|
|
}
|
|
else if (type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
|
|
size_t n_tokens;
|
|
const auto* text_tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens);
|
|
for (size_t i = 0; i < n_tokens; ++i) {
|
|
push_back(text_tokens[i]);
|
|
}
|
|
}
|
|
else {
|
|
GGML_ABORT("Invalid chunk type");
|
|
}
|
|
}
|
|
|
|
// appends server tokens, updates the media map. copies media chunks.
|
|
void server_tokens::push_back(server_tokens& tokens) {
|
|
size_t start_idx = size();
|
|
for (size_t i = 0; i < tokens.size(); i++) {
|
|
push_back(tokens[i]);
|
|
}
|
|
if (tokens.has_mtmd) {
|
|
// Assert if we are copying MTMD chunks to a server_tokens that does not have mtmd.
|
|
// We could also just check, but this will prevent silently dropping MTMD data.
|
|
GGML_ASSERT(has_mtmd);
|
|
for (auto it = tokens.map_idx_to_media.begin(); it != tokens.map_idx_to_media.end(); ) {
|
|
auto* chunk = tokens.map_idx_to_media[it->first].get();
|
|
mtmd::input_chunk_ptr new_chunk(mtmd_input_chunk_copy(chunk));
|
|
map_idx_to_media[start_idx + it->first] = std::move(new_chunk);
|
|
}
|
|
}
|
|
}
|
|
|
|
// for compatibility with context shift and prompt truncation
|
|
void server_tokens::insert(const std::vector<llama_token>& inp_tokens) {
|
|
GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
|
|
tokens.insert(tokens.end(), inp_tokens.begin(), inp_tokens.end());
|
|
}
|
|
|
|
// for compatibility with context shift and prompt truncation
|
|
void server_tokens::resize(size_t size) {
|
|
GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
|
|
tokens.resize(size);
|
|
}
|
|
|
|
llama_token* server_tokens::data() {
|
|
return tokens.data();
|
|
}
|
|
|
|
llama_tokens::iterator server_tokens::begin() {
|
|
return tokens.begin();
|
|
}
|
|
|
|
llama_tokens::iterator server_tokens::end() {
|
|
return tokens.end();
|
|
}
|
|
|
|
llama_tokens::const_iterator server_tokens::cbegin() {
|
|
return tokens.cbegin();
|
|
}
|
|
|
|
llama_tokens::const_iterator server_tokens::cend() {
|
|
return tokens.cend();
|
|
}
|
|
|
|
llama_tokens server_tokens::tokens_data() {
|
|
return tokens;
|
|
}
|
|
|
|
// for compatibility with speculative decoding, ctx shift, slot save/load
|
|
const std::vector<llama_token>& server_tokens::get_text_tokens() const {
|
|
GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
|
|
return tokens;
|
|
}
|
|
|
|
// for compatibility with speculative decoding
|
|
void server_tokens::set_token(llama_pos pos, llama_token id) {
|
|
GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
|
|
tokens[pos] = id;
|
|
}
|
|
|
|
size_t server_tokens::size() const {
|
|
return tokens.size();
|
|
}
|
|
|
|
bool server_tokens::empty() const {
|
|
return tokens.empty();
|
|
}
|
|
|
|
void server_tokens::clear() {
|
|
tokens.clear();
|
|
}
|
|
|
|
void server_tokens::keep_first(size_t n) {
|
|
GGML_ASSERT(n <= tokens.size());
|
|
if (has_mtmd) {
|
|
if (n == tokens.size()) {
|
|
return; // nothing to do
|
|
}
|
|
// we throw an error if we try to remove a token in the middle of an image
|
|
// for ex. with input of 5 text tokens and 2 images:
