Files
ik_llama.cpp/ggml/src/ggml-cuda.cu
Kawrakow 366d66bc1a Fuse add + fused_rms_norm (CUDA) (#852)
* Combine all calls to llm_build_norm to a single line

so more easily check what kind of arguments are being passed
by simply using grep.

* Combine add + fused_rms_norm

For many models this happens at each layer: the result of the
layer is added to the ayer input, which then becomes the input
to the next layer, which then is typically normalized via
fused_rms_norm.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-21 14:29:50 +03:00

4652 lines
194 KiB
Plaintext

//
// Copyright (C) 2023-2024 The ggml authors
// Copyright (C) 2024 Iwan Kawrakow
// MIT license
// SPDX-License-Identifier: MIT
//
#include "ggml-cuda.h"
#include "ggml.h"
#include "ggml-backend-impl.h"
#include "ggml-cuda/common.cuh"
#include "ggml-cuda/acc.cuh"
#include "ggml-cuda/arange.cuh"
#include "ggml-cuda/argsort.cuh"
#include "ggml-cuda/binbcast.cuh"
#include "ggml-cuda/clamp.cuh"
#include "ggml-cuda/concat.cuh"
#include "ggml-cuda/convert.cuh"
#include "ggml-cuda/cpy.cuh"
#include "ggml-cuda/diagmask.cuh"
#include "ggml-cuda/dmmv.cuh"
#include "ggml-cuda/fattn.cuh"
#include "ggml-cuda/getrows.cuh"
#include "ggml-cuda/im2col.cuh"
#include "ggml-cuda/mmq.cuh"
#include "ggml-cuda/mmvq.cuh"
#include "ggml-cuda/norm.cuh"
#include "ggml-cuda/pad.cuh"
#include "ggml-cuda/pool2d.cuh"
#include "ggml-cuda/quantize.cuh"
#include "ggml-cuda/rope.cuh"
#include "ggml-cuda/scale.cuh"
#include "ggml-cuda/softcap.cuh"
#include "ggml-cuda/softmax.cuh"
#include "ggml-cuda/sumrows.cuh"
#include "ggml-cuda/tsembd.cuh"
#include "ggml-cuda/unary.cuh"
#include "ggml-cuda/upscale.cuh"
#include "ggml-cuda/conv-transpose-1d.cuh"
#include "ggml-cuda/add-id.cuh"
#include "ggml-cuda/graph.cuh"
#include "ggml-cuda/mmq_id.cuh"
#include "ggml-cuda/quantize_id.cuh"
#include "ggml-cuda/topk-moe.cuh"
#include "ggml-cuda/conv2d.cuh"
#include "ggml-cuda/conv2d-dw.cuh"
#include "ggml-cuda/set-rows.cuh"
#include "ggml-cuda/argmax.cuh"
#include <algorithm>
#include <array>
#include <atomic>
#include <cinttypes>
#include <cstddef>
#include <cstdint>
#include <float.h>
#include <limits>
#include <map>
#include <memory>
#include <mutex>
#include <condition_variable>
#include <stdint.h>
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string>
#include <vector>
#define IK_PRINT_TIMING 0
static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
static void ggml_cuda_default_log_callback(enum ggml_log_level level, const char * msg, void * user_data) {
GGML_UNUSED(level);
GGML_UNUSED(user_data);
fprintf(stderr, "%s", msg);
}
ggml_log_callback ggml_cuda_log_callback = ggml_cuda_default_log_callback;
void * ggml_cuda_log_user_data = NULL;
GGML_API void ggml_backend_cuda_log_set_callback(ggml_log_callback log_callback, void * user_data) {
ggml_cuda_log_callback = log_callback;
ggml_cuda_log_user_data = user_data;
}
#define GGML_CUDA_LOG_INFO(...) ggml_cuda_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
#define GGML_CUDA_LOG_WARN(...) ggml_cuda_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
#define GGML_CUDA_LOG_ERROR(...) ggml_cuda_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
#define GGML_CUDA_LOG_DEBUG(...) ggml_cuda_log(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
GGML_ATTRIBUTE_FORMAT(2, 3)
static void ggml_cuda_log(enum ggml_log_level level, const char * format, ...) {
if (ggml_cuda_log_callback != NULL) {
va_list args;
va_start(args, format);
char buffer[128];
int len = vsnprintf(buffer, 128, format, args);
if (len < 128) {
ggml_cuda_log_callback(level, buffer, ggml_cuda_log_user_data);
} else {
std::vector<char> buffer2(len + 1); // vsnprintf adds a null terminator
va_end(args);
va_start(args, format);
vsnprintf(&buffer2[0], buffer2.size(), format, args);
ggml_cuda_log_callback(level, buffer2.data(), ggml_cuda_log_user_data);
}
va_end(args);
}
}
[[noreturn]]
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) {
int id = -1; // in case cudaGetDevice fails
cudaGetDevice(&id);
GGML_CUDA_LOG_ERROR("CUDA error: %s\n", msg);
GGML_CUDA_LOG_ERROR(" current device: %d, in function %s at %s:%d\n", id, func, file, line);
GGML_CUDA_LOG_ERROR(" %s\n", stmt);
// abort with GGML_ASSERT to get a stack trace
GGML_ABORT("CUDA error");
}
// this is faster on Windows
// probably because the Windows CUDA libraries forget to make this check before invoking the drivers
void ggml_cuda_set_device(int device) {
int current_device;
CUDA_CHECK(cudaGetDevice(&current_device));
if (device == current_device) {
return;
}
CUDA_CHECK(cudaSetDevice(device));
}
int ggml_cuda_get_device() {
int id;
CUDA_CHECK(cudaGetDevice(&id));
return id;
}
static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) {
ggml_cuda_set_device(device);
#if defined(GGML_USE_HIPBLAS) && defined(GGML_HIP_UMA)
auto res = hipMallocManaged(ptr, size);
if (res == hipSuccess) {
// if error we "need" to know why...
CUDA_CHECK(hipMemAdvise(*ptr, size, hipMemAdviseSetCoarseGrain, device));
}
return res;
#else
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
cudaError_t err;
if (getenv("GGML_CUDA_ENABLE_UNIFIED_MEMORY") != nullptr)
{
err = cudaMallocManaged(ptr, size);
}
else
{
err = cudaMalloc(ptr, size);
}
return err;
#else
return cudaMalloc(ptr, size);
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
#endif
}
static ggml_cuda_device_info ggml_cuda_init() {
#ifdef __HIP_PLATFORM_AMD__
// Workaround for a rocBLAS bug when using multiple graphics cards:
// https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
rocblas_initialize();
CUDA_CHECK(cudaDeviceSynchronize());
#endif
ggml_cuda_device_info info = {};
cudaError_t err = cudaGetDeviceCount(&info.device_count);
if (err != cudaSuccess) {
GGML_CUDA_LOG_ERROR("%s: failed to initialize " GGML_CUDA_NAME ": %s\n", __func__, cudaGetErrorString(err));
return info;
}
GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES);
int64_t total_vram = 0;
#ifdef GGML_CUDA_FORCE_MMQ
GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__);
#else
GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: no\n", __func__);
#endif // GGML_CUDA_FORCE_MMQ
#ifdef GGML_CUDA_FORCE_CUBLAS
GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: yes\n", __func__);
#else
GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: no\n", __func__);
#endif // GGML_CUDA_FORCE_CUBLAS
GGML_CUDA_LOG_INFO("%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
for (int id = 0; id < info.device_count; ++id) {
int device_vmm = 0;
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
CUdevice device;
CU_CHECK(cuDeviceGet(&device, id));
CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
if (device_vmm) {
CUmemAllocationProp alloc_prop = {};
alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
alloc_prop.location.id = id;
CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
}
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
info.devices[id].vmm = !!device_vmm;
cudaDeviceProp prop;
CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
GGML_CUDA_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
info.default_tensor_split[id] = total_vram;
total_vram += prop.totalGlobalMem;
info.devices[id].nsm = prop.multiProcessorCount;
info.devices[id].smpb = prop.sharedMemPerBlock;
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
info.devices[id].smpbo = prop.sharedMemPerBlock;
info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
#else
info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
info.devices[id].cc = 100*prop.major + 10*prop.minor;
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
}
for (int id = 0; id < info.device_count; ++id) {
info.default_tensor_split[id] /= total_vram;
}
// configure logging to stdout
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
return info;
}
const ggml_cuda_device_info & ggml_cuda_info() {
static ggml_cuda_device_info info = ggml_cuda_init();
return info;
}
// #define DEBUG_CUDA_MALLOC
// buffer pool for cuda (legacy)
struct ggml_cuda_pool_leg : public ggml_cuda_pool {
static const int MAX_BUFFERS = 256;
int device;
struct ggml_cuda_buffer {
void * ptr = nullptr;
size_t size = 0;
};
ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
size_t pool_size = 0;
explicit ggml_cuda_pool_leg(int device) :
device(device) {
}
~ggml_cuda_pool_leg() {
ggml_cuda_set_device(device);
for (int i = 0; i < MAX_BUFFERS; ++i) {
ggml_cuda_buffer & b = buffer_pool[i];
if (b.ptr != nullptr) {
CUDA_CHECK(cudaFree(b.ptr));
pool_size -= b.size;
}
}
GGML_ASSERT(pool_size == 0);
}
void * alloc(size_t size, size_t * actual_size) override {
#ifdef DEBUG_CUDA_MALLOC
int nnz = 0;
size_t max_size = 0;
#endif
size_t best_diff = 1ull << 36;
int ibest = -1;
for (int i = 0; i < MAX_BUFFERS; ++i) {
ggml_cuda_buffer& b = buffer_pool[i];
if (b.ptr != nullptr) {
#ifdef DEBUG_CUDA_MALLOC
++nnz;
if (b.size > max_size) max_size = b.size;
#endif
if (b.size >= size) {
size_t diff = b.size - size;
if (diff < best_diff) {
best_diff = diff;
ibest = i;
if (!best_diff) {
void * ptr = b.ptr;
*actual_size = b.size;
b.ptr = nullptr;
b.size = 0;
return ptr;
}
}
}
}
}
if (ibest >= 0) {
ggml_cuda_buffer& b = buffer_pool[ibest];
void * ptr = b.ptr;
*actual_size = b.size;
b.ptr = nullptr;
b.size = 0;
return ptr;
}
void * ptr;
size_t look_ahead_size = (size_t) (1.05 * size);
look_ahead_size = 256 * ((look_ahead_size + 255)/256);
ggml_cuda_set_device(device);
CUDA_CHECK(ggml_cuda_device_malloc(&ptr, look_ahead_size, device));
*actual_size = look_ahead_size;
pool_size += look_ahead_size;
#ifdef DEBUG_CUDA_MALLOC
GGML_CUDA_LOG_INFO("%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
(uint32_t)(max_size / 1024 / 1024), (uint32_t)(pool_size / 1024 / 1024), (uint32_t)(size / 1024 / 1024));
#endif
return ptr;
}
void free(void * ptr, size_t size) override {
for (int i = 0; i < MAX_BUFFERS; ++i) {
ggml_cuda_buffer& b = buffer_pool[i];
if (b.ptr == nullptr) {
b.ptr = ptr;
b.size = size;
return;
}
}
GGML_CUDA_LOG_WARN("Cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
ggml_cuda_set_device(device);
CUDA_CHECK(cudaFree(ptr));
pool_size -= size;
}
};
// pool with virtual memory
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
int device;
CUdeviceptr pool_addr = 0;
size_t pool_used = 0;
size_t pool_size = 0;
size_t granularity;
explicit ggml_cuda_pool_vmm(int device) :
device(device),
granularity(ggml_cuda_info().devices[device].vmm_granularity) {
}
~ggml_cuda_pool_vmm() {
if (pool_addr != 0) {
CU_CHECK(cuMemUnmap(pool_addr, pool_size));
CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE));
}
}
void * alloc(size_t size, size_t * actual_size) override {
// round up the allocation size to the alignment to ensure that all allocations are aligned for all data types
const size_t alignment = 128;
size = alignment * ((size + alignment - 1) / alignment);
size_t avail = pool_size - pool_used;
if (size > avail) {
// round up to the next multiple of the granularity
size_t reserve_size = size - avail;
reserve_size = granularity * ((reserve_size + granularity - 1) / granularity);
GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
// allocate more physical memory
CUmemAllocationProp prop = {};
prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
prop.location.id = device;
CUmemGenericAllocationHandle handle;
CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));
// reserve virtual address space (if not already reserved)
if (pool_addr == 0) {
CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
}
// map at the end of the pool
CU_CHECK(cuMemMap(pool_addr + pool_size, reserve_size, 0, handle, 0));
// the memory allocation handle is no longer needed after mapping
CU_CHECK(cuMemRelease(handle));
// set access
CUmemAccessDesc access = {};
access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
access.location.id = device;
access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
CU_CHECK(cuMemSetAccess(pool_addr + pool_size, reserve_size, &access, 1));
// add to the pool
pool_size += reserve_size;
//printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n",
// device, (unsigned long long) (pool_size/1024/1024),
// (unsigned long long) (reserve_size/1024/1024));
}
GGML_ASSERT(pool_addr != 0);
void * ptr = (void *) (pool_addr + pool_used);
*actual_size = size;
pool_used += size;
#ifdef DEBUG_CUDA_MALLOC
printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
#endif
return ptr;
}
void free(void * ptr, size_t size) override {
#ifdef DEBUG_CUDA_MALLOC
printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
#endif
pool_used -= size;
// all deallocations must be in reverse order of the allocations
GGML_ASSERT(ptr == (void *) (pool_addr + pool_used));
}
};
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
if (ggml_cuda_info().devices[device].vmm) {
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
}
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
}
static std::mutex ggml_cuda_lock;
static std::condition_variable ggml_cuda_lock_cv;
static std::atomic<int> ggml_cuda_lock_counter;
ggml_backend_cuda_context::ggml_backend_cuda_context(int device) :
device(device), name(GGML_CUDA_NAME + std::to_string(device)) {
}
ggml_backend_cuda_context::~ggml_backend_cuda_context() {
std::unique_lock<std::mutex> lock(ggml_cuda_lock);
ggml_cuda_lock_cv.wait(lock, []{ return ggml_cuda_lock_counter.load(std::memory_order_relaxed) == 0; });
if (copy_event != nullptr) {
CUDA_CHECK(cudaEventDestroy(copy_event));
}
for (int i = 0; i < GGML_CUDA_MAX_DEVICES; ++i) {
for (int j = 0; j < GGML_CUDA_MAX_STREAMS; ++j) {
if (streams[i][j] != nullptr) {
CUDA_CHECK(cudaStreamDestroy(streams[i][j]));
}
}
if (cublas_handles[i] != nullptr) {
CUBLAS_CHECK(cublasDestroy(cublas_handles[i]));
}
}
}
// cuda buffer
struct ggml_backend_cuda_buffer_context {
int device;
void * dev_ptr = nullptr;
std::string name;
ggml_backend_cuda_buffer_context(int device, void * dev_ptr) :
device(device), dev_ptr(dev_ptr),
name(GGML_CUDA_NAME + std::to_string(device)) {
}
~ggml_backend_cuda_buffer_context() {
CUDA_CHECK(cudaFree(dev_ptr));
}
};
GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
return ctx->name.c_str();
}
GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
}
GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
delete ctx;
}
GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
return ctx->dev_ptr;
}
GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
if (tensor->view_src != NULL) {
assert(tensor->view_src->buffer->buft == buffer->buft);
return;
}
if (ggml_is_quantized(tensor->type) && tensor->view_src == nullptr && ggml_backend_buffer_get_usage(buffer) != GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
// initialize padding to 0 to avoid possible NaN values
size_t original_size = ggml_nbytes(tensor);
size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
if (padded_size > original_size) {
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
}
}
}
GGML_CALL static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaMemsetAsync((char *)tensor->data + offset, value, size, cudaStreamPerThread));
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread));
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
if (ggml_backend_buffer_is_cuda(src->buffer)) {
ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
if (src_ctx->device == dst_ctx->device) {
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread));
} else {
#ifdef GGML_CUDA_NO_PEER_COPY
return false;
#else
CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread));
#endif
}
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
return true;
}
return false;
GGML_UNUSED(buffer);
}
GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
CUDA_CHECK(cudaDeviceSynchronize());
}
static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
/* .get_name = */ ggml_backend_cuda_buffer_get_name,
/* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer,
/* .get_base = */ ggml_backend_cuda_buffer_get_base,
/* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor,
/* .memset_tensor = */ ggml_backend_cuda_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor,
/* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor,
/* .clear = */ ggml_backend_cuda_buffer_clear,
/* .reset = */ NULL,
};
// cuda buffer type
struct ggml_backend_cuda_buffer_type_context {
int device;
std::string name;
};
GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) {
ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
return ctx->name.c_str();
}
static bool ggml_backend_buft_is_cuda(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_cuda_buffer_type_name;
}
GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
ggml_cuda_set_device(buft_ctx->device);
size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
void * dev_ptr;
cudaError_t err = ggml_cuda_device_malloc(&dev_ptr, size, buft_ctx->device);
if (err != cudaSuccess) {
// clear the error
cudaGetLastError();
GGML_CUDA_LOG_ERROR("%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size / 1024.0 / 1024.0, buft_ctx->device, cudaGetErrorString(err));
return nullptr;
}
ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);
return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
}
GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 128;
GGML_UNUSED(buft);
}
GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
size_t size = ggml_nbytes(tensor);
int64_t ne0 = tensor->ne[0];
if (ggml_is_quantized(tensor->type)) {
if (ne0 % MATRIX_ROW_PADDING != 0) {
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
}
}
return size;
GGML_UNUSED(buft);
}
static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
/* .get_name = */ ggml_backend_cuda_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
/* .is_host = */ NULL,
};
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (device >= ggml_backend_cuda_get_device_count()) {
return nullptr;
}
static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
static bool ggml_backend_cuda_buffer_type_initialized = false;
if (!ggml_backend_cuda_buffer_type_initialized) {
for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
ggml_backend_cuda_buffer_types[i] = {
/* .iface = */ ggml_backend_cuda_buffer_type_interface,
/* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
};
}
ggml_backend_cuda_buffer_type_initialized = true;
}
return &ggml_backend_cuda_buffer_types[device];
}
// cuda split buffer
static int64_t get_row_rounding(const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
int64_t row_rounding = 0;
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
continue;
}
const int cc = ggml_cuda_info().devices[id].cc;
row_rounding = std::max(row_rounding, (int64_t)get_mmq_y_host(cc));
}
return row_rounding;
}
static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
const int64_t nrows = ggml_nrows(tensor);
const int64_t rounding = get_row_rounding(tensor_split);
*row_low = id == 0 ? 0 : nrows*tensor_split[id];
*row_low -= *row_low % rounding;
if (id == ggml_backend_cuda_get_device_count() - 1) {
*row_high = nrows;
} else {
*row_high = nrows*tensor_split[id + 1];
*row_high -= *row_high % rounding;
}
}
static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
}
struct ggml_backend_cuda_split_buffer_type_context {
std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
};
struct ggml_backend_cuda_split_buffer_context {
~ggml_backend_cuda_split_buffer_context() {
for (ggml_tensor_extra_gpu * extra : tensor_extras) {
for (int id = 0; id < GGML_CUDA_MAX_DEVICES; ++id) {
for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
if (extra->events[id][is] != nullptr) {
CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
}
}
if (extra->data_device[id] != nullptr) {
CUDA_CHECK(cudaFree(extra->data_device[id]));
}
}
delete extra;
}
}
std::vector<ggml_tensor_extra_gpu *> tensor_extras;
};
GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
return GGML_CUDA_NAME "_Split";
GGML_UNUSED(buffer);
}
static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name;
GGML_UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds
}
GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
delete ctx;
}
GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
// the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
return (void *)0x1000;
GGML_UNUSED(buffer);
}
GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
const int64_t ne0 = tensor->ne[0];
ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
ctx->tensor_extras.push_back(extra);
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
int64_t row_low, row_high;
get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
int64_t nrows_split = row_high - row_low;
if (nrows_split == 0) {
continue;
}
size_t size = ggml_nbytes_split(tensor, nrows_split);
const size_t original_size = size;
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
if (ne0 % MATRIX_ROW_PADDING != 0) {
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
}
// FIXME: do not crash if cudaMalloc fails
// currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
ggml_cuda_set_device(id);
char * buf;
