Files
ik_llama.cpp/examples/mtmd/mtmd-cli.cpp
firecoperana 869557c8fd Update mtmd to improve accuracy of M-RoPE (#993)
* model : Granite docling + Idefics3 preprocessing (SmolVLM) (#16206)

* feat: Add granite-docling conversion using trillion pretokenizer

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add granite-docling vocab pre enum

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use granite-docling pre

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add clip_is_idefics3

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Allow multi-token boundary sequences for image templating

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add tiling support for idefices3 in clip.cpp

This should likely be moved into llava_uhd::get_slice_instructions, but for
now this avoids disrupting the logic there.

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Partial support for full templating for idefics3 in mtmd

There are still errors encoding some of the image chunks, but the token
sequence now matches transformers _almost_ perfectly, except for the double
newline before the global image which shows up as two consecutive newline
tokens instead of a single double-newline token. I think this is happening
because the blocks are tokenized separately then concatenated.

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Fully working image preprocessing for idefics3 w/ resize and slicing

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Parse the preprocessor config's longest side and add it to the mmproj hparams

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use the longest side instead of size * scale_factor

For Granite Docling, these come out to the same value, but that was just a
conicidence.

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Allow batch encoding and remove clip_is_idefics3

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove unnecessary conditionals for empty token vectors

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Use image_manipulation util

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* add test model

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
# Conflicts:
#	convert_hf_to_gguf.py
#	convert_hf_to_gguf_update.py
#	gguf-py/gguf/constants.py
#	gguf-py/gguf/gguf_writer.py
#	src/llama-vocab.cpp
#	src/llama-vocab.h

* mtmd : support home-cooked Mistral Small Omni (#14928)

* model : add LightOnOCR-1B model (#16764)

* model : add LightOnOCR-1B model

* add test
# Conflicts:
#	convert_hf_to_gguf.py
#	gguf-py/gguf/constants.py

* mtmd : fix idefics3 preprocessing (#16806)

* mtmd : fix idefics3 preprocessing

* disable granite test

* fix test for granite

* model: Add support for CogVLM model (#15002)

* Added GGUF mappings for CogVLM model

* Add tensor mapping for CogVLM visual encoder

* Add CogVLM to conversion script, no vision part yet

* Added CogVLM vision model to conversion script

* Add graph for CogVLM CLIP model

* Add graph for CogVLM

* Fixes for CogVLM. Now compiles.

* Model now runs

* Fixes for cogvlm graph

* Account for graph context change after rebase

* Changes for whitespace

* Changes in convert script according to comments

* Switch CogVLM LLM graph to merged QKV tensor

* Use rope_type variable instead of direct definition

* Change CogVLM CLIP encoder to use SWIGLU

* Switch CogVLM CLIP to use merged QKV

* Apply rebase edits and remove ggml_cont call that is now unnecessary

* clean up

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
# Conflicts:
#	convert_hf_to_gguf.py
#	examples/mtmd/clip.cpp
#	gguf-py/gguf/constants.py
#	gguf-py/gguf/tensor_mapping.py
#	src/llama-arch.cpp
#	src/llama-arch.h
#	src/llama-model.cpp
#	src/llama-model.h

* mtmd: refactor preprocessing + support max/min pixels (#16878)

* mtmd: refactor preprocessing + support max/min pixels

* fix mlp type

* implement mix/max pixels

* improve hparams

* better image preproc for qwen

* fix

* fix out of bound composite

* fix (2)

* fix token calculation

* get_merge_kernel_size()

* fix llama4 and lfm2

* gonna fix them all

* use simple resize for qwen

* qwen: increase min tokens

* no resize if dst size == src size

* restore to initial min/max tokens value for qwen
# Conflicts:
#	examples/mtmd/clip.cpp

* clip : use FA (#16837)

* clip : use FA

* cont : add warning about unsupported ops

* implement "auto" mode for clip flash attn

* clip : print more detailed op support info during warmup

* cont : remove obsolete comment [no ci]

