mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-02-08 07:20:12 +00:00
* Mimo-2 support * Fix bug for head sizes not being the same It still does not solve the Mimo-2 quantized cache issue. * Fix quantized cache * Minor --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
273 lines
9.9 KiB
C++
273 lines
9.9 KiB
C++
#pragma once
|
|
|
|
#include "llama-impl.h"
|
|
|
|
#include <cstdint>
|
|
#include <array>
|
|
#include <cmath>
|
|
|
|
#define LLAMA_MAX_LAYERS 512
|
|
|
|
enum llm_expert_gating_func_type {
|
|
LLM_EXPERT_GATING_FUNC_TYPE_NONE = 0,
|
|
LLM_EXPERT_GATING_FUNC_SOFTMAX = 1,
|
|
LLM_EXPERT_GATING_FUNC_SIGMOID = 2,
|
|
LLM_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT = 3,
|
|
};
|
|
|
|
struct llama_hparams {
|
|
bool vocab_only;
|
|
bool rope_finetuned;
|
|
bool use_par_res;
|
|
|
|
uint32_t n_vocab;
|
|
uint32_t n_ctx_train; // context size the model was trained on
|
|
uint32_t n_embd;
|
|
uint32_t n_layer;
|
|
int32_t n_layer_kv_from_start = -1; // if non-negative, the first n_layer_kv_from_start layers have KV cache
|
|
uint32_t n_rot;
|
|
uint32_t n_swa = 0; // sliding window attention (SWA)
|
|
uint32_t n_swa_pattern = 1; // by default, all layers use non-sliding-window attention
|
|
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
|
|
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
|
|
uint32_t n_expert = 0;
|
|
uint32_t n_expert_used = 0;
|
|
uint32_t n_vocab_type = 0; // for BERT-style token types
|
|
uint32_t n_rel_attn_bkts = 0;
|
|
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
|
|
|
uint32_t n_layer_dense_lead = 0;
|
|
uint32_t n_lora_q = 0;
|
|
uint32_t n_lora_kv = 0;
|
|
uint32_t n_ff_exp = 0;
|
|
uint32_t n_ff_shexp = 0;
|
|
uint32_t n_expert_shared = 0;
|
|
uint32_t n_norm_groups = 0;
|
|
uint32_t n_expert_groups = 0;
|
|
uint32_t n_group_used = 0;
|
|
uint32_t n_group_experts = 0;
|
|
|
|
float expert_group_scale = 0.05f;
|
|
float expert_weights_scale = 0.0f;
|
|
bool expert_weights_norm = false;
|
|
uint32_t expert_gating_func = LLM_EXPERT_GATING_FUNC_SOFTMAX;
|
|
uint32_t moe_every_n_layers = 0;
|
|
uint32_t nextn_predict_layers = 0;
|
|
|
|
float f_norm_eps;
|
|
float f_norm_rms_eps;
|
|
float f_norm_group_eps;
|
|
|
|
float f_attn_logit_softcapping = 50.0f;
|
|
float f_router_logit_softcapping = 30.0f;
|
|
float f_final_logit_softcapping = 30.0f;
|
|
|
|
float rope_attn_factor = 1.0f;
|
|
float rope_freq_base_train;
|
|
float rope_freq_base_train_swa;
|
|
float rope_freq_scale_train;
|
|
float rope_freq_scale_train_swa;
|
|
uint32_t n_ctx_orig_yarn;
|
|
float rope_yarn_log_mul = 0.0f;
|
|
|
|
float yarn_ext_factor = -1.0f;
|
|
float yarn_attn_factor = 1.0f;
|
|
float yarn_beta_fast = 32.0f;
|
|
float yarn_beta_slow = 1.0f;
|
|
|
|
std::array<int, 4> rope_sections;
|
|
|
|
// for State Space Models
|
|
uint32_t ssm_d_conv = 0;
|
|
uint32_t ssm_d_inner = 0;
|
|
uint32_t ssm_d_state = 0;
|
|
uint32_t ssm_dt_rank = 0;
|
|
|
|
float f_clamp_kqv = 0.0f;
|
|
float f_max_alibi_bias = 0.0f;
|
|
float f_logit_scale = 0.0f;
|
|
|
|
// Additional scale factors (Granite/Granite MoE)
|
|
float f_residual_scale = 0.0f;
|
|
float f_embedding_scale = 0.0f;
|
|
float f_attention_scale = 0.0f;
|
|
|
|
// grok-2
|
|
float f_attn_out_scale = 0.0f;
|
|
uint32_t attn_temp_length = 0;
|
|
|
|
bool causal_attn = true;
|
|
bool use_alibi = false;
|
|
bool attn_soft_cap = false;
|
|
|
|
uint32_t n_moe_layer_step = 0;
|
|
bool use_kq_norm = true;
|
|
uint32_t n_attn_chunk = 0;
|
|
// values below seems to be fixed on llama4
|
|
uint32_t n_no_rope_layer_step = 4;
|
|
uint32_t n_attn_temp_floor_scale = 8192;
|
|
float f_attn_temp_scale = 0.1;
|
|
|
|
// qwen3vl deepstack
|
|
uint32_t n_deepstack_layers = 0;
|
|
|
|
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
|
|
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
|
|
llama_token dec_start_token_id = -1;
|
|
|
|
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
|
|
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
|
|
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
|
|
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> swa_layers;
|
|
|
|
bool operator!=(const llama_hparams & other) const {
|
|
if (this->vocab_only != other.vocab_only) return true;
|
|
if (this->n_vocab != other.n_vocab) return true;
|
|
if (this->n_ctx_train != other.n_ctx_train) return true;
|
|
if (this->n_embd != other.n_embd) return true;
|
|
if (this->n_layer != other.n_layer) return true;
|
|
if (this->n_rot != other.n_rot) return true;
|
|
if (this->n_swa != other.n_swa) return true;
|
|