CUDA_CHECK(ggml_cuda_device_malloc((void**)&buf, size, id));
// set padding to 0 to avoid possible NaN values
if (size > original_size) {
CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
}
extra->data_device[id] = buf;
for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
}
}
tensor->extra = extra;
}
GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
// split tensors must always be set in their entirety at once
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
const int64_t ne0 = tensor->ne[0];
const size_t nb1 = tensor->nb[1];
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
int64_t row_low, row_high;
get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
int64_t nrows_split = row_high - row_low;
if (nrows_split == 0) {
continue;
}
const size_t offset_split = row_low*nb1;
size_t size = ggml_nbytes_split(tensor, nrows_split);
const size_t original_size = size;
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
if (ne0 % MATRIX_ROW_PADDING != 0) {
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
}
const char * buf_host = (const char *)data + offset_split;
CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread));
}
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
}
GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
// split tensors must always be set in their entirety at once
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
const int64_t ne0 = tensor->ne[0];
const size_t nb1 = tensor->nb[1];
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
int64_t row_low, row_high;
get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
int64_t nrows_split = row_high - row_low;
if (nrows_split == 0) {
continue;
}
const size_t offset_split = row_low*nb1;
size_t size = ggml_nbytes_split(tensor, nrows_split);
const size_t original_size = size;
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
if (ne0 % MATRIX_ROW_PADDING != 0) {
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
}
char * buf_host = (char *)data + offset_split;
CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
}
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
}
GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
GGML_UNUSED(buffer);
GGML_UNUSED(value);
}
static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
/* .get_name = */ ggml_backend_cuda_split_buffer_get_name,
/* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer,
/* .get_base = */ ggml_backend_cuda_split_buffer_get_base,
/* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor,
/* .memset_tensor = */ NULL,
/* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor,
/* .cpy_tensor = */ NULL,
/* .clear = */ ggml_backend_cuda_split_buffer_clear,
/* .reset = */ NULL,
};
// cuda split buffer type
GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
return GGML_CUDA_NAME "_Split";
GGML_UNUSED(buft);
}
static bool ggml_backend_buft_is_cuda_split(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_cuda_split_buffer_type_name;
}
GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
// since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
// instead, we allocate them for each tensor separately in init_tensor
// however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
// as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context();
return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
}
GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 128;
GGML_UNUSED(buft);
}
GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
size_t total_size = 0;
const int64_t ne0 = tensor->ne[0];
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
int64_t row_low, row_high;
get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id);
int64_t nrows_split = row_high - row_low;
if (nrows_split == 0) {
continue;
}
total_size += ggml_nbytes_split(tensor, nrows_split);
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
if (ne0 % MATRIX_ROW_PADDING != 0) {
total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
}
}
return total_size;
}
GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return false;
GGML_UNUSED(buft);
}
static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
/* .get_name = */ ggml_backend_cuda_split_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
/* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
};
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {};
bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; });
if (all_zero) {
tensor_split_arr = ggml_cuda_info().default_tensor_split;
} else {
float split_sum = 0.0f;
for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
tensor_split_arr[i] = split_sum;
split_sum += tensor_split[i];
}
for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
tensor_split_arr[i] /= split_sum;
}
}
auto it = buft_map.find(tensor_split_arr);
if (it != buft_map.end()) {
return &it->second;
}
struct ggml_backend_buffer_type buft {
/* .iface = */ ggml_backend_cuda_split_buffer_type_interface,
/* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr},
};
auto result = buft_map.emplace(tensor_split_arr, buft);
return &result.first->second;
}
// host buffer type
GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
return GGML_CUDA_NAME "_Host";
GGML_UNUSED(buft);
}
GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
return GGML_CUDA_NAME "_Host";
GGML_UNUSED(buffer);
}
GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
CUDA_CHECK(cudaFreeHost(buffer->context));
}
static void * ggml_cuda_host_malloc(size_t size) {
if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
return nullptr;
}
void * ptr = nullptr;
cudaError_t err = cudaMallocHost((void **) &ptr, size);
if (err != cudaSuccess) {
// clear the error
cudaGetLastError();
GGML_CUDA_LOG_WARN("%s: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
size / 1024.0 / 1024.0, cudaGetErrorString(err));
return nullptr;
}
return ptr;
}
GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
void * ptr = ggml_cuda_host_malloc(size);
if (ptr == nullptr) {
// fallback to cpu buffer
return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
}
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
buffer->buft = buft;
buffer->iface.get_name = ggml_backend_cuda_host_buffer_name;
buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
return buffer;
}
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
/* .iface = */ {
/* .get_name = */ ggml_backend_cuda_host_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
},
/* .context = */ nullptr,
};
return &ggml_backend_cuda_buffer_type_host;
}
//static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) {
// return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
//}
/// kernels
typedef void (*ggml_cuda_op_mul_mat_t)(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, cudaStream_t stream);
#ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE
#define GGML_CUDA_PEER_MAX_BATCH_SIZE 128
#endif // GGML_CUDA_PEER_MAX_BATCH_SIZE
#define MUL_MAT_SRC1_COL_STRIDE 128
static __global__ void mul_mat_p021_f16_f32(
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
const half * x = (const half *) vx;
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
const int channel_x = channel / (nchannels_y / nchannels_x);
const int nrows_y = ncols_x;
const int nrows_dst = nrows_x;
const int row_dst = row_x;
float tmp = 0.0f;
for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
const int col_x = col_x0 + threadIdx.x;
if (col_x >= ncols_x) {
break;
}
// x is transposed and permuted
const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
const float xi = __half2float(x[ix]);
const int row_y = col_x;
// y is not transposed but permuted
const int iy = channel*nrows_y + row_y;
tmp += xi * y[iy];
}
// dst is not transposed and not permuted
const int idst = channel*nrows_dst + row_dst;
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
if (threadIdx.x == 0) {
dst[idst] = tmp;
}
}
static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
const half * x = (const half *) vx;
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
const int channel_x = channel / channel_x_divisor;
const int nrows_y = ncols_x;
const int nrows_dst = nrows_x;
const int row_dst = row_x;
const int idst = channel*nrows_dst + row_dst;
float tmp = 0.0f;
for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
const int col_x = col_x0 + threadIdx.x;
if (col_x >= ncols_x) {
break;
}
const int row_y = col_x;
const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
const int iy = channel*nrows_y + row_y;
const float xi = __half2float(x[ix]);
tmp += xi * y[iy];
}
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
if (threadIdx.x == 0) {
dst[idst] = tmp;
}
}
static void ggml_mul_mat_p021_f16_f32_cuda(
const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
const dim3 block_nums(1, nrows_x, nchannels_y);
const dim3 block_dims(WARP_SIZE, 1, 1);
mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
}
static void ggml_mul_mat_vec_nc_f16_f32_cuda(
const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
const dim3 block_nums(1, nrows_x, nchannels_y);
const dim3 block_dims(WARP_SIZE, 1, 1);
mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
(vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
}
static cudaError_t ggml_cuda_cpy_tensor_2d(
void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer));
const char * src_ptr = (const char *) src->data;
char * dst_ptr = (char *) dst;
const int64_t ne0 = src->ne[0];
const int64_t nb0 = src->nb[0];
const int64_t nb1 = src->nb[1];
const int64_t nb2 = src->nb[2];
const int64_t nb3 = src->nb[3];
const enum ggml_type type = src->type;
const int64_t ts = ggml_type_size(type);
const int64_t rs = ggml_row_size(type, ne0);
const int64_t bs = ggml_blck_size(type);
const int64_t i1_diff = i1_high - i1_low;
const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
if (nb0 == ts && nb1 == rs) {
return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, cudaMemcpyDeviceToDevice, stream);
} else if (nb0 == ts) {
// TODO: this only works if the row does not contain meta data
return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyDeviceToDevice, stream);
} else {
for (int64_t i1 = 0; i1 < i1_diff; i1++) {
const void * rx = (const void *) ((const char *) x + i1*nb1);
void * rd = (void *) (dst_ptr + i1*rs);
// pretend the row is a matrix with cols=1
// TODO: this only works if the row does not contain meta data
cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyDeviceToDevice, stream);
if (r != cudaSuccess) {
return r;
}
}
return cudaSuccess;
}
}
static void ggml_cuda_op_mul_mat_cublas(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, cudaStream_t stream) {
GGML_ASSERT(src0_dd_i != nullptr);
GGML_ASSERT(src1_ddf_i != nullptr);
GGML_ASSERT(dst_dd_i != nullptr);
const int64_t ne00 = src0->ne[0];
const int64_t ne10 = src1->ne[0];
const int64_t ne0 = dst->ne[0];
const int64_t row_diff = row_high - row_low;
int id = ggml_cuda_get_device();
// the main device has a larger memory buffer to hold the results from all GPUs
// ldc == nrows of the matrix that cuBLAS writes into
int64_t ldc = id == ctx.device ? ne0 : row_diff;
const int compute_capability = ggml_cuda_info().devices[id].cc;
if (src0->type == GGML_TYPE_BF16 && ggml_is_contiguous(src0) && row_diff == src0->ne[1]) {
ggml_cuda_pool_alloc<nv_bfloat16> src1_as_bf16(ctx.pool(id));
if (src1->type != GGML_TYPE_BF16) {
const to_bf16_cuda_t to_bf16_cuda = ggml_get_to_bf16_cuda(src1->type);
GGML_ASSERT(to_bf16_cuda != nullptr);
size_t ne = src1_ncols*ne10;
src1_as_bf16.alloc(ne);
to_bf16_cuda(src1_ddf_i, src1_as_bf16.get(), src1_ncols, ne10, stream);
}
const nv_bfloat16 * src1_ptr = src1->type == GGML_TYPE_BF16 ? (const nv_bfloat16 *) src1_ddf_i : src1_as_bf16.get();
const nv_bfloat16 * src0_ptr = (const nv_bfloat16 *)src0_dd_i;
ggml_cuda_pool_alloc<nv_bfloat16> dst_bf16(ctx.pool(id), row_diff*src1_ncols);
const float alpha_f32 = 1.0f;
const float beta_f32 = 0.0f;
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
CUBLAS_CHECK(
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
row_diff, src1_ncols, ne10,
&alpha_f32, src0_ptr, CUDA_R_16BF, ne00,
src1_ptr, CUDA_R_16BF, ne10,
&beta_f32, dst_bf16.get(), CUDA_R_16BF, ldc,
CUBLAS_COMPUTE_32F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_BF16);
to_fp32_cuda(dst_bf16.get(), dst_dd_i, row_diff, src1_ncols, stream);
return;
}
#ifdef GGML_CUDA_IQK_FORCE_BF16
if (ggml_is_quantized(src0->type) && ggml_is_contiguous(src0) && row_diff == src0->ne[1]) {
to_bf16_cuda_t to_bf16_cuda = ggml_get_to_bf16_cuda(src0->type);
to_bf16_cuda_t to_bf16_cuda_1 = src1->type != GGML_TYPE_BF16 ? ggml_get_to_bf16_cuda(src1->type) : nullptr;
if (to_bf16_cuda && (src1->type == GGML_TYPE_BF16 || to_bf16_cuda_1)) {
size_t ne = row_diff*ne00;
ggml_cuda_pool_alloc<nv_bfloat16> src0_as_bf16(ctx.pool(id), ne);
to_bf16_cuda(src0_dd_i, src0_as_bf16.get(), row_diff, ne00, stream);
ggml_cuda_pool_alloc<nv_bfloat16> src1_as_bf16(ctx.pool(id));
if (src1->type != GGML_TYPE_BF16) {
size_t ne = src1_ncols*ne10;
src1_as_bf16.alloc(ne);
to_bf16_cuda_1(src1_ddf_i, src1_as_bf16.get(), src1_ncols, ne10, stream);
}
const nv_bfloat16 * src1_ptr = src1->type == GGML_TYPE_BF16 ? (const nv_bfloat16 *) src1_ddf_i : src1_as_bf16.get();
const nv_bfloat16 * src0_ptr = src0_as_bf16.get();
ggml_cuda_pool_alloc<nv_bfloat16> dst_bf16(ctx.pool(id), row_diff*src1_ncols);
const float alpha_f32 = 1.0f;
const float beta_f32 = 0.0f;
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
CUBLAS_CHECK(
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
row_diff, src1_ncols, ne10,
&alpha_f32, src0_ptr, CUDA_R_16BF, ne00,
src1_ptr, CUDA_R_16BF, ne10,
&beta_f32, dst_bf16.get(), CUDA_R_16BF, ldc,
CUBLAS_COMPUTE_32F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_BF16);
to_fp32_cuda(dst_bf16.get(), dst_dd_i, row_diff, src1_ncols, stream);
return;
}
}
#endif
if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
if (src0->type != GGML_TYPE_F16) {
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
GGML_ASSERT(to_fp16_cuda != nullptr);
size_t ne = row_diff*ne00;
src0_as_f16.alloc(ne);
to_fp16_cuda(src0_dd_i, src0_as_f16.get(), row_diff, ne00, stream);
}
const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();
ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool(id));
if (src1->type != GGML_TYPE_F16) {
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
GGML_ASSERT(to_fp16_cuda != nullptr);
size_t ne = src1_ncols*ne10;
src1_as_f16.alloc(ne);
to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), src1_ncols, ne10, stream);
}
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
const half alpha_f16 = 1.0f;
const half beta_f16 = 0.0f;
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
CUBLAS_CHECK(
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
row_diff, src1_ncols, ne10,
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
src1_ptr, CUDA_R_16F, ne10,
&beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
CUBLAS_COMPUTE_16F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff, src1_ncols, stream);
} else {
ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id));
ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id));
if (src0->type != GGML_TYPE_F32) {
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
GGML_ASSERT(to_fp32_cuda != nullptr);
src0_ddq_as_f32.alloc(row_diff*ne00);
to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff, ne00, stream);
}
if (src1->type != GGML_TYPE_F32) {
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type);
GGML_ASSERT(to_fp32_cuda != nullptr);
src1_ddq_as_f32.alloc(src1_ncols*ne10);
to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols, ne10, stream);
}
const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
const float alpha = 1.0f;
const float beta = 0.0f;
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
CUBLAS_CHECK(
cublasSgemm(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
row_diff, src1_ncols, ne10,
&alpha, src0_ddf_i, ne00,
src1_ddf1_i, ne10,
&beta, dst_dd_i, ldc));
}
GGML_UNUSED(dst);
GGML_UNUSED(src1_ddq_i);
GGML_UNUSED(src1_padded_row_size);
}
static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
static bool peer_access_enabled = false;
const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;
if (peer_access_enabled == enable_peer_access) {
return;
}
#ifdef NDEBUG
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
ggml_cuda_set_device(id);
CUDA_CHECK(cudaDeviceSynchronize());
}
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
ggml_cuda_set_device(id);
for (int id_other = 0; id_other < ggml_backend_cuda_get_device_count(); ++id_other) {
if (id == id_other) {
continue;
}
if (id != main_device && id_other != main_device) {
continue;
}
int can_access_peer;
CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
if (can_access_peer) {
if (enable_peer_access) {
cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
if (err != cudaErrorPeerAccessAlreadyEnabled) {
CUDA_CHECK(err);
}
} else {
cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
if (err != cudaErrorPeerAccessNotEnabled) {
CUDA_CHECK(err);
}
}
}
}
}
ggml_cuda_set_device(main_device);
#endif // NDEBUG
peer_access_enabled = enable_peer_access;
GGML_UNUSED(main_device);
}
static cudaError_t ggml_cuda_Memcpy2DPeerAsync(
void * dst, int dstDevice, size_t dpitch, void * src, int srcDevice, size_t spitch, size_t width, size_t height, cudaStream_t stream) {
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
// cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
cudaMemcpy3DPeerParms p = {};
p.dstDevice = dstDevice;
p.dstPtr = make_cudaPitchedPtr(dst, dpitch, dpitch, height);
p.srcDevice = srcDevice;
p.srcPtr = make_cudaPitchedPtr(src, spitch, spitch, height);
p.extent = make_cudaExtent(width, height, 1);
return cudaMemcpy3DPeerAsync(&p, stream);
#else
// HIP does not support cudaMemcpy3DPeerAsync or vmm pools
GGML_UNUSED(dstDevice);
GGML_UNUSED(srcDevice);
return cudaMemcpy2DAsync(dst, dpitch, src, spitch, width, height, cudaMemcpyDeviceToDevice, stream);
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
}
static void ggml_cuda_op_mul_mat(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
quantize_cuda_t quantize_src1) {
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3];
const int64_t nrows1 = ggml_nrows(src1);
GGML_ASSERT(ne03 == ne13);
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
const int64_t nb2 = dst->nb[2];
const int64_t nb3 = dst->nb[3];
GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer));
GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer));
ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context;
ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *) dst->buffer->context;
GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
const int64_t i02_divisor = ne12 / ne02;
const size_t src0_rs = ggml_row_size(src0->type, ne00);
const size_t q8_1_ts = sizeof(block_q8_1);
const size_t q8_1_bs = QK8_1;
const bool src0_is_contiguous = ggml_is_contiguous(src0);
const bool src1_is_contiguous = ggml_is_contiguous(src1);
const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
GGML_ASSERT(!(split && ne02 > 1));
GGML_ASSERT(!(split && ne03 > 1));
GGML_ASSERT(!(split && ne02 < ne12));
ggml_tensor_extra_gpu * src0_extra = split ? (ggml_tensor_extra_gpu *) src0->extra : nullptr;
std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
if (split) {
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
tensor_split = buft_ctx->tensor_split;
}
struct dev_data {
int cc;
ggml_cuda_pool_alloc<char> src0_dd_alloc;
ggml_cuda_pool_alloc<float> src1_ddf_alloc;
ggml_cuda_pool_alloc<char> src1_ddq_alloc;
ggml_cuda_pool_alloc<float> dst_dd_alloc;
char * src0_dd = nullptr;
float * src1_ddf = nullptr; // float
char * src1_ddq = nullptr; // q8_1
float * dst_dd = nullptr;
int64_t row_low;
int64_t row_high;
};
dev_data dev[GGML_CUDA_MAX_DEVICES];
int used_devices = 0;
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
dev[id].cc = ggml_cuda_info().devices[id].cc;
// by default, use all rows
dev[id].row_low = 0;
dev[id].row_high = ne01;
// for multi GPU, get the row boundaries from tensor split
// and round to mul_mat_q tile sizes
if (split) {
const int64_t rounding = get_row_rounding(tensor_split);
if (id != 0) {
dev[id].row_low = ne01*tensor_split[id];
if (dev[id].row_low < ne01) {
dev[id].row_low -= dev[id].row_low % rounding;
}
}
if (id != ggml_backend_cuda_get_device_count() - 1) {
dev[id].row_high = ne01*tensor_split[id + 1];
if (dev[id].row_high < ne01) {
dev[id].row_high -= dev[id].row_high % rounding;
}
}
}
}
bool quantization_done = false;
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
continue;
}
used_devices++;
const bool src1_on_device = id == src1_ctx->device;
const bool dst_on_device = id == dst_ctx->device;
ggml_cuda_set_device(id);
cudaStream_t stream = ctx.stream(id, 0);
if (src0_is_contiguous) {
dev[id].src0_dd = split ? (char *) src0_extra->data_device[id] : (char *) src0->data;
} else {
// If src0 is not contiguous it will be copied to a temporary buffer, it may then be necessary to clear padding.