|
|
// [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1]
|
|
// n 1 2 3 4 5 6 7 8 9 10
|
|
// allowed to resize ^ ^
|
|
// disallowed to resize ^ ^ ^
|
|
if (n > 0) {
|
|
llama_token last_token = tokens[n - 1];
|
|
// make sure we never remove tokens in the middle of an image
|
|
if (last_token == LLAMA_TOKEN_NULL) {
|
|
find_chunk(n - 1); // will throw an error if the token is not begin-of-chunk
|
|
}
|
|
}
|
|
// remove all image chunks that are not used anymore
|
|
for (auto it = map_idx_to_media.begin(); it != map_idx_to_media.end(); ) {
|
|
size_t idx = it->first;
|
|
if (idx >= n) {
|
|
it = map_idx_to_media.erase(it);
|
|
}
|
|
else {
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
tokens.resize(n);
|
|
}
|
|
|
|
std::string server_tokens::detokenize(const llama_context* ctx, bool special) const {
|
|
llama_tokens text_tokens;
|
|
text_tokens.reserve(tokens.size());
|
|
for (const auto& t : tokens) {
|
|
if (t != LLAMA_TOKEN_NULL) {
|
|
text_tokens.push_back(t);
|
|
}
|
|
}
|
|
return common_token_to_piece(ctx, text_tokens, special);
|
|
}
|
|
|
|
std::string server_tokens::detokenize(const llama_context* ctx, bool special, size_t start, size_t length) const {
|
|
std::string str;
|
|
if (tokens.size() <= start || length == 0) {
|
|
return str;
|
|
}
|
|
llama_tokens text_tokens;
|
|
text_tokens.reserve(tokens.size() - start);
|
|
size_t i = 0;
|
|
size_t count = 0;
|
|
for (const auto& t : tokens) {
|
|
if (t != LLAMA_TOKEN_NULL && i >= start) {
|
|
text_tokens.push_back(t);
|
|
++count;
|
|
if (count >= length) {
|
|
break;
|
|
}
|
|
}
|
|
++i;
|
|
}
|
|
return common_token_to_piece(ctx, text_tokens, special);
|
|
}
|
|
|
|
size_t server_tokens::find_n_from_tokens(const llama_context* ctx, const server_tokens& b, bool special,
|
|
size_t start, const size_t length) {
|
|
std::string str = detokenize(ctx, special, start, length);
|
|
std::vector<size_t> tmp;
|
|
size_t n = find_n_tokens_from_string(ctx, b.tokens, start, length, tmp);
|
|
return n;
|
|
}
|
|
|
|
size_t server_tokens::get_common_prefix_exact(const server_tokens& b) const {
|
|
const size_t max_idx = std::min(tokens.size(), b.tokens.size());
|
|
|
|
if (!has_mtmd) {
|
|
for (size_t i = 0; i < max_idx; ++i) {
|
|
if (tokens[i] == b.tokens[i]) {
|
|
continue;
|
|
}
|
|
return i;
|
|
}
|
|
return max_idx;
|
|
}
|
|
|
|
for (size_t i = 0; i < max_idx; ++i) {
|
|
const llama_token ai = tokens[i];
|
|
const llama_token bi = b.tokens[i];
|
|
|
|
if (ai == LLAMA_TOKEN_NULL && bi == LLAMA_TOKEN_NULL) {
|
|
const auto& a_chunk = find_chunk(i);
|
|
const auto& b_chunk = b.find_chunk(i);
|
|
|
|
GGML_ASSERT(a_chunk && b_chunk);
|
|
|
|
const std::string id_ai = mtmd_input_chunk_get_id(a_chunk.get());
|
|
const std::string id_bi = mtmd_input_chunk_get_id(b_chunk.get());
|
|
|
|
const size_t n_tok_a = mtmd_input_chunk_get_n_tokens(a_chunk.get());
|
|
const size_t n_tok_b = mtmd_input_chunk_get_n_tokens(b_chunk.get());
|
|
|
|
if (id_ai == id_bi && n_tok_a == n_tok_b) {
|
|
GGML_ASSERT(n_tok_a > 0 && "Invalid media chunk"); // should never happen
|
|
