Files
ik_llama.cpp/examples/simple
firecoperana 1cb7e1bf39 spec : add self speculative decoding, ngram and refactor (#1261)
* spec : add self speculative decoding and ngram-mod and refactor

common : use common_ prefix for common library function

llama : use LLAMA_TOKEN_NULL

spec : add self speculative decoding (no draft model required) + refactor

spec : add ngram-mod

spec : various improvements ton ngram-map + docs

spec : fix the check-rate logic of ngram-simple

common : add common_speculative_is_compat()

spec : simplify time measurement using common_time_meas

refactor common_sampler_init

refactor common_token_to_piece

refactor and fix cur_p bug

clean up

* spec : remove check rate

* spec: show warnings instead of abort

---------

Co-authored-by: firecoperana <firecoperana>
Co-authored-by: Sascha Rogmann <59577610+srogmann@users.noreply.github.com>
2026-02-13 19:04:55 +01:00
..
2024-08-12 15:14:32 +02:00

llama.cpp/example/simple

The purpose of this example is to demonstrate a minimal usage of llama.cpp for generating text with a given prompt.

./llama-simple -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is"

...

main: n_len = 32, n_ctx = 2048, n_parallel = 1, n_kv_req = 32

 Hello my name is Shawn and I'm a 20 year old male from the United States. I'm a 20 year old

main: decoded 27 tokens in 2.31 s, speed: 11.68 t/s

llama_print_timings:        load time =   579.15 ms
llama_print_timings:      sample time =     0.72 ms /    28 runs   (    0.03 ms per token, 38888.89 tokens per second)
llama_print_timings: prompt eval time =   655.63 ms /    10 tokens (   65.56 ms per token,    15.25 tokens per second)
llama_print_timings:        eval time =  2180.97 ms /    27 runs   (   80.78 ms per token,    12.38 tokens per second)
llama_print_timings:       total time =  2891.13 ms