const size_t nbytes_data = ggml_nbytes(src0);
const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), nbytes_data + nbytes_padding);
CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd, 0, nbytes_data + nbytes_padding, stream));
}
// If src0 is on a temporary compute buffer (partial offloading) there may be some padding that needs to be cleared:
if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_is_quantized(src0->type) && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) {
const int64_t nbytes_data = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00);
const int64_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data , 0, nbytes_padding, stream));
}
if (src1_on_device && src1_is_contiguous) {
dev[id].src1_ddf = (float *) src1->data;
} else {
dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ctx.pool(id), ggml_nelements(src1));
}
if (quantize_src1) {
size_t src_1_ddq_size = nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs;
if (quantize_src1 == quantize_mmq_q8_1_cuda) {
src_1_ddq_size += get_mmq_x_max_host(dev[id].cc)*sizeof(block_q8_1_mmq);
}
dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(ctx.pool(id), src_1_ddq_size);
if (src1_on_device && (src1_is_contiguous || (src1->ne[1] == 1 && src1->ne[3] == 1 && src1->nb[0] == sizeof(float)))) {
if (src1_is_contiguous) {
quantize_src1(dev[id].src1_ddf, dev[id].src1_ddq, ne10, ne11, ne12*ne13, src1_padded_col_size, src0->type, stream);
} else {
//printf("Calling quantize_tensor_q8_1_cuda for %s\n", src0->name);
quantize_tensor_q8_1_cuda(src1, dev[id].src1_ddq, src0->type, stream);
}
CUDA_CHECK(cudaGetLastError());
quantization_done = true;
}
}
if (dst_on_device) {
dev[id].dst_dd = (float *) dst->data;
} else {
const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst);
dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(ctx.pool(id), size_dst_ddf);
}
}
// if multiple devices are used they need to wait for the main device
// here an event is recorded that signals that the main device has finished calculating the input data
if (split && used_devices > 1) {
ggml_cuda_set_device(ctx.device);
CUDA_CHECK(cudaEventRecord(src0_extra->events[ctx.device][0], ctx.stream()));
}
const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
if (!(split && used_devices > 1) && quantization_done && ne11 == 1 && ne12 > 1 && ne13 == 1 && ne02 == ne12 && ne02 == dst->ne[2]) {
//printf("invoking fast path for %s x %s\n", src0->name, src1->name);
int id = ctx.device;
char * src0_dd_i = dev[id].src0_dd;
float * src1_ddf_i = dev[id].src1_ddf;
char * src1_ddq_i = dev[id].src1_ddq;
float * dst_dd_i = dev[id].dst_dd;
cudaStream_t stream = ctx.stream(id, 0);
ggml_cuda_op_mul_mat_vec_q_3D(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
dev[id].row_low, dev[id].row_high, ne11, src1_padded_col_size, stream);
CUDA_CHECK(cudaGetLastError());
return;
}
for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_CUDA_MAX_STREAMS : 0;
const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
continue;
}
const bool src1_on_device = id == src1_ctx->device;
const bool dst_on_device = id == dst_ctx->device;
const int64_t row_diff = dev[id].row_high - dev[id].row_low;
ggml_cuda_set_device(id);
cudaStream_t stream = ctx.stream(id, is);
// wait for main GPU data if necessary
if (split && (id != ctx.device || is != 0)) {
CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[ctx.device][0], 0));
}
for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
const int64_t i03 = i0 / ne12;
const int64_t i02 = i0 % ne12;
size_t src1_ddq_i_offset = i0*ne11 * src1_padded_col_size*q8_1_ts/q8_1_bs;
if (quantize_src1 == quantize_mmq_q8_1_cuda) {
src1_ddq_i_offset += src1_col_0 * sizeof(block_q8_1_mmq);
} else {
src1_ddq_i_offset += src1_col_0 * src1_padded_col_size*q8_1_ts/q8_1_bs;
}
// for split tensors the data begins at i0 == i0_offset_low
char * src0_dd_i = dev[id].src0_dd + (i0/i02_divisor) * ne01*src0_rs;
float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
char * src1_ddq_i = dev[id].src1_ddq + src1_ddq_i_offset;
float * dst_dd_i = dev[id].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff);
// the main device memory buffer can be on VRAM scratch, with space for all partial results
// in that case an offset on dst_ddf_i is needed
if (id == ctx.device) {
dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
}
// copy src0, src1 to device if necessary
if (src1_is_contiguous) {
if (id != ctx.device) {
if (quantize_src1) {
char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
if (quantize_src1 == quantize_mmq_q8_1_cuda) {
const size_t pitch = ne11*sizeof(block_q8_1_mmq);
const size_t width = src1_ncols*sizeof(block_q8_1_mmq);
const size_t height = src1_padded_col_size/(4*QK8_1);
CUDA_CHECK(ggml_cuda_Memcpy2DPeerAsync(src1_ddq_i, id, pitch, src1_ddq_i_source, ctx.device, pitch, width, height, stream));
} else {
CUDA_CHECK(cudaMemcpyPeerAsync(
src1_ddq_i, id, src1_ddq_i_source, ctx.device, src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream));
}
} else {
float * src1_ddf_i_source = (float *) src1->data;
src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, ctx.device,
src1_ncols*ne10*sizeof(float), stream));
}
}
} else if (src1_on_device && !src1_is_contiguous) {
if (!quantization_done) {
//printf("Copying %s\n", src1->name);
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
}
} else {
GGML_ABORT("fatal error");
}
if (quantize_src1 && !src1_is_contiguous && !quantization_done) {
//printf("Quantizing %s\n", src1->name);
quantize_src1(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, 1, src1_padded_col_size, src0->type, stream);
CUDA_CHECK(cudaGetLastError());
}
if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
}
// do the computation
op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream);
CUDA_CHECK(cudaGetLastError());
// copy dst to host or other device if necessary
if (!dst_on_device) {
void * dst_off_device = dst->data;
if (split) {
// src0 = weight matrix is saved as a transposed matrix for better memory layout.
// dst is NOT transposed.
// The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
// Instead they need to be copied to the correct slice in ne0 = dst row index.
// If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
dhf_dst_i += src1_col_0*ne0 + dev[id].row_low;
CUDA_CHECK(ggml_cuda_Memcpy2DPeerAsync(
dhf_dst_i, ctx.device, ne0*sizeof(float), dst_dd_i, id, row_diff*sizeof(float), row_diff*sizeof(float), src1_ncols, stream));
} else {
float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
dhf_dst_i += src1_col_0*ne0;
CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream));
}
}
// add event for the main device to wait on until other device is done
if (split && (id != ctx.device || is != 0)) {
CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream));
}
}
}
}
// main device waits for all other devices to be finished
if (split && ggml_backend_cuda_get_device_count() > 1) {
int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
is_max = is_max <= GGML_CUDA_MAX_STREAMS ? is_max : GGML_CUDA_MAX_STREAMS;
ggml_cuda_set_device(ctx.device);
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
if (dev[id].row_low == dev[id].row_high) {
continue;
}
for (int64_t is = 0; is < is_max; ++is) {
CUDA_CHECK(cudaStreamWaitEvent(ctx.stream(), src0_extra->events[id][is], 0));
}
}
}
}
static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne12 = src1->ne[2];
cudaStream_t main_stream = ctx.stream();
void * src0_ddq = src0->data;
float * src1_ddf = (float *) src1->data;
float * dst_ddf = (float *) dst->data;
ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
}
/*
static void ggml_cuda_op_gemv_id(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src0_ids, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
quantize_cuda_t quantize_src1) {
GGML_ASSERT(src0->ne[3] == 1);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_nrows(src1) == 1);
GGML_ASSERT(src0_ids->ne[1] == 1);
GGML_ASSERT(src0_ids->ne[0] <= dst->ne[2]);
GGML_ASSERT(dst->ne[1] == 1);
GGML_ASSERT(src0->ne[0] == src1->ne[0]);
GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer));
GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer));
ggml_backend_cuda_buffer_context * src0_ctx = (ggml_backend_cuda_buffer_context *) src0->buffer->context;
ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context;
ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *) dst->buffer->context;
int device_id = ctx.device;
GGML_ASSERT(src0_ctx->device == device_id);
GGML_ASSERT(src1_ctx->device == device_id);
GGML_ASSERT(dst_ctx->device == device_id);
const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
GGML_ASSERT(!split);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne10 = src1->ne[0];
const int64_t nrows1 = 1;
const int64_t ne0 = dst->ne[0];
const int64_t ne2 = dst->ne[2];
const int64_t nb2 = dst->nb[2];
// Why?
GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
const size_t src0_rs = ggml_row_size(src0->type, ne00);
const size_t q8_1_ts = sizeof(block_q8_1);
const size_t q8_1_bs = QK8_1;
const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
ggml_cuda_pool_alloc<char> src0_dd_alloc;
ggml_cuda_pool_alloc<float> src1_ddf_alloc;
ggml_cuda_pool_alloc<char> src1_ddq_alloc;
ggml_cuda_pool_alloc<float> dst_dd_alloc;
char * src0_dd = nullptr;
float * src1_ddf = (float *)src1->data;
char * src1_ddq = nullptr; // q8_1
float * dst_dd = (float *)dst->data;
bool quantization_done = false;
const bool src1_on_device = device_id == src1_ctx->device;
const bool dst_on_device = device_id == dst_ctx->device;
ggml_cuda_set_device(device_id);
cudaStream_t stream = ctx.stream(device_id, 0);
src0_dd = (char *) src0->data;
if (quantize_src1) {
size_t src_1_ddq_size = nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs;
src1_ddq = src1_ddq_alloc.alloc(ctx.pool(device_id), src_1_ddq_size);
quantize_src1(src1_ddf, src1_ddq, ne10, 1, 1, src1_padded_col_size, src0->type, stream);
}
ggml_cuda_op_mul_mat_vec_q_id(ctx, src0, src1, src0_ids, dst,
(const char *)src0->data, (const float *)src1->data, src1_ddq, (float *)dst->data,
0, ne01, 1, src1_padded_col_size, stream);
CUDA_CHECK(cudaGetLastError());
}
*/
static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(!ggml_is_transposed(src0));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(!ggml_is_permuted(src0));
GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t nb01 = src0->nb[1];
const int64_t nb02 = src0->nb[2];
const int64_t ne12 = src1->ne[2];
cudaStream_t main_stream = ctx.stream();
void * src0_ddq = src0->data;
float * src1_ddf = (float *) src1->data;
float * dst_ddf = (float *) dst->data;
const int64_t row_stride_x = nb01 / sizeof(half);
const int64_t channel_stride_x = nb02 / sizeof(half);
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
}
static __global__ void k_compute_batched_ptrs(
const half * src0_as_f16, const half * src1_as_f16, char * dst,
const void ** ptrs_src, void ** ptrs_dst,
int64_t ne12, int64_t ne13,
int64_t ne23,
size_t nb02, size_t nb03,
size_t nb12, size_t nb13,
size_t nbd2, size_t nbd3,
int64_t r2, int64_t r3) {
int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
if (i13 >= ne13 || i12 >= ne12) {
return;
}
int64_t i03 = i13 / r3;
int64_t i02 = i12 / r2;
ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
}
static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(!ggml_is_transposed(src0));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_TENSOR_BINARY_OP_LOCALS
const int64_t ne_dst = ggml_nelements(dst);
cudaStream_t main_stream = ctx.stream();
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream));
void * src0_ddq = src0->data;
half * src0_f16 = (half *) src0_ddq;
float * src1_ddf = (float *) src1->data;
float * dst_ddf = (float *) dst->data;
// convert src1 to fp16
ggml_cuda_pool_alloc<half> src1_f16_alloc(ctx.pool());
if (src1->type != GGML_TYPE_F16) {
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
const int64_t ne_src1 = ggml_nelements(src1);
src1_f16_alloc.alloc(ne_src1);
GGML_ASSERT(to_fp16_cuda != nullptr);
to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ggml_nrows(src1), src1->ne[0], main_stream);
}
half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get();
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool());
char * dst_t;
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
cudaDataType_t cu_data_type = CUDA_R_16F;
// dst strides
size_t nbd2 = dst->nb[2];
size_t nbd3 = dst->nb[3];
const half alpha_f16 = 1.0f;
const half beta_f16 = 0.0f;
const float alpha_f32 = 1.0f;
const float beta_f32 = 0.0f;
const void * alpha = &alpha_f16;
const void * beta = &beta_f16;
if (dst->op_params[0] == GGML_PREC_DEFAULT) {
dst_t = (char *) dst_f16.alloc(ne_dst);
nbd2 /= sizeof(float) / sizeof(half);
nbd3 /= sizeof(float) / sizeof(half);
} else {
dst_t = (char *) dst_ddf;
cu_compute_type = CUBLAS_COMPUTE_32F;
cu_data_type = CUDA_R_32F;
alpha = &alpha_f32;
beta = &beta_f32;
}
GGML_ASSERT(ne12 % ne02 == 0);
GGML_ASSERT(ne13 % ne03 == 0);
// broadcast factors
const int64_t r2 = ne12/ne02;
const int64_t r3 = ne13/ne03;
#if 0
// use cublasGemmEx
{
for (int i13 = 0; i13 < ne13; ++i13) {
for (int i12 = 0; i12 < ne12; ++i12) {
int i03 = i13 / r3;
int i02 = i12 / r2;
CUBLAS_CHECK(
cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half),
(const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float),
beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01,
cu_compute_type,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
}
}
}
#else
#ifdef GGML_USE_MUSA
GGML_ASSERT(false);
#else // !GGML_USE_MUSA
if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
// use cublasGemmStridedBatchedEx
CUBLAS_CHECK(
cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
alpha, (const char *) src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA
(const char *) src1_f16, CUDA_R_16F, nb11/nb10, nb12/nb10, // strideB
beta, ( char *) dst_t, cu_data_type, ne01, nb2/nb0, // strideC
ne12*ne13,
cu_compute_type,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
} else {
// use cublasGemmBatchedEx
const int ne23 = ne12*ne13;
ggml_cuda_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
ggml_cuda_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23);
dim3 block_dims(ne13, ne12);
k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
src0_f16, src1_f16, dst_t,
ptrs_src.get(), ptrs_dst.get(),
ne12, ne13,
ne23,
nb02, nb03,
src1->type == GGML_TYPE_F16 ? nb12 : nb12/2,
src1->type == GGML_TYPE_F16 ? nb13 : nb13/2,
nbd2, nbd3,
r2, r3);
CUDA_CHECK(cudaGetLastError());
CUBLAS_CHECK(
cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00,
(const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/nb10,
beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01,
ne23,
cu_compute_type,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
}
#endif // GGML_USE_MUSA
#endif
if (dst->op_params[0] == GGML_PREC_DEFAULT) {
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16.get(), dst_ddf, ggml_nrows(dst), dst->ne[0], main_stream);
}
}
static int ggml_cuda_mul_mat_q(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const ggml_cgraph * cgraph, int node_n, bool is_gemv) {
auto stream = ctx.stream();
auto ne10_padded = GGML_PAD(src1->ne[0], MATRIX_ROW_PADDING);
auto nb10_padded = ne10_padded*sizeof(block_q8_1)/QK8_1;
auto quantized_size = nb10_padded*ggml_nrows(src1);
if (!is_gemv) {
quantized_size += get_mmq_x_max_host(ggml_cuda_info().devices[ctx.device].cc)*sizeof(block_q8_1_mmq);
}
ggml_cuda_pool_alloc<char> src1_quantized(ctx.pool(), quantized_size);
if (is_gemv) {
quantize_row_q8_1_cuda((const float *)src1->data, (void *)src1_quantized.get(), src1->ne[0], src1->ne[1], src1->ne[2], ne10_padded,
src0->type, stream);
CUDA_CHECK(cudaGetLastError());
ggml_cuda_op_mul_mat_vec_q(ctx, src0, src1, dst, (const char *)src0->data, nullptr, src1_quantized.get(), (float *)dst->data,
0, src0->ne[1], src1->ne[1], ne10_padded, stream);
CUDA_CHECK(cudaGetLastError());
} else {
quantize_mmq_q8_1_cuda((const float *)src1->data, src1_quantized.get(), src1->ne[0], src1->ne[1], 1, ne10_padded, src0->type, stream);
CUDA_CHECK(cudaGetLastError());
ggml_cuda_op_mul_mat_q(ctx, src0, src1, dst, (const char *)src0->data, nullptr, src1_quantized.get(), (float *)dst->data,
0, src0->ne[1], src1->ne[1], ne10_padded, stream);
CUDA_CHECK(cudaGetLastError());
}
if (!cgraph) return node_n;
while (node_n + 1 < cgraph->n_nodes) {
dst = cgraph->nodes[node_n+1];
if (ggml_is_empty(dst) || dst->op == GGML_OP_RESHAPE || dst->op == GGML_OP_TRANSPOSE || dst->op == GGML_OP_VIEW
|| dst->op == GGML_OP_PERMUTE || dst->op == GGML_OP_NONE) {
++node_n; continue;
}
if (dst->op != GGML_OP_MUL_MAT || dst->src[1] != src1 || !ggml_is_quantized(dst->src[0]->type)) break;
if (!is_gemv && mmq_get_q8_1_ds_layout(src0->type) != mmq_get_q8_1_ds_layout(dst->src[0]->type)) break;
if (is_gemv) {
ggml_cuda_op_mul_mat_vec_q(ctx, dst->src[0], src1, dst, (const char *)dst->src[0]->data, nullptr, src1_quantized.get(),
(float *)dst->data, 0, dst->src[0]->ne[1], src1->ne[1], ne10_padded, stream);
} else {
ggml_cuda_op_mul_mat_q(ctx, dst->src[0], src1, dst, (const char *)dst->src[0]->data, nullptr, src1_quantized.get(),
(float *)dst->data, 0, dst->src[0]->ne[1], src1->ne[1], ne10_padded, stream);
}
CUDA_CHECK(cudaGetLastError());
++node_n;
}
return node_n;
}
static int ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const ggml_cgraph * cgraph, int node_n) {
const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
// If src0 is a temporary compute buffer it may have some padding that needs to be cleared for mul_mat_vec_q or mul_mat_q.
