mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-02-11 00:40:09 +00:00
* iq2_tn: TriLM specific 2.0625 bpw quantization Quantize/dequantize/scale dot product. I get 46 t/s for the TriLM-3.9B with any SIMD! Finally a compiler doing a decent job auto-vectorizing the scalar implementation. * iq2_tn: AVX512 Just reusing the k-quants template gets us to PP-512 = 376 t/s, TG-128 = 47.6 t/s for TriLM-3.9B. * iq2_tn: AVX512 With this tweak we get to PP-512 = 431 t/s. * iq2_tn: AVX512 With this tweak we get TG-128 = 19.58 / 35.18 t/s for 1 / 2 threads. At 4 threads we saturate at 48.41 t/s, and then performance slowly degrades with increasing number of threads. * iq2_tn: AVX2 PP512 = 440 t/s on the Ryzen-5975WX. We should be able to do better. * iq2_tn: initial NEON version * iq2_tn: NEON For TriLM-3.9B running on the M2-Max we get PP-512 = 193.5 t/s, TG-128 = 75.5 t/s. This is in line with what we have for iq2_bn ant 3.3B Bitnet. * iq2_tn: Metal For TriLM-3.9B on a 30-core M2-Max we get PP-512 = 890 t/s, TG-128 = 98.5 t/s. * iq2_tn: CUDA For TriLM-3.9B running on RTX-4080 we get PP-512 = 9936 t/s, TG-128 = 299.2 t/s. * iq2_tn: AVX2 PP improvement We now get PP-512 = 490.73 t/s for TriLM-3.9B on the Ryzen-5975WX. We have PP-512 = 636.61 t/s for Bintnet-3B quantized with iq2_bn. Bintnet-3B is actually 3.4B, TriLM-3.9B is 3.99B, so we would expect 3.43/3.99 * 636 = 546 t/s, so it seems we still have something that is not quite optimal in iq2_tn. * iq2_tn: small NEON improvement For TriLM-3.9B we now get PP-512 = 206.6 t/s and TG-128 = 76.4 t/s. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>