i += n_tok_a - 1; // will be +1 by the for loop
|
|
continue;
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
if (ai == bi) {
|
|
continue;
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
return max_idx; // all tokens are equal
|
|
}
|
|
|
|
llama_tokens server_tokens::get_text_tokens_exclude_think(const llama_context* ctx, const thinking_tokens& think_token) const {
|
|
if (!think_token.exclude) {
|
|
return get_text_tokens();
|
|
}
|
|
GGML_ASSERT((think_token.begin != "" && think_token.end != "") && "think tokens cannot be empty");
|
|
std::string startStr = think_token.begin;
|
|
std::string endStr = think_token.end;
|
|
|
|
llama_tokens tokens = get_text_tokens();
|
|
std::string str = common_token_to_piece(ctx, tokens, true);
|
|
|
|
std::vector<std::pair<size_t, size_t>> results;
|
|
// Find all positions of start and end
|
|
std::vector<size_t> startPositions;
|
|
std::vector<size_t> endPositions;
|
|
|
|
size_t pos = 0;
|
|
// Find all start positions
|
|
while ((pos = str.find(startStr, pos)) != std::string::npos) {
|
|
startPositions.push_back(pos);
|
|
pos += startStr.length();
|
|
}
|
|
|
|
pos = 0;
|
|
// Find all end positions
|
|
while ((pos = str.find(endStr, pos)) != std::string::npos) {
|
|
endPositions.push_back(pos + endStr.length());
|
|
pos += endStr.length();
|
|
}
|
|
|
|
// For each start position, pair with all end positions that come after it
|
|
for (size_t i = 0; i < startPositions.size(); i++) {
|
|
for (size_t j = 0; j < endPositions.size(); j++) {
|
|
if (results.size()) {
|
|
// start must be after last end
|
|
if (startPositions[i] > results[results.size() - 1].second && endPositions[j] > startPositions[i]) {
|
|
results.push_back({ startPositions[i], endPositions[j] });
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
if (endPositions[j] > startPositions[i]) {
|
|
results.push_back({ startPositions[i], endPositions[j] });
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
if (!results.size()) {
|
|
return tokens;
|
|
}
|
|
|
|
// Exclude tokens
|
|
pos = 0;
|
|
size_t n = 0;
|
|
size_t string_len = 0;
|
|
llama_tokens tokens_new;
|
|
auto model = llama_get_model(ctx);
|
|
for (n = 0; n < tokens.size(); ++n) {
|
|
str = llama_token_to_piece(model, tokens[n], true);
|
|
string_len = string_len + str.size();
|
|
if (string_len <= results[pos].first) {
|
|
tokens_new.push_back(tokens[n]);
|
|
}
|
|
else if (string_len <= results[pos].second) {
|
|
continue;
|
|
}
|
|
else {
|
|
tokens_new.push_back(tokens[n]);
|
|
if (pos+1 < results.size()) {
|
|
pos++;
|
|
}
|
|
}
|
|
}
|
|
return tokens_new;
|
|
}
|
|
|
|
|
|
common_prefix server_tokens::get_common_prefix(const llama_context* ctx, const server_tokens& b, bool exact) const {
|
|
common_prefix token_prefix;
|
|
|
|
size_t n = get_common_prefix_exact(b); // strict token match as a starting point
|
|
token_prefix.first = n;
|
|
token_prefix.second = n;
|
|
|
|
if (!has_mtmd) {
|
|
token_prefix = find_common_text_token_prefix(ctx, this->tokens, b.tokens, n, exact);
|
|
token_prefix.first += n;
|
|
token_prefix.second += n;
|
|
return token_prefix;
|
|
}
|
|