// But if src0 is also a view of another tensor then this cannot be done safely because it may overwrite valid tensor data.
// Therefore, in such cases use cuBLAS.
const bool bad_padding_clear = ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE
&& ggml_nbytes(src0) != ggml_backend_buffer_get_alloc_size(src0->buffer, src0) && src0->view_src;
bool use_dequantize_mul_mat_vec = ggml_cuda_dmmv_type_supported(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src0->ne[0] % (GGML_CUDA_DMMV_X*2) == 0 && src1->ne[1] == 1;
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) && !bad_padding_clear
&& ggml_cuda_mmvq_type_supported(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
bool use_mul_mat_q = ggml_is_quantized(src0->type) && !bad_padding_clear
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
// if mmvq is available it's a better choice than dmmv:
#ifndef GGML_CUDA_FORCE_DMMV
use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
#endif // GGML_CUDA_FORCE_DMMV
bool any_gpus_with_slow_fp16 = false;
if (split) {
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
auto & tensor_split = buft_ctx->tensor_split;
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
// skip devices that are not going to do any work:
if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
continue;
}
const int cc = ggml_cuda_info().devices[id].cc;
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
}
} else {
const int cc = ggml_cuda_info().devices[ctx.device].cc;
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
}
if (!split && (use_mul_mat_vec_q || use_mul_mat_q) && src1->ne[2]*src1->ne[3] == 1) {
return ggml_cuda_mul_mat_q(ctx, src0, src1, dst, cgraph, node_n, use_mul_mat_vec_q);
}
// debug helpers
//printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
//printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
//printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
//printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
if (!split && any_gpus_with_slow_fp16 && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
// FP32 precision KQ single-batch for batch size 1 without FlashAttention
ggml_cuda_mul_mat_vec_p021(ctx, src0, src1, dst);
} else if (!split && any_gpus_with_slow_fp16 && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
// FP32 precision KQV single-batch for batch size 1 without FlashAttention
ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst);
} else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16)
&& !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
// KQ + KQV multi-batch without FlashAttention
ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
} else if (use_dequantize_mul_mat_vec) {
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, nullptr);
} else if (use_mul_mat_vec_q) {
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, quantize_row_q8_1_cuda);
} else if (use_mul_mat_q) {
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_q, quantize_mmq_q8_1_cuda);
} else {
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_cublas, nullptr);
}
return node_n;
}
struct mmid_row_mapping {
int32_t i1;
int32_t i2;
};
template <typename data_t = float>
static __global__ void k_copy_src_to_contiguous(const char * __restrict__ src_original, char * __restrict__ src_contiguous,
const mmid_row_mapping * __restrict__ row_mapping,
int64_t ne10, int64_t ne11, size_t nb11, size_t nb12) {
int32_t i = blockIdx.x;
const int32_t i11 = row_mapping[i].i1 % ne11;
const int32_t i12 = row_mapping[i].i2;
data_t * src_row_contiguous = (data_t *)(src_contiguous + i*nb11);
const data_t * src_row_original = (const data_t *)(src_original + i11*nb11 + i12*nb12);
for (int j = threadIdx.x; j < ne10; j += blockDim.x) {
src_row_contiguous[j] = src_row_original[j];
}
}
static __global__ void k_copy_dst_from_contiguous(char * __restrict__ dst_original, const char * __restrict__ dst_contiguous,
const mmid_row_mapping * __restrict__ row_mapping,
int64_t ne0,
size_t nb1, size_t nb2) {
int32_t i = blockIdx.x;
const int32_t i1 = row_mapping[i].i1;
const int32_t i2 = row_mapping[i].i2;
const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);
for (int j = threadIdx.x; j < ne0; j += blockDim.x) {
dst_row_original[j] = dst_row_contiguous[j];
}
}
//static __global__ void k_quick_add(uint32_t n, uint32_t n_per_row, const float * src1, const float * src2, float * dst) {
//
// for (uint32_t j = threadIdx.x; j < n; j += blockDim.x) {
// dst[j] = src1[j] + src2[j % n_per_row];
// }
//}
static __global__ void k_quick_add(uint32_t n_per_row, const float * src1, const float * src2, float * dst) {
uint32_t row = blockIdx.x;
const float * src1_row = src1 + row*n_per_row;
float * dst_row = dst + row*n_per_row;
for (uint32_t j = threadIdx.x; j < n_per_row; j += blockDim.x) {
dst_row[j] = src1_row[j] + src2[j];
}
}
static inline bool prepare_row_mappigs(ggml_backend_cuda_context& ctx, int64_t n_as, int64_t n_ids,
const ggml_tensor * ids, std::vector<int>& moe_counts, std::vector<int>& cum_moe_counts,
ggml_cuda_pool_alloc<mmid_row_mapping>& dev_row_mapping) {
GGML_ASSERT(moe_counts.empty() && cum_moe_counts.empty());
auto stream = ctx.stream();
std::vector<char> ids_host(ggml_nbytes(ids));
const char * ids_dev = (const char *) ids->data;
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
std::vector<mmid_row_mapping> rmapping(ids->ne[1]*n_ids);
moe_counts.resize(n_as, 0);
cum_moe_counts.resize(n_as + 1);
bool is_ser = false;
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
if (row_id_i >= 0 && row_id_i < n_as) ++moe_counts[row_id_i];
else is_ser = true;
}
}
cum_moe_counts[0] = 0;
for (int i = 0; i < (int)n_as; ++i) {
cum_moe_counts[i+1] = cum_moe_counts[i] + moe_counts[i];
}
dev_row_mapping.alloc(cum_moe_counts[n_as]);
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
if (row_id_i >= 0 && row_id_i < n_as) {
rmapping[cum_moe_counts[row_id_i]++] = {(int)id, (int)iid1};
}
}
}
for (int i = 0; i < (int)n_as; ++i) cum_moe_counts[i] -= moe_counts[i];
CUDA_CHECK(cudaMemcpyAsync(dev_row_mapping.get(), rmapping.data(),
cum_moe_counts[n_as]*sizeof(mmid_row_mapping), cudaMemcpyHostToDevice, stream));
//CUDA_CHECK(cudaStreamSynchronize(stream));
return is_ser;
}
static bool ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst, ggml_tensor * next) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * ids = dst->src[2];
CUDA_CHECK(cudaMemsetAsync((char *)dst->data, 0, ggml_nbytes(dst), ctx.stream()));
if (src1->ne[1] == 1 && src1->ne[2] == 1 && src1->ne[3] == 1 &&
ggml_is_quantized(src0->type) &&
ggml_backend_buffer_is_cuda(src0->buffer) &&
ggml_backend_buffer_is_cuda(src1->buffer) &&
ggml_backend_buffer_is_cuda(dst->buffer) &&
!ggml_backend_buffer_is_cuda_split(src0->buffer) &&
src1->type == GGML_TYPE_F32) {
int device_id = ctx.device;
ggml_backend_cuda_buffer_context * src0_ctx = (ggml_backend_cuda_buffer_context *) src0->buffer->context;
ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context;
ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *) dst->buffer->context;
if (src0_ctx->device == device_id &&
src1_ctx->device == device_id &&
dst_ctx->device == device_id) {
GGML_ASSERT(src1->ne[0] % QK8_1 == 0);
// Fast TG path
const int64_t n_ids = ids->ne[0];
auto stream = ctx.stream(device_id, 0);
auto local_dst = *dst;
local_dst.ne[2] = n_ids;
local_dst.ne[1] = local_dst.ne[3] = 1;
local_dst.nb[2] = local_dst.nb[1];
auto local_src1 = *src1;
local_src1.nb[2] = local_src1.nb[3] = 0;
const int64_t src1_padded_col_size = GGML_PAD(src1->ne[0], MATRIX_ROW_PADDING);
ggml_cuda_pool_alloc<char> src1_quantized(ctx.pool());
auto src_1_ddq_size = src1_padded_col_size*sizeof(block_q8_1)/QK8_1;
local_src1.data = src1_quantized.alloc(src_1_ddq_size);
quantize_row_q8_1_cuda((const float *)src1->data, (void *)src1_quantized.get(), src1->ne[0], 1, 1, src1_padded_col_size,
src0->type, stream);
CUDA_CHECK(cudaGetLastError());
local_src1.nb[1] = src_1_ddq_size;
ggml_cuda_op_mul_mat_vec_q_id(ctx, src0, &local_src1, ids, &local_dst,
(const char *)src0->data, nullptr, src1_quantized.get(), (float *)dst->data,
0, src0->ne[1], 1, src1_padded_col_size, stream);
CUDA_CHECK(cudaGetLastError());
if (next && next->op == GGML_OP_MUL_MAT_ID && next->src[0]->type == src0->type && src1 == next->src[1] &&
ggml_are_same_shape(src0, next->src[0]) &&
ggml_backend_buffer_is_cuda(next->src[0]->buffer) &&
ggml_backend_buffer_is_cuda(next->buffer) &&
!ggml_backend_buffer_is_cuda_split(next->src[0]->buffer)) {
ggml_backend_cuda_buffer_context * next_src0_ctx = (ggml_backend_cuda_buffer_context *) next->src[0]->buffer->context;
ggml_backend_cuda_buffer_context * next_dst_ctx = (ggml_backend_cuda_buffer_context *) next->buffer->context;
if (next_src0_ctx->device == device_id &&
next_dst_ctx->device == device_id) {
local_dst.data = next->data;
ggml_cuda_op_mul_mat_vec_q_id(ctx, next->src[0], &local_src1, ids, &local_dst,
(const char *)next->src[0]->data, nullptr, src1_quantized.get(), (float *)next->data,
0, src0->ne[1], 1, src1_padded_col_size, stream);
CUDA_CHECK(cudaGetLastError());
return true;
}
}
return false;
}
}
if (ggml_is_quantized(src0->type) && ggml_cuda_can_use_mmq_id(src0->type, ggml_cuda_info().devices[ctx.device].cc, src1->ne[2])) {
ggml_cuda_mul_mat_q_id(ctx, src0, src1, ids, dst, nullptr, nullptr);
return false;
}
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0->buffer) && "mul_mat_id does not support split buffers");
cudaStream_t stream = ctx.stream();
const int64_t n_as = ne02;
const int64_t n_ids = ids->ne[0];
ggml_tensor src0_row = *src0;
ggml_tensor src1_row = *src1;
ggml_tensor dst_row = *dst;
char * src0_original = (char *) src0->data;
char * src1_original = (char *) src1->data;
char * dst_original = (char *) dst->data;
src0_row.ne[2] = 1;
src0_row.ne[3] = 1;
src0_row.nb[3] = nb02;
src1_row.ne[1] = 1;
src1_row.ne[2] = 1;
src1_row.ne[3] = 1;
src1_row.nb[2] = nb11;
src1_row.nb[3] = nb11;
dst_row.ne[1] = 1;
dst_row.ne[2] = 1;
dst_row.ne[3] = 1;
dst_row.nb[2] = nb1;
dst_row.nb[3] = nb1;
if (false && ne12 == 1) {
std::vector<char> ids_host(ggml_nbytes(ids));
const char * ids_dev = (const char *) ids->data;
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
if (i02 < 0 || i02 >= n_as) continue;
const int64_t i11 = id % ne11;
const int64_t i12 = iid1;
const int64_t i1 = id;
const int64_t i2 = i12;
src0_row.data = src0_original + i02*nb02;
src1_row.data = src1_original + i11*nb11 + i12*nb12;
dst_row.data = dst_original + i1*nb1 + i2*nb2;
ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row, nullptr, 0);
}
}
} else {
ggml_cuda_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool());
std::vector<int> moe_counts, cum_moe_counts;
bool is_ser = prepare_row_mappigs(ctx, n_as, n_ids, ids, moe_counts, cum_moe_counts, dev_row_mapping);
if (is_ser) {
CUDA_CHECK(cudaMemsetAsync(dst->data, 0, ggml_nbytes(dst), stream));
}
ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
ggml_cuda_pool_alloc<char> dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
src1_row.data = src1_contiguous.get();
dst_row.data = dst_contiguous.get();
for (int64_t i02 = 0; i02 < n_as; i02++) {
int64_t num_src1_rows = moe_counts[i02];
if (num_src1_rows == 0) {
continue;
}
size_t mapping_offset = cum_moe_counts[i02];
{
dim3 block_dims(std::min((unsigned int)ne10, 768u));
dim3 grid_dims(num_src1_rows);
k_copy_src_to_contiguous<<<grid_dims, block_dims, 0, stream>>>(
src1_original, src1_contiguous.get(), dev_row_mapping.get() + mapping_offset, ne10, ne11, nb11, nb12);
CUDA_CHECK(cudaGetLastError());
}
src0_row.data = src0_original + i02*nb02;
GGML_ASSERT(nb11 == sizeof(float)*ne10);
GGML_ASSERT(nb1 == sizeof(float)*ne0);
src1_row.ne[1] = num_src1_rows;
src1_row.nb[1] = nb11;
src1_row.nb[2] = num_src1_rows*nb11;
src1_row.nb[3] = num_src1_rows*nb11;
dst_row.ne[1] = num_src1_rows;
dst_row.nb[1] = nb1;
dst_row.nb[2] = num_src1_rows*nb1;
dst_row.nb[3] = num_src1_rows*nb1;
ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row, nullptr, 0);
{
dim3 block_dims(std::min((unsigned int)ne0, 768u));
dim3 grid_dims(num_src1_rows);
k_copy_dst_from_contiguous<<<grid_dims, block_dims, 0, stream>>>(
dst_original, dst_contiguous.get(),
dev_row_mapping.get() + mapping_offset,
ne0,
nb1, nb2);
CUDA_CHECK(cudaGetLastError());
}
}
}
return false;
}
static bool ggml_cuda_moe_up_gate_unary(ggml_backend_cuda_context & ctx, ggml_tensor * dst, ggml_tensor * next) {
const ggml_tensor * src0_1 = dst->src[0];
const ggml_tensor * src0_2 = dst->src[1];
const ggml_tensor * src0 = src0_1;
const ggml_tensor * src1 = dst->src[2];
const ggml_tensor * ids = dst->src[3];
if (src1->ne[1] == 1 && src1->ne[2] == 1 && src1->ne[3] == 1 &&
ggml_is_quantized(src0_1->type) &&
ggml_is_quantized(src0_2->type) &&
ggml_backend_buffer_is_cuda(src0_1->buffer) &&
ggml_backend_buffer_is_cuda(src0_2->buffer) &&
ggml_backend_buffer_is_cuda(src1->buffer) &&
ggml_backend_buffer_is_cuda(dst->buffer) &&
!ggml_backend_buffer_is_cuda_split(src0_1->buffer) &&
!ggml_backend_buffer_is_cuda_split(src0_2->buffer) &&
src1->type == GGML_TYPE_F32) {
int device_id = ctx.device;
ggml_backend_cuda_buffer_context * src0_1_ctx = (ggml_backend_cuda_buffer_context *) src0_1->buffer->context;
ggml_backend_cuda_buffer_context * src0_2_ctx = (ggml_backend_cuda_buffer_context *) src0_2->buffer->context;
ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context;
ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *) dst->buffer->context;
if (src0_1_ctx->device == device_id &&
src0_2_ctx->device == device_id &&
src1_ctx->device == device_id &&
dst_ctx->device == device_id) {
//printf("%s(%s, %s): %ld x %ld x %ld, %ld x %ld x %ld, %ld x %ld x %ld\n", __func__, src0_1->name, src0_2->name,
// src0->ne[0], src0->ne[1], src0->ne[2], src1->ne[0], src1->ne[1], src1->ne[2], ids->ne[0], ids->ne[1], ids->ne[2]);
// Fast TG path
const int64_t n_ids = ids->ne[0];
auto stream = ctx.stream(device_id, 0);
ggml_cuda_pool_alloc<char> dst_up_contiguous(ctx.pool(), sizeof(float)*dst->ne[0]*n_ids);
ggml_cuda_pool_alloc<char> dst_gate_contiguous(ctx.pool(), sizeof(float)*dst->ne[0]*n_ids);
auto local_dst = *dst;
local_dst.ne[2] = n_ids;
local_dst.ne[1] = local_dst.ne[3] = 1;
local_dst.nb[1] = local_dst.nb[2] = local_dst.nb[3] = local_dst.ne[0]*sizeof(float);
auto local_src1 = *src1;
local_src1.nb[2] = local_src1.nb[3] = 0;
const int64_t src1_padded_col_size = GGML_PAD(src1->ne[0], MATRIX_ROW_PADDING);
ggml_cuda_pool_alloc<char> src1_quantized(ctx.pool());
if (ggml_is_quantized(src0_1->type) || ggml_is_quantized(src0_2->type)) {
GGML_ASSERT(src1->ne[0] % QK8_1 == 0);
auto src_1_ddq_size = src1_padded_col_size*sizeof(block_q8_1)/QK8_1;
local_src1.data = src1_quantized.alloc(src_1_ddq_size);
// Note: no use is currently made of the quantization type passed into quantize_row_q8_1_cuda.
