Files
ik_llama.cpp/examples/imatrix
firecoperana 1cb7e1bf39 spec : add self speculative decoding, ngram and refactor (#1261)
* spec : add self speculative decoding and ngram-mod and refactor

common : use common_ prefix for common library function

llama : use LLAMA_TOKEN_NULL

spec : add self speculative decoding (no draft model required) + refactor

spec : add ngram-mod

spec : various improvements ton ngram-map + docs

spec : fix the check-rate logic of ngram-simple

common : add common_speculative_is_compat()

spec : simplify time measurement using common_time_meas

refactor common_sampler_init

refactor common_token_to_piece

refactor and fix cur_p bug

clean up

* spec : remove check rate

* spec: show warnings instead of abort

---------

Co-authored-by: firecoperana <firecoperana>
Co-authored-by: Sascha Rogmann <59577610+srogmann@users.noreply.github.com>
2026-02-13 19:04:55 +01:00
..
2024-07-27 07:55:01 +02:00

llama.cpp/examples/imatrix

Compute an importance matrix for a model and given text dataset. Can be used during quantization to enchance the quality of the quantized models. More information is available here: https://github.com/ggerganov/llama.cpp/pull/4861

Usage

./llama-imatrix \
    -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] [--verbosity 1] \
    [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \
    [--in-file imatrix-prev-0.dat --in-file imatrix-prev-1.dat ...]

Here -m with a model name and -f with a file containing training data (such as e.g. wiki.train.raw) are mandatory. The parameters in square brackets are optional and have the following meaning:

  • -o (or --output-file) specifies the name of the file where the computed data will be stored. If missing imatrix.dat is used.
  • --verbosity specifies the verbosity level. If set to 0, no output other than the perplexity of the processed chunks will be generated. If set to 1, each time the results are saved a message is written to stderr. If >=2, a message is output each time data is collected for any tensor. Default verbosity level is 1.
  • --output-frequency specifies how often the so far computed result is saved to disk. Default is 10 (i.e., every 10 chunks)
  • --save-frequency specifies how often to save a copy of the imatrix in a separate file. Default is 0 (i.e., never)
  • --process-output specifies if data will be collected for the output.weight tensor. My experience is that it is better to not utilize the importance matrix when quantizing output.weight, so this is set to false by default.

For faster computation, make sure to use GPU offloading via the -ngl argument

Example

GGML_CUDA=1 make -j

# generate importance matrix (imatrix.dat)
./llama-imatrix -m ggml-model-f16.gguf -f train-data.txt -ngl 99

# use the imatrix to perform a Q4_K_M quantization
./llama-quantize --imatrix imatrix.dat ggml-model-f16.gguf ./ggml-model-q4_k_m.gguf q4_k_m