if (this->n_swa_pattern != other.n_swa_pattern) return false;
|
|
if (this->n_embd_head_k != other.n_embd_head_k) return true;
|
|
if (this->n_embd_head_v != other.n_embd_head_v) return true;
|
|
if (this->n_expert != other.n_expert) return true;
|
|
if (this->n_expert_used != other.n_expert_used) return true;
|
|
|
|
if (this->n_head_arr != other.n_head_arr) return true;
|
|
if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
|
|
if (this->n_ff_arr != other.n_ff_arr) return true;
|
|
|
|
if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true;
|
|
if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
|
|
if (this->n_lora_q != other.n_lora_q) return true;
|
|
if (this->n_lora_kv != other.n_lora_kv) return true;
|
|
if (this->n_ff_exp != other.n_ff_exp) return true;
|
|
if (this->n_ff_shexp != other.n_ff_shexp) return true;
|
|
if (this->n_expert_shared != other.n_expert_shared) return true;
|
|
|
|
if (this->rope_finetuned != other.rope_finetuned) return true;
|
|
if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true;
|
|
|
|
if (this->ssm_d_conv != other.ssm_d_conv) return true;
|
|
if (this->ssm_d_inner != other.ssm_d_inner) return true;
|
|
if (this->ssm_d_state != other.ssm_d_state) return true;
|
|
if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
|
|
|
|
if (this->dec_start_token_id != other.dec_start_token_id) return true;
|
|
|
|
const float EPSILON = 1e-9f;
|
|
|
|
if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
|
|
if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
|
|
if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
|
|
if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
|
|
if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
|
|
if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true;
|
|
if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true;
|
|
if (!is_float_close(this->f_residual_scale, other.f_residual_scale, EPSILON)) return true;
|
|
if (!is_float_close(this->f_embedding_scale, other.f_embedding_scale, EPSILON)) return true;
|
|
if (!is_float_close(this->f_attention_scale, other.f_attention_scale, EPSILON)) return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
uint32_t n_head(uint32_t il = 0) const {
|
|
if (il < n_layer) {
|
|
return n_head_arr[il];
|
|
}
|
|
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
uint32_t n_head_kv(uint32_t il = 0) const {
|
|
if (il < n_layer) {
|
|
return n_head_kv_arr[il];
|
|
}
|
|
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
uint32_t n_embd_inp() const {
|
|
uint32_t n_embd_inp = n_embd;
|
|
|
|
if (n_deepstack_layers > 0) {
|
|
n_embd_inp += n_embd * n_deepstack_layers;
|
|
}
|
|
|
|
return n_embd_inp;
|
|
}
|
|
|
|
uint32_t n_ff(uint32_t il = 0) const {
|
|
if (il < n_layer) {
|
|
return n_ff_arr[il];
|
|
}
|
|
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
uint32_t n_gqa(uint32_t il = 0) const {
|
|
const uint32_t n_head = this->n_head(il);
|
|
const uint32_t n_head_kv = this->n_head_kv(il);
|
|
|
|
if (n_head_kv == 0) {
|
|
return 0;
|
|
}
|
|
|
|
return n_head/n_head_kv;
|
|
}
|
|
|
|
uint32_t n_embd_k_gqa(uint32_t il = 0) const { // dimension of key embeddings across all k-v heads
|
|
const uint32_t n_head_kv = this->n_head_kv(il);
|
|
|
|
return n_embd_head_k * n_head_kv;
|
|
}
|
|
|
|
uint32_t n_embd_v_gqa(uint32_t il = 0) const { // dimension of value embeddings across all k-v heads
|
|
const uint32_t n_head_kv = this->n_head_kv(il);
|
|
|
|
return n_embd_head_v * n_head_kv;
|
|
}
|
|
|
|
uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
|
|
// corresponds to Mamba's conv_states size
|
|
// TODO: maybe support other convolution strides than 1
|
|
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
|
|
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
|
|
}
|
|
|
|
uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
|
|
// corresponds to Mamba's ssm_states size
|
|
return ssm_d_state * ssm_d_inner;
|
|
}
|
|
|
|
static bool is_float_close(float a, float b, float abs_tol) {
|
|
// Check for non-negative tolerance
|
|
if (abs_tol < 0.0) {
|
|
throw std::invalid_argument("Tolerance must be non-negative");
|
|
}
|
|
|
|
// Exact equality check
|
|
if (a == b) {
|
|
return true;
|
|
}
|
|
|
|
// Check for infinities
|
|
if (std::isinf(a) || std::isinf(b)) {
|
|
return false;
|
|
}
|
|
|
|
// Regular comparison using the provided absolute tolerance
|
|
return std::fabs(b - a) <= abs_tol;
|
|
}
|
|
|
|
static const char * rope_scaling_type_name(llama_rope_scaling_type);
|
|
|
|
};
|
|
|
|
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|