// If that were to change, we would need to adjust the code to handle src0_1->type != src0_2->type
quantize_row_q8_1_cuda((const float *)src1->data, (void *)src1_quantized.get(), src1->ne[0], 1, 1, src1_padded_col_size,
src0_1->type, stream);
CUDA_CHECK(cudaGetLastError());
local_src1.nb[1] = src_1_ddq_size;
}
local_dst.data = dst_up_contiguous.get();
ggml_cuda_op_mul_mat_vec_q_id(ctx, src0_1, &local_src1, ids, &local_dst,
(const char *)src0_1->data, (const float *)src1->data, src1_quantized.get(), (float *)dst_up_contiguous.get(),
0, src0_1->ne[1], 1, src1_padded_col_size, stream);
CUDA_CHECK(cudaGetLastError());
if (dst->src[4]) {
ggml_cuda_add_id((const float *)local_dst.data, (const float *)dst->src[4]->data,
(const int32_t *)ids->data, (float *)local_dst.data,
local_dst.ne[0], local_dst.ne[2], local_dst.ne[1], local_dst.ne[0], local_dst.ne[2],
local_dst.nb[1], local_dst.nb[2], dst->src[4]->nb[1], ids->nb[2], stream);
}
local_dst.data = dst_gate_contiguous.get();
ggml_cuda_op_mul_mat_vec_q_id(ctx, src0_2, &local_src1, ids, &local_dst,
(const char *)src0_2->data, (const float *)src1->data, src1_quantized.get(), (float *)dst_gate_contiguous.get(),
0, src0_2->ne[1], 1, src1_padded_col_size, stream);
CUDA_CHECK(cudaGetLastError());
if (dst->src[5]) {
ggml_cuda_add_id((const float *)local_dst.data, (const float *)dst->src[5]->data,
(const int32_t *)ids->data, (float *)local_dst.data,
local_dst.ne[0], local_dst.ne[2], local_dst.ne[1], local_dst.ne[0], local_dst.ne[2],
local_dst.nb[1], local_dst.nb[2], dst->src[5]->nb[1], ids->nb[2], stream);
}
if (next && next->op == GGML_OP_MUL_MAT_ID && ggml_is_quantized(next->src[0]->type) &&
ggml_backend_buffer_is_cuda(next->src[0]->buffer) &&
!ggml_backend_buffer_is_cuda_split(next->src[0]->buffer) &&
((ggml_backend_cuda_buffer_context *)next->src[0]->buffer->context)->device == device_id &&
ggml_backend_buffer_is_cuda(next->buffer) &&
((ggml_backend_cuda_buffer_context *)next->buffer->context)->device == device_id) {
auto unary_op = (ggml_unary_op)dst->op_params[0];
if (unary_op == GGML_UNARY_OP_SWIGLU_OAI) {
ggml_swiglu_oai_cuda_f32((const float *)dst_gate_contiguous.get(), (const float *)dst_up_contiguous.get(),
(float *)dst_gate_contiguous.get(), dst->ne[0]*n_ids, dst->ne[0], dst->ne[0], dst->ne[0], 1.702f, 7.0f, stream);
} else {
ggml_fused_mul_unary(ctx, unary_op, dst->ne[0]*n_ids,
(const float *)dst_gate_contiguous.get(), (const float *)dst_up_contiguous.get(),
(float *)dst_gate_contiguous.get());
}
CUDA_CHECK(cudaGetLastError());
const int64_t dst_padded_col_size = GGML_PAD(dst->ne[0], MATRIX_ROW_PADDING);
GGML_ASSERT(dst->ne[0] % QK8_1 == 0);
auto dst_row_size = dst_padded_col_size*sizeof(block_q8_1)/QK8_1;
auto dst_ddq_size = n_ids*dst_row_size;
ggml_cuda_pool_alloc<char> dst_quantized(ctx.pool(), dst_ddq_size);
quantize_row_q8_1_cuda((const float *)dst_gate_contiguous.get(), (void *)dst_quantized.get(), dst->ne[0], n_ids, 1,
dst_padded_col_size, next->src[0]->type, stream);
CUDA_CHECK(cudaGetLastError());
local_dst.ne[2] = 1;
auto local_next = *next;
local_next.ne[2] = local_next.ne[1];
local_next.ne[1] = local_next.ne[3] = 1;
local_next.nb[2] = local_next.nb[1];
local_src1 = *next->src[1];
local_src1.ne[1] = local_src1.ne[2] = local_src1.ne[3] = 1;
local_src1.nb[1] = local_src1.nb[2] = local_src1.nb[3] = dst_row_size;
auto local_src0 = *next->src[0];
local_src0.ne[2] = local_src0.ne[3] = 1;
CUDA_CHECK(cudaMemsetAsync(next->data, 0, ggml_nbytes(next), stream));
ggml_cuda_op_mul_mat_vec_q_id(ctx, &local_src0, &local_src1, ids, &local_next,
(const char *)next->src[0]->data, nullptr, dst_quantized.get(), (float *)next->data,
0, next->src[0]->ne[1], 1, dst_padded_col_size, stream);
CUDA_CHECK(cudaGetLastError());
return true;
} else {
CUDA_CHECK(cudaMemsetAsync(dst->data, 0, ggml_nbytes(dst), stream));
auto unary_op = (ggml_unary_op)dst->op_params[0];
if (unary_op == GGML_UNARY_OP_SWIGLU_OAI) {
ggml_swiglu_oai_cuda_f32((const float *)dst_gate_contiguous.get(), (const float *)dst_up_contiguous.get(),
(float *)dst->data, dst->ne[0]*n_ids, dst->ne[0], dst->ne[0], dst->ne[0], 1.702f, 7.0f, stream);
} else {
ggml_fused_mul_unary(ctx, unary_op, ggml_nelements(dst),
(const float *)dst_gate_contiguous.get(), (const float *)dst_up_contiguous.get(), (float *)dst->data);
}
CUDA_CHECK(cudaGetLastError());
return false;
}
}
}
GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0_1->buffer) && "mul_mat_id does not support split buffers");
GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0_2->buffer) && "mul_mat_id does not support split buffers");
GGML_TENSOR_BINARY_OP_LOCALS
cudaStream_t stream = ctx.stream();
const int64_t n_as = ne02;
const int64_t n_ids = ids->ne[0];
ggml_tensor dst_row = *dst;
// The heuristics src1->ne[2] <= 32*src0->ne[2] to use the mul_mat_id implementation instead of the original version
// is derived from
// * DeepSeek-Lite: 64 total, 6 active experts
// * GPT-OSS-20B : 32 total, 4 active experts
// * Qwen3-30B-A3B: 128 total, 8 active experts
// My original hypothesis was that it is dependent on the total/active experts ratio, but from these 3 it
// looks like it really depends just on the total number of experts.
// TODO: verify with more models, or perhaps make the magic constant '32' to be defined via a compile time define.
if (src1->ne[2] <= 32*src0->ne[2] &&
ggml_is_quantized(src0_1->type) && src0_1->type == src0_2->type && src1->ne[1] == 1 && src1->ne[3] == 1 &&
ggml_cuda_can_use_mmq_id(src0_1->type, ggml_cuda_info().devices[ctx.device].cc, src1->ne[2])) {
const int64_t ne_get_rows = ne12 * n_ids;
ggml_cuda_pool_alloc<int32_t> ids_device(ctx.pool(), ne_get_rows + ne_get_rows + n_as + 1);
auto ids_src1 = ids_device.get();
auto ids_dst = ids_src1 + ne_get_rows;
auto expert_bounds = ids_dst + ne_get_rows;
compute_row_ids((const int32_t *)ids->data, ids_src1, ids_dst, expert_bounds,
ne02, ne12, n_ids, ne11, nb11, nb12, ids->nb[1], stream);
const int64_t ne11_flat = ne12*n_ids;
const int64_t ne10_padded = GGML_PAD(ne10, MATRIX_ROW_PADDING);
size_t nbytes_src1_q8_1 = ne11_flat*ne10_padded * sizeof(block_q8_1)/QK8_1 +
get_mmq_x_max_host(ggml_cuda_info().devices[ctx.device].cc)*sizeof(block_q8_1_mmq);
ggml_cuda_pool_alloc<char> src1_quantized(ctx.pool(), nbytes_src1_q8_1);
size_t ts_src1 = ggml_type_size(src1->type);
quantize_mmq_q8_1_cuda_id((const float *)src1->data, ids_src1, src1_quantized.get(),
src0_1->type, ne10, src1->nb[1] / ts_src1, src1->nb[2] / ts_src1, src1->nb[2] / ts_src1,
ne10_padded, ne11_flat, 1, 1, stream);
ggml_cuda_pool_alloc<char> dst_up_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
ggml_cuda_pool_alloc<char> dst_gate_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
dst_row.data = dst_up_contiguous.get();
ggml_cuda_mul_mat_q_id(ctx, src0_1, src1, ids, &dst_row, (char *)ids_device.get(), src1_quantized.get());
if (dst->src[4]) {
ggml_cuda_add_id((const float *)dst_row.data, (const float *)dst->src[4]->data, (const int32_t *)ids->data,
(float *)dst_row.data, dst_row.ne[0], dst_row.ne[1], dst_row.ne[2], dst_row.ne[0], dst_row.ne[1],
dst_row.nb[1], dst_row.nb[2], dst->src[4]->nb[1], ids->nb[1], stream);
CUDA_CHECK(cudaGetLastError());
}
dst_row.data = dst_gate_contiguous.get();
ggml_cuda_mul_mat_q_id(ctx, src0_2, src1, ids, &dst_row, (char *)ids_device.get(), src1_quantized.get());
if (dst->src[5]) {
ggml_cuda_add_id((const float *)dst_row.data, (const float *)dst->src[5]->data, (const int32_t *)ids->data,
(float *)dst_row.data, dst_row.ne[0], dst_row.ne[1], dst_row.ne[2], dst_row.ne[0], dst_row.ne[1],
dst_row.nb[1], dst_row.nb[2], dst->src[4]->nb[1], ids->nb[1], stream);
CUDA_CHECK(cudaGetLastError());
}
auto unary_op = (ggml_unary_op)dst->op_params[0];
if (unary_op == GGML_UNARY_OP_SWIGLU_OAI) {
ggml_swiglu_oai_cuda_f32((const float *)dst_gate_contiguous.get(), (const float *)dst_up_contiguous.get(),
(float *)dst->data, ggml_nelements(dst), dst_row.ne[0], dst_row.ne[0], dst_row.ne[0],
1.702f, 7.0f, stream);
} else {
ggml_fused_mul_unary(ctx, (ggml_unary_op)dst->op_params[0], ggml_nelements(&dst_row),
(const float *)dst_gate_contiguous.get(), (const float *)dst_up_contiguous.get(),
(float *)dst->data);
}
CUDA_CHECK(cudaGetLastError());
if (next && next->op == GGML_OP_MUL_MAT_ID && ggml_is_quantized(next->src[0]->type) &&
ggml_cuda_should_use_mmq(next->src[0]->type, ggml_cuda_info().devices[ctx.device].cc, src1->ne[2])) {
//ggml_cuda_mul_mat_q_id(ctx, next->src[0], dst, ids, next, (char *)ids_device.get(), nullptr);
ggml_cuda_mul_mat_q_id(ctx, next->src[0], dst, ids, next, nullptr, nullptr);
return true;
}
return false;
}
std::vector<char> ids_host(ggml_nbytes(ids));
const char * ids_dev = (const char *) ids->data;
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
ggml_tensor src0_1_row = *src0_1;
ggml_tensor src0_2_row = *src0_2;
ggml_tensor src1_row = *src1;
ggml_tensor final_dst;
ggml_tensor final_src;
char * src0_1_original = (char *) src0_1->data;
char * src0_2_original = (char *) src0_2->data;
char * src1_original = (char *) src1->data;
char * dst_original = (char *) dst->data;
src0_1_row.ne[2] = 1;
src0_1_row.ne[3] = 1;
src0_1_row.nb[3] = nb02;
src0_2_row.ne[2] = 1;
src0_2_row.ne[3] = 1;
src0_2_row.nb[3] = nb02;
src1_row.ne[1] = 1;
src1_row.ne[2] = 1;
src1_row.ne[3] = 1;
src1_row.nb[2] = nb11;
src1_row.nb[3] = nb11;
dst_row.ne[1] = 1;
dst_row.ne[2] = 1;
dst_row.ne[3] = 1;
dst_row.nb[2] = nb1;
dst_row.nb[3] = nb1;
bool fuse_down = false;
if (next && next->op == GGML_OP_MUL_MAT_ID) {
//printf("Fusing MoE down gemm\n");
fuse_down = true;
final_dst = *next;
final_dst.ne[1] = final_dst.ne[2] = final_dst.ne[3] = 1;
final_dst.nb[2] = final_dst.nb[3] = final_dst.nb[1];
final_src = *next->src[0];
//printf("next->src[0]: %s, %d x %d x %d x %d and %d x %d x %d x %d\n", ggml_type_name(next->src[0]->type),
// (int)next->src[0]->ne[0], (int)next->src[0]->ne[1], (int)next->src[0]->ne[2], (int)next->src[0]->ne[3],
// (int)next->src[0]->nb[0], (int)next->src[0]->nb[1], (int)next->src[0]->nb[2], (int)next->src[0]->nb[3]);
final_src.ne[2] = final_src.ne[3] = 1;
final_src.nb[3] = final_src.nb[2];
}
ggml_cuda_pool_alloc<char> src1_quantized(ctx.pool());
bool use_quantized_src1 = false;
int64_t src1_padded_num_cols = 0, src1_padded_row_size = 0, src1_quantized_size = 0;
if (ggml_is_quantized(src0_1->type) && src0_1->type == src0_2->type && src1->ne[1] == 1 && src1->ne[3] == 1) {
if (ggml_cuda_should_use_mmq(src0_1->type, ggml_cuda_info().devices[ctx.device].cc, src1->ne[2])) {
src1_padded_num_cols = GGML_PAD(src1->ne[0], MATRIX_ROW_PADDING);
src1_padded_row_size = src1_padded_num_cols/ggml_blck_size(GGML_TYPE_Q8_1)*ggml_type_size(GGML_TYPE_Q8_1);
src1_quantized_size = src1_padded_row_size*src1->ne[2] + get_mmq_x_max_host(ggml_cuda_info().devices[ctx.device].cc)*sizeof(block_q8_1_mmq);
src1_quantized.alloc(src1_quantized_size);
use_quantized_src1 = true;
}
}
ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool());
if (!use_quantized_src1) {
src1_contiguous.alloc(sizeof(float)*ggml_nelements(src1));
}
ggml_cuda_pool_alloc<char> dst_up_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
ggml_cuda_pool_alloc<char> dst_gate_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
ggml_cuda_pool_alloc<char> final_dst_contiguous(ctx.pool());
if (fuse_down) {
final_dst.data = final_dst_contiguous.alloc(ggml_nelements(next));
final_dst.src[1] = &dst_row;
}
src1_row.data = src1_contiguous.get();
bool first = false; //true;
ggml_cuda_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool());
std::vector<int> moe_counts, cum_moe_counts;
bool is_ser = prepare_row_mappigs(ctx, n_as, n_ids, ids, moe_counts, cum_moe_counts, dev_row_mapping);
if (is_ser) {
if (fuse_down) {
CUDA_CHECK(cudaMemsetAsync(next->data, 0, ggml_nbytes(next), stream));
} else {
CUDA_CHECK(cudaMemsetAsync(dst->data, 0, ggml_nbytes(dst), stream));
}
}
for (int64_t i02 = 0; i02 < n_as; i02++) {
int64_t num_src1_rows = moe_counts[i02];
if (num_src1_rows == 0) continue;
size_t mapping_offset = cum_moe_counts[i02];
if (use_quantized_src1) {
quantize_mmq_q8_1_id_cuda((const float *)src1->data, src1_quantized.get(), (const char *)(dev_row_mapping.get() + mapping_offset),
src1->ne[0], num_src1_rows, src1_padded_num_cols, src0_1->type, stream);
CUDA_CHECK(cudaGetLastError());
src1_row.data = src1_quantized.get();
}
else {
dim3 block_dims(std::min((unsigned int)ne10, 768u));
dim3 grid_dims(num_src1_rows);
k_copy_src_to_contiguous<<<grid_dims, block_dims, 0, stream>>>(
src1_original, src1_contiguous.get(), dev_row_mapping.get() + mapping_offset, ne10, ne11, nb11, nb12);
CUDA_CHECK(cudaGetLastError());
src1_row.data = src1_contiguous.get();
}
src0_1_row.data = src0_1_original + i02*nb02;
src0_2_row.data = src0_2_original + i02*nb02;
GGML_ASSERT(nb11 == sizeof(float)*ne10);
GGML_ASSERT(nb1 == sizeof(float)*ne0);
src1_row.ne[1] = num_src1_rows;
src1_row.nb[1] = use_quantized_src1 ? src1_padded_row_size : nb11;
src1_row.nb[2] = num_src1_rows*src1_row.nb[1];
src1_row.nb[3] = num_src1_rows*src1_row.nb[1];
dst_row.ne[1] = num_src1_rows;
dst_row.nb[1] = nb1;
dst_row.nb[2] = num_src1_rows*nb1;
dst_row.nb[3] = num_src1_rows*nb1;
dst_row.data = dst_up_contiguous.get();
if (use_quantized_src1) {
ggml_cuda_op_mul_mat_q(ctx, &src0_1_row, &src1_row, &dst_row, (const char *)src0_1_row.data, nullptr, src1_quantized.get(), (float *)dst_row.data,
0, src0_1_row.ne[1], num_src1_rows, src1_padded_num_cols, stream);
} else {
ggml_cuda_mul_mat(ctx, &src0_1_row, &src1_row, &dst_row, nullptr, 0);
}
CUDA_CHECK(cudaGetLastError());
if (dst->src[4]) {
dim3 block_dims(std::min(uint32_t(dst_row.ne[0]), 768u));
dim3 grid_dims(num_src1_rows);
k_quick_add<<<grid_dims, block_dims, 0, stream>>>(dst_row.ne[0], (const float *)dst_row.data,
(const float *)((const char *)dst->src[4]->data + i02*dst->src[4]->nb[1]), (float *)dst_row.data);
CUDA_CHECK(cudaGetLastError());
}
dst_row.data = dst_gate_contiguous.get();
if (use_quantized_src1) {
ggml_cuda_op_mul_mat_q(ctx, &src0_2_row, &src1_row, &dst_row, (const char *)src0_2_row.data, nullptr, src1_quantized.get(), (float *)dst_row.data,
0, src0_2_row.ne[1], num_src1_rows, src1_padded_num_cols, stream);
} else {
ggml_cuda_mul_mat(ctx, &src0_2_row, &src1_row, &dst_row, nullptr, 0);
}
CUDA_CHECK(cudaGetLastError());
if (dst->src[5]) {
dim3 block_dims(std::min(uint32_t(dst_row.ne[0]), 768u));