size_t i = n;
|
|
size_t j = n;
|
|
llama_tokens a_list;
|
|
llama_tokens b_list;
|
|
while (i < size() && j < b.size()) {
|
|
llama_token ai = tokens[i];
|
|
llama_token bi = b.tokens[j];
|
|
if (ai != LLAMA_TOKEN_NULL) {
|
|
a_list.push_back(ai);
|
|
++i;
|
|
}
|
|
if (bi != LLAMA_TOKEN_NULL) {
|
|
b_list.push_back(bi);
|
|
++j;
|
|
}
|
|
if (ai == LLAMA_TOKEN_NULL && bi == LLAMA_TOKEN_NULL) {
|
|
common_prefix prefix = find_common_text_token_prefix(ctx, a_list, b_list, 0, exact);
|
|
// text match or empty
|
|
if (prefix.first == a_list.size() && prefix.second == b_list.size()) {
|
|
a_list.clear();
|
|
b_list.clear();
|
|
const auto& a_chunk = find_chunk(i);
|
|
const auto& b_chunk = b.find_chunk(j);
|
|
|
|
GGML_ASSERT(a_chunk && b_chunk);
|
|
|
|
const std::string id_ai = mtmd_input_chunk_get_id(a_chunk.get());
|
|
const std::string id_bi = mtmd_input_chunk_get_id(b_chunk.get());
|
|
|
|
const size_t n_tok_a = mtmd_input_chunk_get_n_tokens(a_chunk.get());
|
|
const size_t n_tok_b = mtmd_input_chunk_get_n_tokens(b_chunk.get());
|
|
|
|
// image match
|
|
if (id_ai == id_bi && n_tok_a == n_tok_b) {
|
|
GGML_ASSERT(n_tok_a > 0 && "Invalid media chunk"); // should never happen
|
|
i += n_tok_a;
|
|
j += n_tok_a;
|
|
prefix.first += n_tok_a;
|
|
prefix.second += n_tok_a;
|
|
token_prefix = common_prefix_add(prefix, token_prefix);
|
|
}
|
|
else {
|
|
// do no include image token prefix
|
|
// only return text token prefix
|
|
token_prefix = common_prefix_add(prefix, token_prefix);
|
|
return token_prefix;
|
|
}
|
|
}
|
|
else {
|
|
// text not match
|
|
token_prefix = common_prefix_add(prefix, token_prefix);
|
|
return token_prefix;
|
|
}
|
|
}
|
|
}
|
|
common_prefix prefix = find_common_text_token_prefix(ctx, a_list, b_list, 0, exact);
|
|
token_prefix = common_prefix_add(prefix, token_prefix);
|
|
|
|
return token_prefix;
|
|
|
|
}
|
|
|
|
// take first n tokens of tokens list a
|
|
// find the common prefix between a and b
|
|
common_prefix server_tokens::get_common_prefix_first_n(const llama_context* ctx, const server_tokens& b, size_t n, bool exact) const {
|
|
// not work for mtmd
|
|
GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
|
|
auto tokens = get_text_tokens();
|
|
if (n > tokens.size()) {
|
|
n = tokens.size();
|
|
}
|
|
llama_tokens copy(tokens.begin(), tokens.begin() + n);
|
|
server_tokens a = server_tokens(copy, false);
|
|
return a.get_common_prefix(ctx, b, exact);
|
|
}
|
|
|
|
// make sure all text tokens are within the vocab range
|
|
bool server_tokens::validate(const struct llama_context* ctx) const {
|
|
const llama_model* model = llama_get_model(ctx);
|
|
const llama_vocab* vocab = llama_model_get_vocab(model);
|
|
const int32_t n_vocab = llama_vocab_n_tokens(vocab);
|
|
|
|
for (size_t i = 0; i < tokens.size(); ++i) {
|
|
auto& t = tokens[i];
|
|
if (t == LLAMA_TOKEN_NULL) {
|
|
try {
|
|
const auto& chunk = find_chunk(i);
|
|
size_t n_tokens = mtmd_input_chunk_get_n_tokens(chunk.get());
|
|
i += n_tokens - 1; // will be +1 by the for loop
|
|
}
|
|
catch (const std::exception& e) {
|
|
return false;
|