* improve debugging message

* trailing space

* metal : remove stray return

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>

* model: add Janus Pro for image understanding (#16906)

* Add support for Janus Pro

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Address reviewer suggestions

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Add JANUS_PRO constant

* Update clip model handling

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

* Update tools/mtmd/clip.cpp

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* Refactor JANUS_PRO handling in clip.cpp

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

* Update tools/mtmd/clip.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* em whitespace

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
# Conflicts:
#	convert_hf_to_gguf.py
#	gguf-py/gguf/constants.py
#	gguf-py/gguf/tensor_mapping.py

* mtmd: pad mask for qwen2.5vl (#16954)

* mtmd: pad mask for qwen2.5vl

* improve

* mtmd: add --image-min/max-tokens (#16921)

* mtmd: improve struct initialization (#16981)

* mtmd: allow QwenVL to process larger image by default (#17020)

* Disable flash attention

* mtmd : fix embedding size for image input (#17123)

* mtmd: fix patch_size initialized to random value in audio models (#17128)

* mtmd: fix patch_size initialized to random value in audio models

* add default hparams

* add llama_model_n_embd_inp

* Fix load qwen3 vl

Change batch size

* Add description

* Fix cli build error

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Tianyue-Zhao <zhaotianyue@outlook.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Zhiyong Wang <85110830+ravenouse@users.noreply.github.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
Co-authored-by: firecoperana <firecoperana>
2025-11-29 07:27:15 +01:00