dim3 grid_dims(num_src1_rows);
k_quick_add<<<grid_dims, block_dims, 0, stream>>>(dst_row.ne[0], (const float *)dst_row.data,
(const float *)((const char *)dst->src[5]->data + i02*dst->src[5]->nb[1]), (float *)dst_row.data);
CUDA_CHECK(cudaGetLastError());
}
auto unary_op = (ggml_unary_op)dst->op_params[0];
if (unary_op == GGML_UNARY_OP_SWIGLU_OAI) {
ggml_swiglu_oai_cuda_f32((const float *)dst_gate_contiguous.get(), (const float *)dst_up_contiguous.get(),
(float *)dst_gate_contiguous.get(), ggml_nelements(&dst_row), dst_row.ne[0], dst_row.ne[0], dst_row.ne[0],
1.702f, 7.0f, stream);
} else {
ggml_fused_mul_unary(ctx, (ggml_unary_op)dst->op_params[0], ggml_nelements(&dst_row),
(const float *)dst_gate_contiguous.get(), (const float *)dst_up_contiguous.get(),
(float *)dst_gate_contiguous.get());
}
CUDA_CHECK(cudaGetLastError());
if (fuse_down) {
final_dst.ne[1] = num_src1_rows;
final_dst.nb[1] = final_dst.ne[0]*sizeof(float);
final_dst.nb[2] = final_dst.nb[3] = num_src1_rows*final_dst.nb[1];
final_src.data = (char *)next->src[0]->data + i02*next->src[0]->nb[2];
if (first) {
printf("Fusing down for %d rows: (%d x %d x %d x %d) = (%d x %d x %d x %d) * (%d x %d x %d x %d)\n", (int)num_src1_rows,
(int)next->ne[0], (int)next->ne[1], (int)next->ne[2], (int)next->ne[3],
(int)next->src[0]->ne[0], (int)next->src[0]->ne[1], (int)next->src[0]->ne[2], (int)next->src[0]->ne[3],
(int)next->src[1]->ne[0], (int)next->src[1]->ne[1], (int)next->src[1]->ne[2], (int)next->src[1]->ne[3]);
printf(" using (%d x %d x %d x %d) = (%d x %d x %d x %d) * (%d x %d x %d x %d)\n",
(int)final_dst.ne[0], (int)final_dst.ne[1], (int)final_dst.ne[2], (int)final_dst.ne[3],
(int)final_src.ne[0], (int)final_src.ne[1], (int)final_src.ne[2], (int)final_src.ne[3],
(int)dst_row.ne[0], (int)dst_row.ne[1], (int)dst_row.ne[2], (int)dst_row.ne[3]);
first = false;
}
ggml_cuda_mul_mat(ctx, &final_src, &dst_row, &final_dst, nullptr, 0);
CUDA_CHECK(cudaGetLastError());
dim3 block_dims(std::min((unsigned int)next->ne[0], 768u));
dim3 grid_dims(num_src1_rows);
k_copy_dst_from_contiguous<<<grid_dims, block_dims, 0, stream>>>(
(char *)next->data, final_dst_contiguous.get(),
dev_row_mapping.get() + mapping_offset,
next->ne[0],
next->nb[1], next->nb[2]);
CUDA_CHECK(cudaGetLastError());
}
else {
dim3 block_dims(std::min((unsigned int)ne0, 768u));
dim3 grid_dims(num_src1_rows);
k_copy_dst_from_contiguous<<<grid_dims, block_dims, 0, stream>>>(
dst_original, dst_gate_contiguous.get(),
dev_row_mapping.get() + mapping_offset,
ne0,
nb1, nb2);
CUDA_CHECK(cudaGetLastError());
}
}
return fuse_down;
}
static void ggml_cuda_up_gate_unary(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0_1 = dst->src[0];
const ggml_tensor * src0_2 = dst->src[1];
const ggml_tensor * src1 = dst->src[2];
GGML_ASSERT(ggml_is_quantized(src0_1->type));
GGML_ASSERT(src0_1->type == src0_2->type);
GGML_ASSERT(src1->ne[2] == 1);
GGML_ASSERT(src1->ne[3] == 1);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0_1->buffer));
GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0_2->buffer));
auto stream = ctx.stream();
auto ne10_padded = GGML_PAD(src1->ne[0], MATRIX_ROW_PADDING);
auto nb10_padded = ne10_padded*sizeof(block_q8_1)/QK8_1;
auto quantized_size = nb10_padded*src1->ne[1];
if (src1->ne[1] > 8) {
quantized_size += get_mmq_x_max_host(ggml_cuda_info().devices[ctx.device].cc)*sizeof(block_q8_1_mmq);
}
ggml_cuda_pool_alloc<float> dst_up(ctx.pool(), ggml_nelements(dst));
ggml_cuda_pool_alloc<char> src1_quantized(ctx.pool(), quantized_size);
if (src1->ne[1] <= 8) {
quantize_row_q8_1_cuda((const float *)src1->data, (void *)src1_quantized.get(), src1->ne[0], src1->ne[1], 1, ne10_padded,
src0_1->type, stream);
CUDA_CHECK(cudaGetLastError());
ggml_cuda_op_mul_mat_vec_q(ctx, src0_1, src1, dst, (const char *)src0_1->data, nullptr, src1_quantized.get(), dst_up.get(),
0, src0_1->ne[1], src1->ne[1], ne10_padded, stream);
CUDA_CHECK(cudaGetLastError());
ggml_cuda_op_mul_mat_vec_q(ctx, src0_2, src1, dst, (const char *)src0_2->data, nullptr, src1_quantized.get(), (float *)dst->data,
0, src0_2->ne[1], src1->ne[1], ne10_padded, stream);
CUDA_CHECK(cudaGetLastError());
} else {
quantize_mmq_q8_1_cuda((const float *)src1->data, src1_quantized.get(), src1->ne[0], src1->ne[1], 1, ne10_padded, src0_1->type, stream);
CUDA_CHECK(cudaGetLastError());
ggml_cuda_op_mul_mat_q(ctx, src0_1, src1, dst, (const char *)src0_1->data, nullptr, src1_quantized.get(), dst_up.get(),
0, src0_1->ne[1], src1->ne[1], ne10_padded, stream);
CUDA_CHECK(cudaGetLastError());
ggml_cuda_op_mul_mat_q(ctx, src0_2, src1, dst, (const char *)src0_2->data, nullptr, src1_quantized.get(), (float *)dst->data,
0, src0_1->ne[1], src1->ne[1], ne10_padded, stream);
CUDA_CHECK(cudaGetLastError());
}
ggml_fused_mul_unary(ctx, (ggml_unary_op)dst->op_params[0], ggml_nelements(dst),
(const float *)dst->data, dst_up.get(), (float *)dst->data);
CUDA_CHECK(cudaGetLastError());
}
static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst, const ggml_cgraph * cgraph, int & i) {
// why is this here instead of mul_mat?
if (dst->src[0] != nullptr && ggml_backend_buffer_is_cuda_split(dst->src[0]->buffer)) {
ggml_cuda_set_peer_access(dst->src[1]->ne[1], ctx.device);
}
#if IK_PRINT_TIMING
int64_t tim1 = ggml_time_us();
#endif
auto next = i < cgraph->n_nodes - 1 ? cgraph->nodes[i+1] : nullptr;
switch (dst->op) {
case GGML_OP_ARGMAX:
ggml_cuda_argmax(ctx, dst);
break;
case GGML_OP_REPEAT:
ggml_cuda_op_repeat(ctx, dst);
break;
case GGML_OP_GET_ROWS:
ggml_cuda_op_get_rows(ctx, dst);
break;
case GGML_OP_SET_ROWS:
ggml_cuda_op_set_rows(ctx, dst);
break;
case GGML_OP_DUP:
ggml_cuda_dup(ctx, dst);
break;
case GGML_OP_CPY:
ggml_cuda_cpy(ctx, dst->src[0], dst->src[1]);
break;
case GGML_OP_CONT:
ggml_cuda_dup(ctx, dst);
break;
case GGML_OP_ADD:
if (i + 1 < cgraph->n_nodes &&
cgraph->nodes[i+1]->op == GGML_OP_FUSED_RMS_NORM &&
ggml_is_contiguous(dst->src[0]) &&
ggml_is_contiguous(dst->src[1]) &&
ggml_are_same_shape(dst->src[0], dst->src[1])) {
ggml_cuda_op_fused_add_rms_norm(ctx, dst, cgraph->nodes[i+1]);
++i;
} else {
ggml_cuda_op_add(ctx, dst);
}
//ggml_cuda_op_add(ctx, dst);
break;
case GGML_OP_ADD_ID:
ggml_cuda_op_add_id(ctx, dst);
break;
case GGML_OP_MULTI_ADD:
ggml_cuda_op_multi_add(ctx, dst);
break;
case GGML_OP_ACC:
ggml_cuda_op_acc(ctx, dst);
break;
case GGML_OP_MUL:
ggml_cuda_op_mul(ctx, dst);
break;
case GGML_OP_FUSED_MUL_UNARY:
ggml_cuda_op_fused_mul_unary(ctx, dst);
break;
case GGML_OP_DIV:
ggml_cuda_op_div(ctx, dst);
break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(dst)) {
case GGML_UNARY_OP_GELU:
ggml_cuda_op_gelu(ctx, dst);
break;
case GGML_UNARY_OP_SILU:
ggml_cuda_op_silu(ctx, dst);
break;
case GGML_UNARY_OP_SWIGLU:
ggml_cuda_op_swiglu(ctx, dst);
break;
case GGML_UNARY_OP_SWIGLU_OAI:
ggml_cuda_op_swiglu_oai(ctx, dst);
break;
case GGML_UNARY_OP_GELU_QUICK:
ggml_cuda_op_gelu_quick(ctx, dst);
break;
case GGML_UNARY_OP_TANH:
ggml_cuda_op_tanh(ctx, dst);
break;
case GGML_UNARY_OP_RELU:
ggml_cuda_op_relu(ctx, dst);
break;
case GGML_UNARY_OP_SIGMOID:
if (i + 5 < cgraph->n_nodes &&
cgraph->nodes[i+1]->op == GGML_OP_RESHAPE &&
cgraph->nodes[i+2]->op == GGML_OP_ADD &&
cgraph->nodes[i+3]->op == GGML_OP_ARGSORT &&
cgraph->nodes[i+4]->op == GGML_OP_VIEW &&
cgraph->nodes[i+5]->op == GGML_OP_GET_ROWS) {
cuda_glm45moe_experts(ctx, cgraph->nodes[i+5], cgraph->nodes[i+4]);
i += 5;
}
else if (i + 4 < cgraph->n_nodes &&
cgraph->nodes[i+1]->op == GGML_OP_RESHAPE &&
cgraph->nodes[i+2]->op == GGML_OP_ADD &&
cgraph->nodes[i+3]->op == GGML_OP_GROUPED_TOPK &&
cgraph->nodes[i+4]->op == GGML_OP_GET_ROWS) {
cuda_bailingmoev2_experts(ctx, cgraph->nodes[i+4], cgraph->nodes[i+3]);
i += 4;
} else {
ggml_cuda_op_sigmoid(ctx, dst);
}
break;
case GGML_UNARY_OP_HARDSIGMOID:
ggml_cuda_op_hardsigmoid(ctx, dst);
break;
case GGML_UNARY_OP_HARDSWISH:
ggml_cuda_op_hardswish(ctx, dst);
break;
default:
return -1;
}
break;
case GGML_OP_GLU:
switch (ggml_get_glu_op(dst)) {
case GGML_GLU_OP_REGLU:
ggml_cuda_op_reglu(ctx, dst);
break;
case GGML_GLU_OP_GEGLU:
ggml_cuda_op_geglu(ctx, dst);
break;
case GGML_GLU_OP_SWIGLU:
ggml_cuda_op_swiglu(ctx, dst);
break;
case GGML_GLU_OP_SWIGLU_OAI:
ggml_cuda_op_swiglu_oai(ctx, dst);
break;
case GGML_GLU_OP_GEGLU_ERF:
ggml_cuda_op_geglu_erf(ctx, dst);
break;
case GGML_GLU_OP_GEGLU_QUICK:
ggml_cuda_op_geglu_quick(ctx, dst);
break;
default:
return false;
}
break;
case GGML_OP_NORM:
ggml_cuda_op_norm(ctx, dst);
break;
case GGML_OP_GROUP_NORM:
ggml_cuda_op_group_norm(ctx, dst);
break;
case GGML_OP_CONCAT:
ggml_cuda_op_concat(ctx, dst);
break;
case GGML_OP_UPSCALE:
ggml_cuda_op_upscale(ctx, dst);
break;
case GGML_OP_PAD:
ggml_cuda_op_pad(ctx, dst);
break;
case GGML_OP_ARANGE:
ggml_cuda_op_arange(ctx, dst);
break;
case GGML_OP_TIMESTEP_EMBEDDING:
ggml_cuda_op_timestep_embedding(ctx, dst);
break;
case GGML_OP_LEAKY_RELU:
ggml_cuda_op_leaky_relu(ctx, dst);
break;
case GGML_OP_RMS_NORM:
ggml_cuda_op_rms_norm(ctx, dst);
break;
case GGML_OP_FUSED_RMS_NORM:
ggml_cuda_op_fused_rms_norm(ctx, dst);
break;
case GGML_OP_MUL_MAT:
if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) {
GGML_CUDA_LOG_ERROR("%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, dst->name, dst->src[0]->ne[3], dst->src[1]->ne[3]);
return -1;
} else {
i = ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst, cgraph, i);
}
break;
case GGML_OP_MUL_MAT_ID:
if (ggml_cuda_mul_mat_id(ctx, dst, next)) ++i;
break;
case GGML_OP_MOE_FUSED_UP_GATE:
if (ggml_cuda_moe_up_gate_unary(ctx, dst, next)) ++i;
break;
case GGML_OP_FUSED_UP_GATE:
ggml_cuda_up_gate_unary(ctx, dst);
break;
case GGML_OP_SCALE:
ggml_cuda_op_scale(ctx, dst);
break;
case GGML_OP_SOFTCAP:
ggml_cuda_op_softcap(ctx, dst);
break;
case GGML_OP_SQR:
ggml_cuda_op_sqr(ctx, dst);
break;
case GGML_OP_SQRT:
ggml_cuda_op_sqrt(ctx, dst);
break;
case GGML_OP_CLAMP:
ggml_cuda_op_clamp(ctx, dst);
break;
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
break;
case GGML_OP_DIAG_MASK_INF:
ggml_cuda_op_diag_mask_inf(ctx, dst);
break;
case GGML_OP_SOFT_MAX:
if (i + 4 < cgraph->n_nodes &&
cgraph->nodes[i+1]->op == GGML_OP_RESHAPE &&
cgraph->nodes[i+2]->op == GGML_OP_ARGSORT &&
cgraph->nodes[i+3]->op == GGML_OP_VIEW &&
cgraph->nodes[i+4]->op == GGML_OP_GET_ROWS &&
ggml_cuda_should_use_topk_moe(cgraph->nodes[i], cgraph->nodes[i+4])) {
ggml_cuda_op_topk_moe(ctx, cgraph->nodes[i], cgraph->nodes[i+4], cgraph->nodes[i+3]);
i += 4;
} else {
ggml_cuda_op_soft_max(ctx, dst);
}
break;
case GGML_OP_SOFT_CAP_MAX:
ggml_cuda_op_soft_cap_max(ctx, dst);
break;
case GGML_OP_ROPE:
ggml_cuda_op_rope(ctx, dst);
break;
case GGML_OP_IM2COL:
ggml_cuda_op_im2col(ctx, dst);
break;
case GGML_OP_CONV_2D:
ggml_cuda_op_conv2d(ctx, dst);
break;
case GGML_OP_CONV_2D_DW:
ggml_cuda_op_conv2d_dw(ctx, dst);
break;
case GGML_OP_CONV_TRANSPOSE_1D:
ggml_cuda_op_conv_transpose_1d(ctx,dst);
break;
case GGML_OP_POOL_2D:
ggml_cuda_op_pool2d(ctx, dst);
break;
case GGML_OP_SUM_ROWS:
if (i + 1 < cgraph->n_nodes &&
cgraph->nodes[i+1]->op == GGML_OP_DIV &&
cgraph->nodes[i+1]->src[1] == dst &&
cgraph->nodes[i+1]->src[0] == dst->src[0]) {
ggml_cuda_op_sum_rows_div(ctx, cgraph->nodes[i+1]);
++i;
} else {
ggml_cuda_op_sum_rows(ctx, dst);
}
break;
case GGML_OP_ARGSORT:
if (i + 5 < cgraph->n_nodes &&
cgraph->nodes[i+1]->op == GGML_OP_VIEW &&
cgraph->nodes[i+2]->op == GGML_OP_GET_ROWS &&
cgraph->nodes[i+3]->op == GGML_OP_RESHAPE &&
cgraph->nodes[i+4]->op == GGML_OP_SOFT_MAX &&
cgraph->nodes[i+5]->op == GGML_OP_RESHAPE) {
cuda_openai_experts(ctx, dst, cgraph->nodes[i+4]);
i += 5;
} else {
ggml_cuda_op_argsort(ctx, dst);
}
break;
case GGML_OP_ARGSORT_THRESH:
ggml_cuda_op_argsort_thresh(ctx, dst);
break;
case GGML_OP_GROUPED_TOPK:
ggml_cuda_op_grouped_topk(ctx, dst);
break;
case GGML_OP_FLASH_ATTN_EXT:
ggml_cuda_flash_attn_ext(ctx, dst);
break;
default:
return false;
}
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
GGML_CUDA_LOG_ERROR("%s: %s failed\n", __func__, ggml_op_desc(dst));
CUDA_CHECK(err);
}
#if IK_PRINT_TIMING
int64_t tim2 = ggml_time_us();
printf("%s(%s): %d us\n", ggml_op_name(dst->op), dst->name, (int)(tim2 - tim1));
#endif
return true;
}
////////////////////////////////////////////////////////////////////////////////
// backend
GGML_CALL static const char * ggml_backend_cuda_name(ggml_backend_t backend) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
return cuda_ctx->name.c_str();
}
GGML_CALL static void ggml_backend_cuda_free(ggml_backend_t backend) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
delete cuda_ctx;
delete backend;
}
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
return ggml_backend_cuda_buffer_type(cuda_ctx->device);
}
GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream()));
}
GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream()));
}
GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;
if (!ggml_backend_is_cuda(backend_src) || !ggml_backend_is_cuda(backend_dst)) {
return false;
}
if (!ggml_backend_buffer_is_cuda(src->buffer) || !ggml_backend_buffer_is_cuda(dst->buffer)) {
return false;
}
// device -> device copy
ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context;
ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context;
ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context;
ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context;
if (cuda_ctx_src->device != buf_ctx_src->device || cuda_ctx_dst->device != buf_ctx_dst->device) {
#ifndef NDEBUG
GGML_CUDA_LOG_WARN("%s: backend and buffer devices do not match\n", __func__);
#endif
return false;
}
if (backend_src != backend_dst) {
// copy on src stream
if (cuda_ctx_src->device == cuda_ctx_dst->device) {
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_src->stream()));
} else {
#ifdef GGML_CUDA_NO_PEER_COPY
return false;
#else
CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), cuda_ctx_src->stream()));
#endif
}
// record event on src stream after the copy
if (!cuda_ctx_src->copy_event) {
ggml_cuda_set_device(cuda_ctx_src->device);
CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming));
}
CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, cuda_ctx_src->stream()));
// wait on dst stream for the copy to complete
CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0));
} else {
// src and dst are on the same backend
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_src->stream()));