|
}
|
|
}
|
|
else if (t < 0 || t >= n_vocab) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// encode and decode the image chunk
|
|
int32_t server_tokens::process_chunk(
|
|
llama_context* ctx,
|
|
mtmd_context* mctx,
|
|
size_t idx,
|
|
llama_pos pos,
|
|
int32_t seq_id,
|
|
size_t& n_tokens_out) const {
|
|
const auto& chunk = find_chunk(idx);
|
|
const char* name = mtmd_input_chunk_get_type(chunk.get()) == MTMD_INPUT_CHUNK_TYPE_IMAGE
|
|
? "image" : "audio";
|
|
LLAMA_LOG_INFO("processing %s...\n", name);
|
|
int32_t n_batch = llama_n_batch(ctx);
|
|
int64_t t0 = ggml_time_ms();
|
|
llama_pos new_n_past; // unused for now
|
|
int32_t result = mtmd_helper_eval_chunk_single(mctx, ctx,
|
|
chunk.get(),
|
|
pos,
|
|
seq_id,
|
|
n_batch,
|
|
true, // logits last
|
|
&new_n_past);
|
|
LLAMA_LOG_INFO("%s processed in %" PRId64 " ms\n", name, ggml_time_ms() - t0);
|
|
if (result != 0) {
|
|
LLAMA_LOG_ERROR("mtmd_helper_eval failed with status %d", result);
|
|
n_tokens_out = 0;
|
|
return result;
|
|
}
|
|
n_tokens_out = mtmd_input_chunk_get_n_tokens(chunk.get());
|
|
return 0;
|
|
}
|
|
|
|
// Keep the first n_keep and remove n_discard tokens from tokens
|
|
void server_tokens::discard_n_tokens(int32_t n_keep, int32_t n_discard) {
|
|
if (n_discard <= 0 || n_keep + n_discard >= size()) {
|
|
return;
|
|
}
|
|
|
|
llama_tokens new_tokens = get_text_tokens(); // copy
|
|
for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
|
|
new_tokens[i - n_discard] = new_tokens[i];
|
|
}
|
|
int32_t token_size = (int32_t)size();
|
|
new_tokens.resize(token_size - n_discard);
|
|
clear();
|
|
insert(new_tokens);
|
|
|
|
}
|
|
|
|
// Similarity between prompt and cached
|
|
float server_tokens::get_tokens_similarity(const llama_context* ctx, const server_tokens& tokens, int n_keep, int n_discard) const {
|
|
GGML_ASSERT(n_keep >= 0 && n_discard >= 0);
|
|
float sim_cur = 0;
|
|
if (n_keep == 0 && n_discard == 0) {
|
|
auto lcp_len = get_common_prefix(ctx, tokens);
|
|
sim_cur = get_slot_similarity(lcp_len.second, tokens.size(), size());
|
|
}
|
|
else {
|
|
// remove tokens due to context shift and compare
|
|
auto tokens_ctx_shift = server_tokens(tokens.get_text_tokens(), false); // copy cache tokens
|
|
tokens_ctx_shift.discard_n_tokens(n_keep, n_discard);
|
|
auto lcp_len = get_common_prefix(ctx, tokens_ctx_shift);
|
|
sim_cur = get_slot_similarity(lcp_len.second, tokens_ctx_shift.size(), size());
|
|
}
|
|
return sim_cur;
|
|
}
|
|
|
|
// Similarity between common part and cache
|
|
float server_tokens::get_cached_tokens_similarity(const llama_context* ctx, const server_tokens& tokens, int n_keep, int n_discard) const {
|
|
GGML_ASSERT(n_keep >= 0 && n_discard >= 0);
|
|
float sim_cur = 0;
|
|
if (n_keep == 0 && n_discard == 0) {
|
|
auto lcp_len = get_common_prefix(ctx, tokens);
|
|
sim_cur = (float)lcp_len.first / size();
|
|
}
|
|
else {
|
|
// remove tokens due to context shift and compare
|
|
auto tokens_ctx_shift = server_tokens(tokens.get_text_tokens(), false); // copy cache tokens
|
|
tokens_ctx_shift.discard_n_tokens(n_keep, n_discard);