449 lines
15 KiB
C++

//#include "arg.h"
#include "log.h"
#include "common.h"
#include "sampling.h"
#include "llama.h"
#include "ggml.h"
#include "console.h"
#include "chat.h"
#include "mtmd.h"
#include "mtmd-helper.h"
#include <vector>
#include <limits.h>
#include <cinttypes>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <signal.h>
#endif
// volatile, because of signal being an interrupt
static volatile bool g_is_generating = false;
static volatile bool g_is_interrupted = false;
/**
* Please note that this is NOT a production-ready stuff.
* It is a playground for trying multimodal support in llama.cpp.
* For contributors: please keep this code simple and easy to understand.
*/
static void show_additional_info(int /*argc*/, char ** argv) {
LOG_TEE(
"Experimental CLI for multimodal\n\n"
"Usage: %s [options] -m <model> --mmproj <mmproj> --image <image> --audio <audio> -p <prompt>\n\n"
" -m and --mmproj are required\n"
" -hf user/repo can replace both -m and --mmproj in most cases\n"
" --image, --audio and -p are optional, if NOT provided, the CLI will run in chat mode\n"
" to disable using GPU for mmproj model, add --no-mmproj-offload\n",
argv[0]
);
}
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
static void sigint_handler(int signo) {
if (signo == SIGINT) {
if (g_is_generating) {
g_is_generating = false;
} else {
console::cleanup();
if (g_is_interrupted) {
_exit(1);
}
g_is_interrupted = true;
}
}
}
#endif
// ======================= compat ================================
using common_init_result = llama_init_result;
using common_sampler = llama_sampling_context;
using llama_tokens = std::vector<llama_token>;
using common_params = gpt_params;
inline common_init_result common_init_from_params(gpt_params & params) {
return llama_init_from_gpt_params(params);
}
inline llama_sampling_context * common_sampler_init(const llama_model * model, const llama_sampling_params & sparams) {
return llama_sampling_init(llama_get_model_vocab(model), sparams);
}
inline std::vector<llama_token> common_tokenize(const llama_context * ctx, const std::string & text, bool add_special, bool parse_special = false) {
return llama_tokenize(ctx, text, add_special, parse_special);
}
inline void common_sampler_free(common_sampler * smpl) {
llama_sampling_free(smpl);
}
inline llama_token common_sampler_sample(common_sampler * gsmpl, llama_context * ctx, int idx, [[maybe_unused]] bool grammar_first = false) {
return llama_sampling_sample(gsmpl, ctx, nullptr, idx);
}
inline void common_sampler_accept(common_sampler * gsmpl, llama_context * ctx, llama_token token, bool accept_grammar) {
llama_sampling_accept(gsmpl, ctx, token, accept_grammar);
}
inline std::string common_token_to_piece(const llama_context * ctx, llama_token token, bool special = true) {
return llama_token_to_piece(ctx, token, special);
}
inline void common_batch_clear(llama_batch & batch) {
llama_batch_clear(batch);
}
inline void common_batch_add(llama_batch & batch, llama_token id, llama_pos pos, const std::vector<llama_seq_id> & seq_ids, bool logits) {
llama_batch_add(batch, id, pos, seq_ids, logits);
}
void common_init() {
#ifdef NDEBUG
const char * build_type = "";
#else
const char * build_type = " (debug)";
#endif
LOG_TEE("build: %d (%s) with %s for %s%s\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, LLAMA_BUILD_TARGET, build_type);
}
#ifndef LOG_ERR
#define LOG_ERR LOG_TEE
#endif
#ifndef LOG_INF
#define LOG_INF LOG_TEE
#endif
#ifndef LOG_DBG
#define LOG_DBG LOG
#endif
// ======================= end compat ================================
struct mtmd_cli_context {
mtmd::context_ptr ctx_vision;
common_init_result llama_init;
llama_model * model;
llama_context * lctx;
const llama_vocab * vocab;
common_sampler * smpl;
llama_batch batch;
int n_batch;
mtmd::bitmaps bitmaps;
// note: we know that gemma3 template is "linear", meaning each turn is completely separated to another
// so here we don't need to keep track of chat history
common_chat_templates_ptr tmpls;
// support for legacy templates (models not having EOT token)
llama_tokens antiprompt_tokens;
int n_threads = 1;
llama_pos n_past = 0;
