Files
ik_llama.cpp/src/llama-hparams.h
firecoperana 869557c8fd Update mtmd to improve accuracy of M-RoPE (#993)
* model : Granite docling + Idefics3 preprocessing (SmolVLM) (#16206)

* feat: Add granite-docling conversion using trillion pretokenizer

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add granite-docling vocab pre enum

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use granite-docling pre

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add clip_is_idefics3

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Allow multi-token boundary sequences for image templating

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add tiling support for idefices3 in clip.cpp

This should likely be moved into llava_uhd::get_slice_instructions, but for
now this avoids disrupting the logic there.

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Partial support for full templating for idefics3 in mtmd

There are still errors encoding some of the image chunks, but the token
sequence now matches transformers _almost_ perfectly, except for the double
newline before the global image which shows up as two consecutive newline
tokens instead of a single double-newline token. I think this is happening
because the blocks are tokenized separately then concatenated.

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Fully working image preprocessing for idefics3 w/ resize and slicing

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Parse the preprocessor config's longest side and add it to the mmproj hparams

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use the longest side instead of size * scale_factor

For Granite Docling, these come out to the same value, but that was just a
conicidence.

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Allow batch encoding and remove clip_is_idefics3

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove unnecessary conditionals for empty token vectors

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Use image_manipulation util

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* add test model

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
# Conflicts:
#	convert_hf_to_gguf.py
#	convert_hf_to_gguf_update.py
#	gguf-py/gguf/constants.py
#	gguf-py/gguf/gguf_writer.py
#	src/llama-vocab.cpp
#	src/llama-vocab.h

* mtmd : support home-cooked Mistral Small Omni (#14928)

* model : add LightOnOCR-1B model (#16764)

* model : add LightOnOCR-1B model

* add test
# Conflicts:
#	convert_hf_to_gguf.py
#	gguf-py/gguf/constants.py

* mtmd : fix idefics3 preprocessing (#16806)

* mtmd : fix idefics3 preprocessing

* disable granite test

* fix test for granite

* model: Add support for CogVLM model (#15002)

* Added GGUF mappings for CogVLM model

* Add tensor mapping for CogVLM visual encoder

* Add CogVLM to conversion script, no vision part yet

* Added CogVLM vision model to conversion script

* Add graph for CogVLM CLIP model

* Add graph for CogVLM

* Fixes for CogVLM. Now compiles.

* Model now runs

* Fixes for cogvlm graph

* Account for graph context change after rebase

* Changes for whitespace

* Changes in convert script according to comments

* Switch CogVLM LLM graph to merged QKV tensor

* Use rope_type variable instead of direct definition

* Change CogVLM CLIP encoder to use SWIGLU

* Switch CogVLM CLIP to use merged QKV

* Apply rebase edits and remove ggml_cont call that is now unnecessary

* clean up

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
# Conflicts:
#	convert_hf_to_gguf.py
#	examples/mtmd/clip.cpp
#	gguf-py/gguf/constants.py
#	gguf-py/gguf/tensor_mapping.py
#	src/llama-arch.cpp
#	src/llama-arch.h
#	src/llama-model.cpp
#	src/llama-model.h

* mtmd: refactor preprocessing + support max/min pixels (#16878)

* mtmd: refactor preprocessing + support max/min pixels

* fix mlp type

* implement mix/max pixels

* improve hparams

* better image preproc for qwen

* fix

* fix out of bound composite

* fix (2)

* fix token calculation

* get_merge_kernel_size()

* fix llama4 and lfm2

* gonna fix them all

* use simple resize for qwen

* qwen: increase min tokens

* no resize if dst size == src size

* restore to initial min/max tokens value for qwen
# Conflicts:
#	examples/mtmd/clip.cpp

* clip : use FA (#16837)

* clip : use FA

* cont : add warning about unsupported ops

* implement "auto" mode for clip flash attn

* clip : print more detailed op support info during warmup

* cont : remove obsolete comment [no ci]

* improve debugging message

* trailing space

* metal : remove stray return

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>

* model: add Janus Pro for image understanding (#16906)

* Add support for Janus Pro

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Address reviewer suggestions

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Add JANUS_PRO constant

* Update clip model handling

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

* Update tools/mtmd/clip.cpp

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* Refactor JANUS_PRO handling in clip.cpp

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

* Update tools/mtmd/clip.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* em whitespace