|
|
auto lcp_len = get_common_prefix(ctx, tokens_ctx_shift);
|
|
sim_cur = (float)lcp_len.first / size();
|
|
}
|
|
return sim_cur;
|
|
}
|
|
|
|
|
|
// Computes FNV-1a hash of the data
|
|
std::string fnv_hash(const uint8_t* data, size_t len) {
|
|
const uint64_t fnv_prime = 0x100000001b3ULL;
|
|
uint64_t hash = 0xcbf29ce484222325ULL;
|
|
|
|
for (size_t i = 0; i < len; ++i) {
|
|
hash ^= data[i];
|
|
hash *= fnv_prime;
|
|
}
|
|
return std::to_string(hash);
|
|
}
|
|
|
|
server_tokens process_mtmd_prompt(mtmd_context* mctx, std::string prompt, std::vector<raw_buffer> files) {
|
|
mtmd::bitmaps bitmaps;
|
|
for (auto& file : files) {
|
|
mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(mctx, file.data(), file.size()));
|
|
if (!bmp.ptr) {
|
|
throw std::runtime_error("Failed to load image or audio file");
|
|
}
|
|
// calculate bitmap hash (for KV caching)
|
|
std::string hash = fnv_hash(bmp.data(), bmp.n_bytes());
|
|
bmp.set_id(hash.c_str());
|
|
bitmaps.entries.push_back(std::move(bmp));
|
|
}
|
|
// process prompt
|
|
std::vector<server_tokens> inputs;
|
|
// multimodal
|
|
mtmd_input_text inp_txt = {
|
|
prompt.c_str(),
|
|
/* add_special */ true,
|
|
/* parse_special */ true,
|
|
};
|
|
mtmd::input_chunks chunks(mtmd_input_chunks_init());
|
|
auto bitmaps_c_ptr = bitmaps.c_ptr();
|
|
int32_t tokenized = mtmd_tokenize(mctx,
|
|
chunks.ptr.get(),
|
|
&inp_txt,
|
|
bitmaps_c_ptr.data(),
|
|
bitmaps_c_ptr.size());
|
|
if (tokenized != 0) {
|
|
throw std::runtime_error("Failed to tokenize prompt");
|
|
}
|
|
auto result = server_tokens(chunks, true);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* break the input "prompt" object into multiple prompt if needed, then tokenize them
|
|
* use tokenize_input_prompts() if the input could be an array.
|
|
* this supports these cases:
|
|
* - "prompt": "string"
|
|
* - "prompt": [12, 34, 56]
|
|
* - "prompt": [12, 34, "string", 56, 78]
|
|
* - "prompt": { "prompt_string": "string", "multimodal_data": [ "base64" ] }
|
|
*/
|
|
server_tokens tokenize_input_subprompt(const llama_vocab* vocab, mtmd_context* mctx, const json& json_prompt, bool add_special, bool parse_special) {
|
|
constexpr char JSON_STRING_PROMPT_KEY[] = "prompt_string";
|
|
constexpr char JSON_MTMD_DATA_KEY[] = "multimodal_data";
|
|
const bool has_mtmd = mctx != nullptr;
|
|
if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) {
|
|
// string or mixed
|
|
std::vector<llama_token> tmp = tokenize_mixed(vocab, json_prompt, add_special, parse_special);
|
|
return server_tokens(tmp, false);
|
|
}
|
|
else if (json_is_array_of_numbers(json_prompt)) {
|
|
// array of tokens
|
|
std::vector<llama_token> tmp = json_prompt.get<std::vector<llama_token>>();
|
|
return server_tokens(tmp, false);
|
|
}
|
|
else if (json_prompt.contains(JSON_STRING_PROMPT_KEY)) {
|
|
// JSON object with prompt key.
|
|
if (json_prompt.contains(JSON_MTMD_DATA_KEY)) {
|
|
if (!has_mtmd)
|
|
throw std::runtime_error("Multimodal data provided, but model does not support multimodal requests.");
|
|
|
|
// JSON object with prompt and multimodal key.