}
return true;
}
GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream()));
GGML_UNUSED(backend);
}
#ifdef USE_CUDA_GRAPH
static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
bool use_cuda_graph) {
// Loop over nodes in GGML graph to obtain info needed for CUDA graph
cuda_ctx->cuda_graph->cpy_dest_ptrs.clear();
const std::string gemma3n_per_layer_proj_src0_name = "inp_per_layer_selected";
const std::string gemma3n_per_layer_proj_src1_name = "per_layer_proj";
const std::string ffn_moe_gate_bias_prefix = "ffn_moe_gate_biased";
const std::string ffn_moe_up_bias_prefix = "ffn_moe_up_biased";
const std::string ffn_moe_down_bias_prefix = "ffn_moe_down_biased";
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
continue;
}
if (node->src[0] && node->src[0]->buffer && ggml_backend_buft_is_cuda_split(node->src[0]->buffer->buft)) {
use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
#ifndef NDEBUG
GGML_CUDA_LOG_DEBUG("%s: disabling CUDA graphs due to split buffer\n", __func__);
#endif
}
if (node->op == GGML_OP_MUL_MAT_ID && (node->ne[2] != 1 || node->src[2]->ne[0] != 1)) {
use_cuda_graph = false; // This node type is not supported by CUDA graph capture
#ifndef NDEBUG
GGML_CUDA_LOG_DEBUG("%s(%s): disabling CUDA graphs due to unsupported node type %ld %ld\n",
__func__, node->src[0]->name, node->ne[2], node->src[2]->ne[0]);
#endif
}
if (node->op == GGML_OP_MOE_FUSED_UP_GATE) {
auto src0_1 = node->src[0];
auto src0_2 = node->src[1];
auto src1 = node->src[2];
if (src1->ne[1] != 1 || src1->ne[2] != 1 || src1->ne[3] != 1 || src1->type != GGML_TYPE_F32 ||
!ggml_is_quantized(src0_1->type) || !ggml_is_quantized(src0_2->type)) {
use_cuda_graph = false;
} else {
if (i < cgraph->n_nodes-1) {
auto next = cgraph->nodes[i+1];
if (next->op == GGML_OP_MUL_MAT_ID && ggml_is_quantized(next->src[0]->type)) {
++i;
}
}
}
}
if (node->op == GGML_OP_ADD &&
node->src[1] && node->src[1]->ne[1] > 1 &&
(node->src[0] ? node->src[0]->name != gemma3n_per_layer_proj_src0_name : true) &&
(node->src[1] ? node->src[1]->name != gemma3n_per_layer_proj_src1_name : true) &&
strncmp(node->name, ffn_moe_gate_bias_prefix.c_str(), ffn_moe_gate_bias_prefix.size()) != 0 &&
strncmp(node->name, ffn_moe_up_bias_prefix.c_str(), ffn_moe_up_bias_prefix.size()) != 0 &&
strncmp(node->name, ffn_moe_down_bias_prefix.c_str(), ffn_moe_down_bias_prefix.size()) != 0) {
// disable CUDA graphs for batch size > 1 for now while excluding the matrix-matrix addition as part of Gemma3n's `project_per_layer_input` operation
// by means of matching node names. See
// https://github.com/ggml-org/llama.cpp/blob/f9a31eea06a859e34cecb88b4d020c7f03d86cc4/src/llama-model.cpp#L10199-L10241 and
// https://github.com/huggingface/transformers/blob/bda75b4011239d065de84aa3e744b67ebfa7b245/src/transformers/models/gemma3n/modeling_gemma3n.py#L1773,
// Generally, changes in batch size or context size can cause changes to the grid size of some kernels.
use_cuda_graph = false;
#ifndef NDEBUG
GGML_CUDA_LOG_DEBUG("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
#endif
}
if (node->op == GGML_OP_CPY) {
// Store the pointers which are updated for each token, such that these can be sent
// to the device and accessed using indirection from CUDA graph
cuda_ctx->cuda_graph->cpy_dest_ptrs.push_back((char *) node->src[1]->data);
// store a pointer to each copy op CUDA kernel to identify it later
void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
if (!ptr) {
use_cuda_graph = false;
#ifndef NDEBUG
GGML_CUDA_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported copy op\n", __func__);
#endif
}
}
if (!use_cuda_graph) {
break;
}
}
if (use_cuda_graph) {
cuda_ctx->cuda_graph->use_cpy_indirection = true;
// copy pointers to GPU so they can be accessed via indirection within CUDA graph
ggml_cuda_cpy_dest_ptrs_copy(cuda_ctx->cuda_graph.get(), cuda_ctx->cuda_graph->cpy_dest_ptrs.data(), cuda_ctx->cuda_graph->cpy_dest_ptrs.size(), cuda_ctx->stream());
}
return use_cuda_graph;
}
static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
graph_node_properties->node_address = node->data;
graph_node_properties->node_op = node->op;
for (int i = 0; i < GGML_MAX_DIMS; i++) {
graph_node_properties->ne[i] = node->ne[i];
graph_node_properties->nb[i] = node->nb[i];
}
for (int i = 0; i < GGML_MAX_SRC; i++) {
graph_node_properties->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
}
memcpy(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS);
}
static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
if (node->data != graph_node_properties->node_address &&
node->op != GGML_OP_CPY &&
node->op != GGML_OP_VIEW) {
return false;
}
if (node->op != graph_node_properties->node_op) {
return false;
}
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (node->ne[i] != graph_node_properties->ne[i]) {
return false;
}
if (node->nb[i] != graph_node_properties->nb[i]) {
return false;
}
}
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (node->src[i] &&
node->src[i]->data != graph_node_properties->src_address[i] &&
node->op != GGML_OP_CPY &&
node->op != GGML_OP_VIEW
) {
return false;
}
}
if (node->op == GGML_OP_SCALE &&
memcmp(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
return false;
}
return true;
}
static bool is_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph) {
bool cuda_graph_update_required = false;
if (cuda_ctx->cuda_graph->instance == nullptr) {
cuda_graph_update_required = true;
}
// Check if the graph size has changed
if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
cuda_graph_update_required = true;
cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
}
// Loop over nodes in GGML graph to determine if CUDA graph update is required
// and store properties to allow this comparison for the next token
for (int i = 0; i < cgraph->n_nodes; i++) {
bool has_matching_properties = true;
if (!cuda_graph_update_required) {
has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
}
if (!has_matching_properties) {
cuda_graph_update_required = true;
}
set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
}
return cuda_graph_update_required;
}
static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
#if CUDART_VERSION >= 12000
cudaGraphExecUpdateResultInfo result_info;
cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
#else
cudaGraphNode_t errorNode;
cudaGraphExecUpdateResult result_info;
cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &errorNode, &result_info);
#endif // CUDART_VERSION >= 12000
if (stat == cudaErrorGraphExecUpdateFailure) {
#ifndef NDEBUG
GGML_CUDA_LOG_DEBUG("%s: CUDA graph update failed\n", __func__);
#endif
// The pre-existing graph exec cannot be updated due to violated constraints
// so instead clear error and re-instantiate
(void)cudaGetLastError();
CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
cuda_ctx->cuda_graph->instance = nullptr;
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
} else {
GGML_ASSERT(stat == cudaSuccess);
}
}
#endif
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
// flag used to determine whether it is an integrated_gpu
// TODO
const bool integrated = false; //ggml_cuda_info().devices[cuda_ctx->device].integrated;
while (!graph_evaluated_or_captured) {
// Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
// With the use of CUDA graphs, the execution will be performed by the graph launch.
if (!use_cuda_graph || cuda_graph_update_required) {
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
continue;
}
#if 0
static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
if (!disable_fusion) {
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL }, {})) {
ggml_cuda_op_rms_norm_fused(*cuda_ctx, node, cgraph->nodes[i+1]);
i++;
continue;
}
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_SCALE, GGML_OP_UNARY, GGML_OP_SCALE }, { GGML_UNARY_OP_TANH })) {
i += 2;
ggml_cuda_op_softcap(*cuda_ctx, cgraph->nodes[i], node);
continue;
}
}
#endif
#ifndef NDEBUG
assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j] != nullptr) {
assert(node->src[j]->buffer);
//assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) ||
// ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft) || (integrated && ggml_backend_buft_is_cuda_host(node->src[j]->buffer->buft)));
}
}
#else
GGML_UNUSED(integrated);
#endif // NDEBUG
bool ok = ggml_cuda_compute_forward(*cuda_ctx, node, cgraph, i);
if (!ok) {
GGML_CUDA_LOG_ERROR("%s: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
}
GGML_ASSERT(ok);
}
}
#ifdef USE_CUDA_GRAPH
if (use_cuda_graph && cuda_graph_update_required) { // End CUDA graph capture
if (cuda_ctx->cuda_graph->graph != nullptr) {
CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph));
cuda_ctx->cuda_graph->graph = nullptr;
}
CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
graph_evaluated_or_captured = true; // CUDA graph has been captured
std::lock_guard<std::mutex> lock(ggml_cuda_lock);
if (ggml_cuda_lock_counter.fetch_sub(1, std::memory_order_relaxed) == 1) {
ggml_cuda_lock_cv.notify_all();
}
} else {
graph_evaluated_or_captured = true; // ggml graph has been directly evaluated
}
}
if (use_cuda_graph) {
if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph.
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
}
if (cuda_graph_update_required) { // Update graph executable
update_cuda_graph_executable(cuda_ctx);
}
// Launch graph
CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
#else
graph_evaluated_or_captured = true;
#endif // USE_CUDA_GRAPH
}
}
GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_cuda_set_device(cuda_ctx->device);
#ifdef USE_CUDA_GRAPH
static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
// Objects required for CUDA Graph
if (cuda_ctx->cuda_graph == nullptr) {
cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
}
bool use_cuda_graph = true;
bool cuda_graph_update_required = false;
if (cuda_ctx->cuda_graph->graph == nullptr) {
if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) {
cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
#ifndef NDEBUG
GGML_CUDA_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
#endif
}
}
// Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
// or previous graph capture failure.
// Also disable for multi-gpu for now. TO DO investigate
if (disable_cuda_graphs_due_to_env
|| cuda_ctx->cuda_graph->disable_due_to_gpu_arch
|| cuda_ctx->cuda_graph->disable_due_to_too_many_updates
|| cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
use_cuda_graph = false;
}
if (use_cuda_graph) {
cuda_graph_update_required = is_cuda_graph_update_required(cuda_ctx, cgraph);
use_cuda_graph = check_node_graph_compatibility_and_refresh_copy_ops(cuda_ctx, cgraph, use_cuda_graph);
// Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
if (use_cuda_graph && cuda_graph_update_required) {
cuda_ctx->cuda_graph->number_consecutive_updates++;
} else {
cuda_ctx->cuda_graph->number_consecutive_updates = 0;
}
if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
#ifndef NDEBUG
GGML_CUDA_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
#endif
}
}
if (use_cuda_graph && cuda_graph_update_required) {
// Start CUDA graph capture
{
std::lock_guard<std::mutex> lock(ggml_cuda_lock);
ggml_cuda_lock_counter.fetch_add(1, std::memory_order_relaxed);
}
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
}
if (!use_cuda_graph) {
cuda_ctx->cuda_graph->use_cpy_indirection = false;
}
#else
bool use_cuda_graph = false;
bool cuda_graph_update_required = false;
#endif // USE_CUDA_GRAPH
bool graph_evaluated_or_captured = false;
evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required);
return GGML_STATUS_SUCCESS;
}
/*
GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_cuda_set_device(cuda_ctx->device);
#ifdef USE_CUDA_GRAPH
static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
// Objects required for CUDA Graph
if (cuda_ctx->cuda_graph == nullptr) {
cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
}
bool use_cuda_graph = true;
bool cuda_graph_update_required = false;
// vector of pointers to CUDA cpy kernels, which are required to identify
// kernel parameters which need updated in the graph for each token
std::vector<void *> ggml_cuda_cpy_fn_ptrs;
if (cuda_ctx->cuda_graph->graph == nullptr) {
if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) {
cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
#ifndef NDEBUG
GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
#endif
}
}
// Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
// or previous graph capture failure.
// Also disable for multi-gpu for now. TO DO investigate
if (disable_cuda_graphs_due_to_env
|| cuda_ctx->cuda_graph->disable_due_to_gpu_arch
|| cuda_ctx->cuda_graph->disable_due_to_too_many_updates
|| cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
use_cuda_graph = false;
}
if (use_cuda_graph) {
if (cuda_ctx->cuda_graph->instance == nullptr) {
cuda_graph_update_required = true;
}
// Check if the graph size has changed
if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
cuda_graph_update_required = true;
cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
}
// Loop over nodes in GGML graph to determine if CUDA graph update is required
// and store properties to allow this comparison for the next token
for (int i = 0; i < cgraph->n_nodes; i++) {
bool has_matching_properties = true;
if (!cuda_graph_update_required) {
has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
}
if (!has_matching_properties) {
cuda_graph_update_required = true;
}
set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
}
// Loop over nodes in GGML graph to obtain info needed for CUDA graph
cuda_ctx->cuda_graph->updated_kernel_arg.clear();
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
if (node->src[0] && ggml_backend_buffer_is_cuda_split(node->src[0]->buffer)) {
use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
#ifndef NDEBUG
GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to split buffer\n", __func__);
#endif
}
if (node->op == GGML_OP_MUL_MAT_ID || node->op == GGML_OP_MOE_FUSED_UP_GATE) {
use_cuda_graph = false; // This node type is not supported by CUDA graph capture
#ifndef NDEBUG
GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
#endif
}
if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) {
// disable CUDA graphs for batch size > 1 for now.