mtmd_cli_context(common_params & params) : llama_init(common_init_from_params(params)) {
model = llama_init.model; //.get();
lctx = llama_init.context; //.get();
vocab = llama_model_get_vocab(model);
smpl = common_sampler_init(model, params.sparams); //sampling);
n_threads = params.n_threads;
batch = llama_batch_init(1, 0, 1); // batch for next token generation
n_batch = params.n_batch;
if (!model || !lctx) {
exit(1);
}
if (!llama_model_chat_template(model, nullptr) && params.chat_template.empty()) {
LOG_ERR("Model does not have chat template.\n");
LOG_ERR(" For old llava models, you may need to use '--chat-template vicuna'\n");
LOG_ERR(" For MobileVLM models, use '--chat-template deepseek'\n");
LOG_ERR(" For Mistral Small 3.1, use '--chat-template mistral-v7'\n");
exit(1);
}
tmpls = common_chat_templates_init(model, params.chat_template);
LOG_TEE("%s: chat template example:\n%s\n", __func__, common_chat_format_example(tmpls.get(), params.use_jinja, params.default_template_kwargs).c_str());
init_vision_context(params);
// load antiprompt tokens for legacy templates
if (params.chat_template == "vicuna") {
antiprompt_tokens = common_tokenize(lctx, "ASSISTANT:", false, true);
} else if (params.chat_template == "deepseek") {
antiprompt_tokens = common_tokenize(lctx, "###", false, true);
}
}
~mtmd_cli_context() {
llama_batch_free(batch);
common_sampler_free(smpl);
}
void init_vision_context(common_params & params) {
const char * clip_path = params.mmproj.path.c_str();
mtmd_context_params mparams = mtmd_context_params_default();
mparams.use_gpu = params.mmproj_use_gpu;
mparams.print_timings = true;
mparams.n_threads = params.n_threads;
mparams.verbosity = params.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO;
mparams.flash_attn_type = params.flash_attn ? LLAMA_FLASH_ATTN_TYPE_ENABLED : LLAMA_FLASH_ATTN_TYPE_DISABLED;
mparams.image_min_tokens = params.image_min_tokens;
mparams.image_max_tokens = params.image_max_tokens;
ctx_vision.reset(mtmd_init_from_file(clip_path, model, mparams));
if (!ctx_vision.get()) {
LOG_ERR("Failed to load vision model from %s\n", clip_path);
exit(1);
}
}
bool check_antiprompt(const llama_tokens & generated_tokens) {
if (antiprompt_tokens.empty() || generated_tokens.size() < antiprompt_tokens.size()) {
return false;
}
return std::equal(
generated_tokens.end() - antiprompt_tokens.size(),
generated_tokens.end(),
antiprompt_tokens.begin()
);
}
bool load_media(const std::string & fname) {
mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_file(ctx_vision.get(), fname.c_str()));
if (!bmp.ptr) {
return false;
}
bitmaps.entries.push_back(std::move(bmp));
return true;
}
};
static int generate_response(mtmd_cli_context & ctx, int n_predict) {
llama_tokens generated_tokens;
for (int i = 0; i < n_predict; i++) {
if (i > n_predict || !g_is_generating || g_is_interrupted) {
LOG_TEE("\n");
break;
}
llama_token token_id = common_sampler_sample(ctx.smpl, ctx.lctx, -1);
generated_tokens.push_back(token_id);
common_sampler_accept(ctx.smpl, ctx.lctx, token_id, true);
if (llama_vocab_is_eog(ctx.vocab, token_id) || ctx.check_antiprompt(generated_tokens)) {
LOG_TEE("\n");
break; // end of generation
}
LOG_TEE("%s", common_token_to_piece(ctx.lctx, token_id).c_str());
fflush(stdout);
if (g_is_interrupted) {
LOG_TEE("\n");
break;
}
// eval the token
common_batch_clear(ctx.batch);
common_batch_add(ctx.batch, token_id, ctx.n_past++, {0}, true);
if (llama_decode(ctx.lctx, ctx.batch)) {
LOG_ERR("failed to decode token\n");
return 1;
}
}
return 0;
}
static int eval_message(mtmd_cli_context & ctx, common_chat_msg & msg, bool add_bos = false) {
common_chat_templates_inputs tmpl_inputs;
tmpl_inputs.messages = {msg};
tmpl_inputs.add_generation_prompt = true;
tmpl_inputs.use_jinja = false; // jinja is buggy here
auto formatted_chat = common_chat_templates_apply(ctx.tmpls.get(), tmpl_inputs);
LOG_DBG("formatted_chat.prompt: %s\n", formatted_chat.prompt.c_str());
mtmd_input_text text;
text.text = formatted_chat.prompt.c_str();
text.add_special = add_bos;
text.parse_special = true;
if (g_is_interrupted) return 0;
mtmd::input_chunks chunks(mtmd_input_chunks_init());