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
# Conflicts:
#	convert_hf_to_gguf.py
#	gguf-py/gguf/constants.py
#	gguf-py/gguf/tensor_mapping.py

* mtmd: pad mask for qwen2.5vl (#16954)

* mtmd: pad mask for qwen2.5vl

* improve

* mtmd: add --image-min/max-tokens (#16921)

* mtmd: improve struct initialization (#16981)

* mtmd: allow QwenVL to process larger image by default (#17020)

* Disable flash attention

* mtmd : fix embedding size for image input (#17123)

* mtmd: fix patch_size initialized to random value in audio models (#17128)

* mtmd: fix patch_size initialized to random value in audio models

* add default hparams

* add llama_model_n_embd_inp

* Fix load qwen3 vl

Change batch size

* Add description

* Fix cli build error

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Tianyue-Zhao <zhaotianyue@outlook.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Zhiyong Wang <85110830+ravenouse@users.noreply.github.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
Co-authored-by: firecoperana <firecoperana>
2025-11-29 07:27:15 +01:00

271 lines
9.9 KiB
C++

#pragma once
#include "llama-impl.h"
#include <cstdint>
#include <array>
#include <cmath>
#define LLAMA_MAX_LAYERS 512
enum llm_expert_gating_func_type {
LLM_EXPERT_GATING_FUNC_TYPE_NONE = 0,
LLM_EXPERT_GATING_FUNC_SOFTMAX = 1,
LLM_EXPERT_GATING_FUNC_SIGMOID = 2,
LLM_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT = 3,
};
struct llama_hparams {
bool vocab_only;
bool rope_finetuned;
bool use_par_res;
uint32_t n_vocab;
uint32_t n_ctx_train; // context size the model was trained on
uint32_t n_embd;
uint32_t n_layer;
int32_t n_layer_kv_from_start = -1; // if non-negative, the first n_layer_kv_from_start layers have KV cache
uint32_t n_rot;
uint32_t n_swa = 0; // sliding window attention (SWA)
uint32_t n_swa_pattern = 1; // by default, all layers use non-sliding-window attention
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
uint32_t n_expert = 0;
uint32_t n_expert_used = 0;
uint32_t n_vocab_type = 0; // for BERT-style token types
uint32_t n_rel_attn_bkts = 0;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
uint32_t n_lora_kv = 0;
uint32_t n_ff_exp = 0;
uint32_t n_ff_shexp = 0;
uint32_t n_expert_shared = 0;
uint32_t n_norm_groups = 0;
uint32_t n_expert_groups = 0;
uint32_t n_group_used = 0;
uint32_t n_group_experts = 0;
float expert_group_scale = 0.05f;
float expert_weights_scale = 0.0f;
bool expert_weights_norm = false;
uint32_t expert_gating_func = LLM_EXPERT_GATING_FUNC_SOFTMAX;
uint32_t moe_every_n_layers = 0;
uint32_t nextn_predict_layers = 0;
float f_norm_eps;
float f_norm_rms_eps;
float f_norm_group_eps;
float f_attn_logit_softcapping = 50.0f;
float f_router_logit_softcapping = 30.0f;
float f_final_logit_softcapping = 30.0f;
float rope_attn_factor = 1.0f;
float rope_freq_base_train;
float rope_freq_base_train_swa;
float rope_freq_scale_train;
float rope_freq_scale_train_swa;
uint32_t n_ctx_orig_yarn;
float rope_yarn_log_mul = 0.0f;
float yarn_ext_factor = -1.0f;
float yarn_attn_factor = 1.0f;
float yarn_beta_fast = 32.0f;
float yarn_beta_slow = 1.0f;
std::array<int, 4> rope_sections;
// for State Space Models
uint32_t ssm_d_conv = 0;
uint32_t ssm_d_inner = 0;
uint32_t ssm_d_state = 0;
uint32_t ssm_dt_rank = 0;
float f_clamp_kqv = 0.0f;
float f_max_alibi_bias = 0.0f;
float f_logit_scale = 0.0f;
// Additional scale factors (Granite/Granite MoE)
float f_residual_scale = 0.0f;
float f_embedding_scale = 0.0f;
float f_attention_scale = 0.0f;
// grok-2
float f_attn_out_scale = 0.0f;
uint32_t attn_temp_length = 0;
bool causal_attn = true;
bool use_alibi = false;
bool attn_soft_cap = false;
uint32_t n_moe_layer_step = 0;
bool use_kq_norm = true;
uint32_t n_attn_chunk = 0;
// values below seems to be fixed on llama4
uint32_t n_no_rope_layer_step = 4;
uint32_t n_attn_temp_floor_scale = 8192;
float f_attn_temp_scale = 0.1;
// qwen3vl deepstack
uint32_t n_deepstack_layers = 0;
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
llama_token dec_start_token_id = -1;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