// Changes in batch size or context size can cause changes to the grid size of some kernels.
use_cuda_graph = false;
#ifndef NDEBUG
GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
#endif
}
if (node->op == GGML_OP_MULTI_ADD && node->ne[1] > 1) {
// disable CUDA graphs for batch size > 1 for now.
// Changes in batch size or context size can cause changes to the grid size of some kernels.
use_cuda_graph = false;
#ifndef NDEBUG
GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
#endif
}
if (node->op == GGML_OP_CPY) {
// store the copy op parameter which changes with each token.
cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
// store a pointer to each copy op CUDA kernel to identify it later
void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
ggml_cuda_cpy_fn_ptrs.push_back(ptr);
}
}
if (!use_cuda_graph) {
break;
}
}
// Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
if (use_cuda_graph && cuda_graph_update_required) {
cuda_ctx->cuda_graph->number_consecutive_updates++;
} else {
cuda_ctx->cuda_graph->number_consecutive_updates = 0;
}
if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
#ifndef NDEBUG
GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
#endif
}
}
if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
}
#else
bool use_cuda_graph = false;
bool cuda_graph_update_required = false;
#endif // USE_CUDA_GRAPH
bool graph_evaluated_or_captured = false;
while (!graph_evaluated_or_captured) {
// Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
// With the use of CUDA graphs, the execution will be performed by the graph launch.
if (!use_cuda_graph || cuda_graph_update_required) {
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
ggml_tensor * next = i < cgraph->n_nodes-1 ? cgraph->nodes[i+1] : nullptr;
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
continue;
}
#ifndef NDEBUG
assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j] != nullptr) {
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
}
}
#endif
bool skip_next = false;
bool ok = ggml_cuda_compute_forward(*cuda_ctx, node, next, skip_next);
if (!ok) {
GGML_CUDA_LOG_ERROR("%s: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
}
GGML_ASSERT(ok);
if (skip_next) ++i;
}
}
#ifdef USE_CUDA_GRAPH
if (use_cuda_graph && cuda_graph_update_required) { // End CUDA graph capture
if (cuda_ctx->cuda_graph->graph != nullptr) {
CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph));
cuda_ctx->cuda_graph->graph = nullptr;
}
CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
#if 0
if (disable_cuda_graphs_due_to_failed_capture) {
use_cuda_graph = false;
cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture = true;
#ifndef NDEBUG
GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to failed graph capture\n", __func__);
#endif
} else {
graph_evaluated_or_captured = true; // CUDA graph has been captured
}
#endif
graph_evaluated_or_captured = true; // CUDA graph has been captured
} else {
graph_evaluated_or_captured = true; // ggml graph has been directly evaluated
}
}
if (use_cuda_graph) {
if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph.
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
}
// Perform update to graph (if required for this token), and change copy parameter (required for every token)
if (cuda_graph_update_required) {
// Extract nodes from graph
// First call with null argument gets number of nodes in graph
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
// Subsequent call with non-null argument gets nodes
cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
if (cuda_ctx->cuda_graph->num_nodes > 0) {
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
// Loop over nodes, and extract kernel parameters from each node
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
cudaGraphNodeType node_type;
CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
if (node_type == cudaGraphNodeTypeKernel) {
cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
if (stat == cudaErrorInvalidDeviceFunction) {
// Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
// We don't need to update blas nodes, so clear error and move on.
cudaGetLastError();
} else {
GGML_ASSERT(stat == cudaSuccess);
}
}
}
}
}
// One of the arguments to the copy kernel is updated for each token, hence we need to
// replace that argument with the updated value in the CUDA graph
if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured
int k = 0;
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) {
char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
}
}
}
// Update graph executable
cudaGraphExecUpdateResultInfo result_info;
cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
if (stat == cudaErrorGraphExecUpdateFailure) {
#ifndef NDEBUG
GGML_CUDA_LOG_ERROR("%s: CUDA graph update failed\n", __func__);
#endif
// The pre-existing graph exec cannot be updated due to violated constraints
// so instead clear error and re-instantiate
cudaGetLastError();
CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
cuda_ctx->cuda_graph->instance = nullptr;
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
} else {
GGML_ASSERT(stat == cudaSuccess);
}
// Launch graph
CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
#else
graph_evaluated_or_captured = true;
#endif // USE_CUDA_GRAPH
}
return GGML_STATUS_SUCCESS;
}
*/
GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
switch (op->op) {
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_SWIGLU:
case GGML_UNARY_OP_SWIGLU_OAI:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_SIGMOID:
case GGML_UNARY_OP_HARDSIGMOID:
case GGML_UNARY_OP_HARDSWISH:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_TANH:
return ggml_is_contiguous(op->src[0]);
default:
return false;
}
break;
case GGML_OP_FUSED_MUL_UNARY: return ggml_is_contiguous(op->src[0]);
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
case GGML_OP_MOE_FUSED_UP_GATE:
case GGML_OP_FUSED_UP_GATE:
{
bool is_fused_up_gate = op->op == GGML_OP_MOE_FUSED_UP_GATE || op->op == GGML_OP_FUSED_UP_GATE;
struct ggml_tensor * a = op->src[0];
struct ggml_tensor * b = is_fused_up_gate ? op->src[2] : op->src[1];
if (is_fused_up_gate && a->type != op->src[1]->type) {
printf("%s: returning false for GGML_OP_MOE_FUSED_UP_GATE because src0->type != src1->type\n", __func__);
return false;
}
//==================================================================
//if (ggml_is_quantized(a->type) && ggml_is_quantized(b->type)) {
// return false;
//}
//==================================================================
if (b->type == GGML_TYPE_F16 && a->type != GGML_TYPE_F16 && !ggml_is_quantized(a->type)) {
printf("%s: returning false for op %d because (case 1)\n", __func__, (int)op->op);
return false;
}
if (op->op == GGML_OP_MUL_MAT && a->ne[3] != b->ne[3]) {
return false;
}
switch (a->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q6_0:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_Q8_K:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_MXFP4:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ2_KL:
case GGML_TYPE_IQ3_KS:
case GGML_TYPE_IQ4_KS:
case GGML_TYPE_IQ4_KSS:
case GGML_TYPE_IQ5_KS:
case GGML_TYPE_IQ2_K:
case GGML_TYPE_IQ2_KS:
case GGML_TYPE_IQ1_KT:
case GGML_TYPE_IQ2_KT:
case GGML_TYPE_IQ3_KT:
case GGML_TYPE_IQ4_KT:
case GGML_TYPE_IQ3_K:
case GGML_TYPE_IQ4_K:
case GGML_TYPE_IQ5_K:
case GGML_TYPE_IQ6_K:
case GGML_TYPE_IQ1_BN:
case GGML_TYPE_IQ2_BN:
case GGML_TYPE_IQ2_K_R4:
case GGML_TYPE_IQ3_K_R4:
case GGML_TYPE_IQ4_K_R4:
case GGML_TYPE_IQ4_KS_R4:
case GGML_TYPE_IQ5_K_R4:
case GGML_TYPE_IQ5_KS_R4:
case GGML_TYPE_IQ1_S_R4:
case GGML_TYPE_IQ1_M_R4:
return true;
default:
return false;
}
} break;
case GGML_OP_GET_ROWS:
{
switch (op->src[0]->type) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
return true;
default:
return false;
}
} break;
case GGML_OP_SET_ROWS:
{
return (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16 || op->type == GGML_TYPE_BF16 ||
op->type == GGML_TYPE_Q4_0 || op->type == GGML_TYPE_Q4_1 || op->type == GGML_TYPE_Q5_0 ||
op->type == GGML_TYPE_Q5_1 || op->type == GGML_TYPE_Q8_0 || op->type == GGML_TYPE_IQ4_NL) &&
op->src[0]->type == GGML_TYPE_F32 &&
(op->src[1]->type == GGML_TYPE_I64 || op->src[1]->type == GGML_TYPE_I32);
} break;
case GGML_OP_CPY:
{
ggml_type src0_type = op->src[0]->type;
ggml_type src1_type = op->src[1]->type;
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
return true;
}
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
return true;
}
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_BF16) {
return true;
}
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
return true;
}
if (src0_type == GGML_TYPE_Q8_0 && src1_type == GGML_TYPE_F32) {
return true;
}
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
return true;
}
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
return true;
}
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_0) {
return true;
}
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_1) {
return true;
}
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q6_0) {
return true;
}
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) {
return true;
}
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
return true;
}
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
return true;
}
if (ggml_is_quantized(src0_type) && (src1_type == GGML_TYPE_F16 || src1_type == GGML_TYPE_F32)) {
return true;
}
if (ggml_is_contiguous(op->src[0]) && ggml_are_same_shape(op->src[0], op->src[1])) {
if (src1_type == GGML_TYPE_F16 || src1_type == GGML_TYPE_BF16 || src1_type == GGML_TYPE_F32) {
return true;
}
}
if (ggml_are_same_shape(op->src[0], op->src[1]) && op->src[0]->type == GGML_TYPE_Q8_0 && op->src[1]->type == GGML_TYPE_Q8_0) {
return true;
}
return false;
} break;
case GGML_OP_ARGMAX:
return true;
case GGML_OP_DUP:
case GGML_OP_REPEAT:
case GGML_OP_CONCAT:
{
ggml_type src0_type = op->src[0]->type;
return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
} break;
case GGML_OP_CONV_TRANSPOSE_1D:
{
ggml_type src0_type = op->src[0]->type;
ggml_type src1_type = op->src[1]->type;
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
return true;
}
return false;
} break;
case GGML_OP_SILU_BACK:
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
break;
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
return true;
case GGML_OP_RMS_NORM_BACK:
return ggml_is_contiguous(op->src[0]) && op->ne[0] % WARP_SIZE == 0;
break;
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
case GGML_OP_ADD:
case GGML_OP_ADD_ID:
case GGML_OP_MULTI_ADD:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_FUSED_RMS_NORM:
case GGML_OP_SCALE:
case GGML_OP_SOFTCAP:
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_CLAMP:
case GGML_OP_CONT:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_CAP_MAX:
case GGML_OP_ROPE:
return true;
//case GGML_OP_ROPE:
// return ggml_is_contiguous(op->src[0]);
case GGML_OP_IM2COL:
case GGML_OP_POOL_2D:
case GGML_OP_SUM_ROWS:
case GGML_OP_ARGSORT:
case GGML_OP_ARGSORT_THRESH:
case GGML_OP_GROUPED_TOPK:
case GGML_OP_ACC:
case GGML_OP_GROUP_NORM:
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_LEAKY_RELU:
return true;
case GGML_OP_FLASH_ATTN_EXT:
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
return (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) || op->src[0]->ne[0] == 128;
#else
if (op->src[0]->ne[0] == 128) {
return true;
}
if (op->src[1]->ne[0] == 256 && op->src[2]->ne[0] == 256 &&
(op->src[1]->type == GGML_TYPE_F16 || op->src[1]->type == GGML_TYPE_Q8_0) &&
(op->src[2]->type == GGML_TYPE_F16 || op->src[2]->type == GGML_TYPE_Q8_0)) {
return true;
}
if (op->src[1]->ne[0] == 192 && op->src[2]->ne[0] == 128) {
return (op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16) ||
(op->src[1]->type == GGML_TYPE_Q8_0 && op->src[2]->type == GGML_TYPE_Q8_0);
}
if (op->src[1]->ne[0] == 576 && op->src[2]->ne[0] == 512) {
const int cc = ggml_cuda_info().devices[cuda_ctx->device].cc;
int gqa = op->src[0]->ne[2]/op->src[1]->ne[2];
return (new_mma_available(cc) && cc >= CC_AMPERE && op->src[3] && gqa%16 == 0);
}
if (op->src[1]->ne[0] > 256) {
return false;
}
if (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) {
return true;
}
return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA &&
op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
default:
return false;
}
GGML_UNUSED(backend);
}
GGML_CALL static bool ggml_backend_cuda_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
if (ggml_backend_buft_is_cuda_split(buft)) {
return true;
}
if (ggml_backend_buft_is_cuda(buft)) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
return buft_ctx->device == cuda_ctx->device;
}
return false;
}
GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
constexpr int min_batch_size = GGML_CUDA_MIN_BATCH_OFFLOAD;
// Why do we want to do this? The heuristics that the batch must have more than min_batch_size tokens to be worth it
// offloading the required model weights comes from dense models. For MoE models, the average number of tokens
// each expert deals with in a batch is (active_experts / total_experts) * batch_size. Hence, according to the
// learned heuristics, we need (active_experts / total_experts) * batch_size >= min_batch_size.
// Rearranging we get
//
// batch_size * active_experts >= min_batch_size * total_experts
//
// as the condition for offloading model weights resinding in RAM to the GPU.
// In this case, the number of tokens is not as usual in op->ne[1] but rather in op->ne[2].
if (op->op == GGML_OP_MUL_MAT_ID || op->op == GGML_OP_MOE_FUSED_UP_GATE) {
auto ids = op->op == GGML_OP_MUL_MAT_ID ? op->src[2] : op->src[3];
int64_t batch_size = op->ne[2];
if (batch_size < min_batch_size) return false;
int64_t n_experts_tot = op->src[0]->ne[2];
int64_t n_experts_active = ids->ne[0];
bool should_offload = batch_size*n_experts_active >= min_batch_size*n_experts_tot;
//printf("%s(%s): op->ne[2] = %ld, n_experts_tot = %ld, n_experts_active = %ld, ids: %s, %ld x %ld x %ld x %ld -> %d (%ld, %ld)\n", __func__, op->name, op->ne[2], n_experts_tot, n_experts_active, ids->name, ids->ne[0], ids->ne[1], ids->ne[2], ids->ne[3], should_offload, batch_size*n_experts_active, min_batch_size*n_experts_tot);
return should_offload;
}
return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS;
// Original:
//return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
// (op->ne[2] >= min_batch_size && (op->op == GGML_OP_MUL_MAT_ID || op->op == GGML_OP_MOE_FUSED_UP_GATE));
GGML_UNUSED(backend);
}
static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) {
#ifdef GGML_CUDA_NO_PEER_COPY
return nullptr;
#else
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_cuda_set_device(cuda_ctx->device);
cudaEvent_t event;
CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
return new ggml_backend_event {
/* .backend = */ backend,
/* .context = */ event,
};
#endif
}
static void ggml_backend_cuda_event_free(ggml_backend_event_t event) {
CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context));
delete event;
}
static void ggml_backend_cuda_event_record(ggml_backend_event_t event) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)event->backend->context;
CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream()));
}
static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
if (ggml_backend_is_cuda(event->backend)) {
CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0));
} else {
#if 0
// untested
auto wait_fn = [](void * user_data) {
ggml_backend_event_t event = (ggml_backend_event_t)user_data;
ggml_backend_event_synchronize(event);
};
CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
#endif
GGML_ABORT("fatal error");
}
}
static void ggml_backend_cuda_event_synchronize(ggml_backend_event_t event) {
CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
}
static ggml_backend_i ggml_backend_cuda_interface = {
/* .get_name = */ ggml_backend_cuda_name,
/* .free = */ ggml_backend_cuda_free,
/* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
/* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
/* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
/* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async,
/* .synchronize = */ ggml_backend_cuda_synchronize,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_cuda_graph_compute,
/* .supports_op = */ ggml_backend_cuda_supports_op,
/* .supports_buft = */ ggml_backend_cuda_supports_buft,
/* .offload_op = */ ggml_backend_cuda_offload_op,
/* .event_new = */ ggml_backend_cuda_event_new,
/* .event_free = */ ggml_backend_cuda_event_free,
/* .event_record = */ ggml_backend_cuda_event_record,
/* .event_wait = */ ggml_backend_cuda_event_wait,
/* .event_synchronize = */ ggml_backend_cuda_event_synchronize,
};
static ggml_guid_t ggml_backend_cuda_guid() {
static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 };
return &guid;
}
GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
if (device < 0 || device >= ggml_backend_cuda_get_device_count()) {
GGML_CUDA_LOG_ERROR("%s: invalid device %d\n", __func__, device);
return nullptr;
}
ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device);
if (ctx == nullptr) {
GGML_CUDA_LOG_ERROR("%s: failed to allocate context\n", __func__);
return nullptr;
}
ggml_backend_t cuda_backend = new ggml_backend {
/* .guid = */ ggml_backend_cuda_guid(),
/* .interface = */ ggml_backend_cuda_interface,
/* .context = */ ctx
};
return cuda_backend;
}
GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid());
}
GGML_CALL int ggml_backend_cuda_get_device_count() {
return ggml_cuda_info().device_count;
}
GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
cudaDeviceProp prop;
CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
snprintf(description, description_size, "%s", prop.name);
}
GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
ggml_cuda_set_device(device);
CUDA_CHECK(cudaMemGetInfo(free, total));
}
GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
return false;
}
#if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA)
cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
if (err != cudaSuccess) {
// clear the error
cudaGetLastError();
GGML_CUDA_LOG_WARN("%s: failed to register %.2f MiB of pinned memory: %s\n", __func__,
size / 1024.0 / 1024.0, cudaGetErrorString(err));
return false;
}
return true;
#else
return false;
#endif
}
GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
return;
}
cudaError_t err = cudaHostUnregister(buffer);
if (err != cudaSuccess) {
// clear the error
cudaGetLastError();
}
}
// backend registry
GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) {
ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);
return cuda_backend;
GGML_UNUSED(params);
}
extern "C" GGML_CALL int ggml_backend_cuda_reg_devices();
GGML_CALL int ggml_backend_cuda_reg_devices() {
int device_count = ggml_backend_cuda_get_device_count();
//int device_count = 1; // DEBUG: some tools require delaying CUDA initialization
for (int i = 0; i < device_count; i++) {
char name[128];
snprintf(name, sizeof(name), "%s%d", GGML_CUDA_NAME, i);
ggml_backend_register(name, ggml_backend_reg_cuda_init, ggml_backend_cuda_buffer_type(i), (void *) (intptr_t) i);
}
return device_count;
}