auto bitmaps_c_ptr = ctx.bitmaps.c_ptr();
int32_t res = mtmd_tokenize(ctx.ctx_vision.get(),
chunks.ptr.get(), // output
&text, // text
bitmaps_c_ptr.data(),
bitmaps_c_ptr.size());
if (res != 0) {
LOG_ERR("Unable to tokenize prompt, res = %d\n", res);
return 1;
}
ctx.bitmaps.entries.clear();
llama_pos new_n_past;
if (mtmd_helper_eval_chunks(ctx.ctx_vision.get(),
ctx.lctx, // lctx
chunks.ptr.get(), // chunks
ctx.n_past, // n_past
0, // seq_id
ctx.n_batch, // n_batch
true, // logits_last
&new_n_past)) {
LOG_ERR("Unable to eval prompt\n");
return 1;
}
ctx.n_past = new_n_past;
LOG("\n");
return 0;
}
int main(int argc, char ** argv) {
ggml_time_init();
common_params params;
params.sparams.temp = 0.2; // lower temp by default for better quality
if (!gpt_params_parse(argc, argv, params)) {
return 1;
}
//if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_MTMD, show_additional_info)) {
// return 1;
//}
common_init();
if (params.mmproj.path.empty()) {
show_additional_info(argc, argv);
LOG_ERR("ERR: Missing --mmproj argument\n");
return 1;
}
mtmd_cli_context ctx(params);
LOG("%s: loading model: %s\n", __func__, params.model.c_str());
bool is_single_turn = !params.prompt.empty() && !params.image.empty();
int n_predict = params.n_predict < 0 ? INT_MAX : params.n_predict;
// Ctrl+C handling
{
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = sigint_handler;
sigemptyset (&sigint_action.sa_mask);
sigint_action.sa_flags = 0;
sigaction(SIGINT, &sigint_action, NULL);
#elif defined (_WIN32)
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
};
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
#endif
}
if (g_is_interrupted) return 130;
if (is_single_turn) {
g_is_generating = true;
if (params.prompt.find(mtmd_default_marker()) == std::string::npos) {
for (size_t i = 0; i < params.image.size(); i++) {
params.prompt += mtmd_default_marker();
}
}
common_chat_msg msg;
msg.role = "user";
msg.content = params.prompt;
for (const auto & image : params.image) {
if (!ctx.load_media(image)) {
return 1; // error is already printed by libmtmd
}
}
if (eval_message(ctx, msg, true)) {
return 1;
}
if (!g_is_interrupted && generate_response(ctx, n_predict)) {
return 1;
}
} else {
LOG_TEE("\n Running in chat mode, available commands:");
if (mtmd_support_vision(ctx.ctx_vision.get())) {
LOG_TEE("\n /image <path> load an image");
}
if (mtmd_support_audio(ctx.ctx_vision.get())) {
LOG_TEE("\n /audio <path> load an audio");
}
LOG_TEE("\n /clear clear the chat history");
LOG_TEE("\n /quit or /exit exit the program");
LOG_TEE("\n");
bool is_first_msg = true;
std::string content;
while (!g_is_interrupted) {
g_is_generating = false;
LOG_TEE("\n> ");
console::set_display(console::user_input);
std::string line;
console::readline(line, false);
if (g_is_interrupted) break;
console::set_display(console::reset);
line = string_strip(line);
if (line.empty()) {
continue;
}
if (line == "/quit" || line == "/exit") {
break;
}
if (line == "/clear") {
ctx.n_past = 0;
llama_kv_cache_seq_rm(ctx.lctx, 0, 1, -1);
//llama_memory_seq_rm(llama_get_memory(ctx.lctx), 0, 1, -1); // keep BOS
LOG_TEE("Chat history cleared\n\n");
continue;
}
g_is_generating = true;
bool is_image = line == "/image" || line.find("/image ") == 0;
bool is_audio = line == "/audio" || line.find("/audio ") == 0;
if (is_image || is_audio) {
if (line.size() < 8) {
LOG_ERR("ERR: Missing media filename\n");
continue;
}
std::string media_path = line.substr(7);
if (ctx.load_media(media_path)) {
LOG_TEE("%s %s loaded\n", media_path.c_str(), is_image ? "image" : "audio");
content += mtmd_default_marker();
}
// else, error is already printed by libmtmd
continue;
} else {
content += line;
}
common_chat_msg msg;
msg.role = "user";
msg.content = content;
int ret = eval_message(ctx, msg, is_first_msg);
if (ret) {
return 1;
}
if (g_is_interrupted) break;
if (generate_response(ctx, n_predict)) {
return 1;
}
content.clear();
is_first_msg = false;
}
}
if (g_is_interrupted) LOG_TEE("\nInterrupted by user\n");
LOG_TEE("\n\n");
llama_print_timings(ctx.lctx);
//llama_perf_context_print(ctx.lctx);
return g_is_interrupted ? 130 : 0;
}