|
|
std::vector<raw_buffer> files;
|
|
for (const auto& entry : json_prompt.at(JSON_MTMD_DATA_KEY)) {
|
|
files.push_back(base64_decode(entry));
|
|
}
|
|
return process_mtmd_prompt(mctx, json_prompt.at(JSON_STRING_PROMPT_KEY), files);
|
|
}
|
|
else {
|
|
// Not multimodal, but contains a subobject.
|
|
std::vector<llama_token> tmp = tokenize_mixed(vocab, json_prompt.at(JSON_STRING_PROMPT_KEY), add_special, parse_special);
|
|
return server_tokens(tmp, false);
|
|
}
|
|
}
|
|
else {
|
|
throw std::runtime_error("\"prompt\" elements must be a string, a list of tokens, a JSON object containing a prompt string, or a list of mixed strings & tokens.");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* break the input "prompt" object into multiple prompt if needed, then tokenize them
|
|
* this supports these cases:
|
|
* - "prompt": "string"
|
|
* - "prompt": [12, 34, 56]
|
|
* - "prompt": [12, 34, "string", 56, 78]
|
|
* - "prompt": { "prompt_string": "string", "multimodal_data": [ "base64" ] }
|
|
* and multiple prompts (multi-tasks):
|
|
* - "prompt": ["string1", "string2"]
|
|
* - "prompt": ["string1", [12, 34, 56]]
|
|
* - "prompt": [[12, 34, 56], [78, 90, 12]]
|
|
* - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56], { "prompt_string": "string", "multimodal_data": [ "base64" ]}]
|
|
*/
|
|
std::vector<server_tokens> tokenize_input_prompts(const llama_vocab* vocab, mtmd_context* mctx, const json& json_prompt, bool add_special, bool parse_special) {
|
|
std::vector<server_tokens> result;
|
|
if (json_prompt.is_array() && !json_is_array_and_contains_numbers(json_prompt)) {
|
|
result.reserve(json_prompt.size());
|
|
for (const auto& p : json_prompt) {
|
|
result.push_back(tokenize_input_subprompt(vocab, mctx, p, add_special, parse_special));
|
|
}
|
|
}
|
|
else {
|
|
result.push_back(tokenize_input_subprompt(vocab, mctx, json_prompt, add_special, parse_special));
|
|
}
|
|
if (result.empty()) {
|
|
throw std::runtime_error("\"prompt\" must not be empty");
|
|
}
|
|
return result;
|
|
}
|
|
// Assuming raw_buffer has .data() and .size() members
|
|
void print_files_info(const std::vector<raw_buffer>& files) {
|
|
for (size_t i = 0; i < files.size(); ++i) {
|
|
const auto& file = files[i];
|
|
std::cout << "File " << i << ": Size = " << file.size() << " bytes\n";
|
|
|
|
// Print first 16 bytes in hex
|
|
std::cout << "First 16 bytes: ";
|
|
for (size_t j = 0; j < std::min<size_t>(file.size(), 16); ++j) {
|
|
std::cout << std::hex << std::setw(2) << std::setfill('0')
|
|
<< static_cast<int>(file.data()[j]) << " ";
|
|
}
|
|
std::cout << std::dec << "\n\n"; // Reset to decimal
|
|
}
|
|
}
|
|
|
|
bool prompt_cache_equal(llama_context* ctx, const server_tokens& cache_tokens,
|
|
const server_tokens& prompt_tokens, size_t start, const common_prefix& prefix) {
|
|
std::string common_cache = cache_tokens.detokenize(ctx, true, start, prefix.first);
|
|
std::string common_prompt = prompt_tokens.detokenize(ctx, true, start, prefix.second);
|
|
bool equal = common_cache == common_prompt;
|
|
return equal;
|
|
}
|
|
|
|
std::string safe_json_to_str(const json& data) {
|
|
return data.dump(-1, ' ', false, json::error_handler_t::replace);
|
|
}
|