bool operator!=(const llama_hparams & other) const {
if (this->vocab_only != other.vocab_only) return true;
if (this->n_vocab != other.n_vocab) return true;
if (this->n_ctx_train != other.n_ctx_train) return true;
if (this->n_embd != other.n_embd) return true;
if (this->n_layer != other.n_layer) return true;
if (this->n_rot != other.n_rot) return true;
if (this->n_swa != other.n_swa) return true;
if (this->n_swa_pattern != other.n_swa_pattern) return false;
if (this->n_embd_head_k != other.n_embd_head_k) return true;
if (this->n_embd_head_v != other.n_embd_head_v) return true;
if (this->n_expert != other.n_expert) return true;
if (this->n_expert_used != other.n_expert_used) return true;
if (this->n_head_arr != other.n_head_arr) return true;
if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
if (this->n_ff_arr != other.n_ff_arr) return true;
if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true;
if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
if (this->n_lora_q != other.n_lora_q) return true;
if (this->n_lora_kv != other.n_lora_kv) return true;
if (this->n_ff_exp != other.n_ff_exp) return true;
if (this->n_ff_shexp != other.n_ff_shexp) return true;
if (this->n_expert_shared != other.n_expert_shared) return true;
if (this->rope_finetuned != other.rope_finetuned) return true;
if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true;
if (this->ssm_d_conv != other.ssm_d_conv) return true;
if (this->ssm_d_inner != other.ssm_d_inner) return true;
if (this->ssm_d_state != other.ssm_d_state) return true;
if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
if (this->dec_start_token_id != other.dec_start_token_id) return true;
const float EPSILON = 1e-9f;
if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true;
if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true;
if (!is_float_close(this->f_residual_scale, other.f_residual_scale, EPSILON)) return true;
if (!is_float_close(this->f_embedding_scale, other.f_embedding_scale, EPSILON)) return true;
if (!is_float_close(this->f_attention_scale, other.f_attention_scale, EPSILON)) return true;
return false;
}
uint32_t n_head(uint32_t il = 0) const {
if (il < n_layer) {
return n_head_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t n_head_kv(uint32_t il = 0) const {
if (il < n_layer) {
return n_head_kv_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t n_embd_inp() const {
uint32_t n_embd_inp = n_embd;
if (n_deepstack_layers > 0) {
n_embd_inp += n_embd * n_deepstack_layers;
}
return n_embd_inp;
}
uint32_t n_ff(uint32_t il = 0) const {
if (il < n_layer) {
return n_ff_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t n_gqa(uint32_t il = 0) const {
const uint32_t n_head = this->n_head(il);
const uint32_t n_head_kv = this->n_head_kv(il);
if (n_head_kv == 0) {
return 0;
}
return n_head/n_head_kv;
}
uint32_t n_embd_k_gqa(uint32_t il = 0) const { // dimension of key embeddings across all k-v heads
const uint32_t n_head_kv = this->n_head_kv(il);
return n_embd_head_k * n_head_kv;
}
uint32_t n_embd_v_gqa(uint32_t il = 0) const { // dimension of value embeddings across all k-v heads
const uint32_t n_head_kv = this->n_head_kv(il);
return n_embd_head_v * n_head_kv;
}
uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
// corresponds to Mamba's conv_states size
// TODO: maybe support other convolution strides than 1
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
}
uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
// corresponds to Mamba's ssm_states size
return ssm_d_state * ssm_d_inner;
}
static bool is_float_close(float a, float b, float abs_tol) {
// Check for non-negative tolerance
if (abs_tol < 0.0) {
throw std::invalid_argument("Tolerance must be non-negative");
}
// Exact equality check
if (a == b) {
return true;
}
// Check for infinities
if (std::isinf(a) || std::isinf(b)) {
return false;
}
// Regular comparison using the provided absolute tolerance
return std::fabs(b - a) <= abs_tol;
}
static const char * rope_scaling_type_name(llama_rope_scaling_type);
};
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");