Files
ik_llama.cpp/examples/llama-bench/llama-bench.cpp

2155 lines
78 KiB
C++

//
// Copyright (C) 2023-2025 The llama.cpp authors
// Copyright (C) 2024-2025 Iwan Kawrakow
// MIT license
// SPDX-License-Identifier: MIT
//
#include <algorithm>
#include <array>
#include <cassert>
#include <chrono>
#include <cinttypes>
#include <clocale>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <cstdlib>
#include <iterator>
#include <map>
#include <numeric>
#include <regex>
#include <sstream>
#include <string>
#include <vector>
#include "ggml.h"
#include "llama.h"
#include "common.h"
#include "ggml-cuda.h"
#include "ggml-sycl.h"
#ifdef GGML_USE_CANN
#include "ggml-cann.h"
#endif
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
# define NOMINMAX
#endif
#include <windows.h>
#endif
// utils
static uint64_t get_time_ns() {
using clock = std::chrono::high_resolution_clock;
return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
}
template <typename T1, typename T2>
std::ostream& operator<<(std::ostream& str, const std::pair<T1, T2>& item) {
str << '{' << item.first << ", " << item.second << '}';
return str;
}
template<class T>
static std::string join(const std::vector<T> & values, const std::string & delim) {
std::ostringstream str;
for (size_t i = 0; i < values.size(); i++) {
str << values[i];
if (i < values.size() - 1) {
str << delim;
}
}
return str.str();
}
template<typename T, typename F>
static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
std::vector<std::string> str_values;
std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
return str_values;
}
template<typename T>
static T avg(const std::vector<T> & v) {
if (v.empty()) {
return 0;
}
T sum = std::accumulate(v.begin(), v.end(), T(0));
return sum / (T)v.size();
}
template<typename T>
static T stdev(const std::vector<T> & v) {
if (v.size() <= 1) {
return 0;
}
T mean = avg(v);
T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
return stdev;
}
static std::string get_cpu_info() {
std::string id;
#ifdef __linux__
FILE * f = fopen("/proc/cpuinfo", "r");
if (f) {
char buf[1024];
while (fgets(buf, sizeof(buf), f)) {
if (strncmp(buf, "model name", 10) == 0) {
char * p = strchr(buf, ':');
if (p) {
p++;
while (std::isspace(*p)) {
p++;
}
while (std::isspace(p[strlen(p) - 1])) {
p[strlen(p) - 1] = '\0';
}
id = p;
break;
}
}
}
fclose(f);
}
#elif defined(_WIN32)
HKEY hKey;
if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,
TEXT("HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0"),
0,
KEY_READ,
&hKey) != ERROR_SUCCESS) {
// fail to open registry key
return "";
}
char cpu_brand[256];
DWORD cpu_brand_size = sizeof(cpu_brand);
if (RegQueryValueExA(hKey,
TEXT("ProcessorNameString"),
NULL,
NULL,
(LPBYTE)cpu_brand,
&cpu_brand_size) == ERROR_SUCCESS) {
id.assign(cpu_brand, cpu_brand_size);
}
RegCloseKey(hKey);
#endif
// TODO: other platforms
return id;
}
static std::string get_gpu_info() {
std::string id;
#ifdef GGML_USE_CUDA
int count = ggml_backend_cuda_get_device_count();
for (int i = 0; i < count; i++) {
char buf[128];
ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
id += buf;
if (i < count - 1) {
id += "/";
}
}
#endif
#ifdef GGML_USE_SYCL
int count = ggml_backend_sycl_get_device_count();
for (int i = 0; i < count; i++) {
char buf[128];
ggml_sycl_get_device_description(i, buf, sizeof(buf));
id += buf;
if (i < count - 1) {
id += "/";
}
}
#endif
#ifdef GGML_USE_CANN
uint32_t count = ggml_backend_cann_get_device_count();
for (uint32_t i = 0; i < count; i++) {
char buf[128];
ggml_backend_cann_get_device_description(i, buf, sizeof(buf));
id += buf;
if (i < count - 1) {
id += "/";
}
}
#endif
// TODO: other backends
return id;
}
// command line params
enum output_formats {NONE, CSV, JSON, MARKDOWN, SQL};
static const char * output_format_str(output_formats format) {
switch (format) {
case NONE: return "none";
case CSV: return "csv";
case JSON: return "json";
case MARKDOWN: return "md";
case SQL: return "sql";
default: GGML_ABORT("invalid output format");
}
}
static bool output_format_from_str(const std::string & s, output_formats & format) {
if (s == "none") {
format = NONE;
} else if (s == "csv") {
format = CSV;
} else if (s == "json") {
format = JSON;
} else if (s == "md") {
format = MARKDOWN;
} else if (s == "sql") {
format = SQL;
} else {
return false;
}
return true;
}
static const char * split_mode_str(llama_split_mode mode) {
switch (mode) {
case LLAMA_SPLIT_MODE_NONE: return "none";
case LLAMA_SPLIT_MODE_LAYER: return "layer";
case LLAMA_SPLIT_MODE_GRAPH: return "graph";
default: GGML_ABORT("invalid split mode");
}
}
static std::string pair_str(const std::pair<int, int> & p) {
static char buf[32];
snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
return buf;
}
// Ser = Smart Expert Reduction
using Ser = std::pair<int,float>;
struct cmd_params {
std::vector<std::string> model;
std::vector<int> n_prompt;
std::vector<int> n_gen;
std::vector<std::pair<int, int>> n_pg;
std::vector<std::pair<int, int>> n_gp;
std::vector<int> n_batch;
std::vector<int> n_ubatch;
std::vector<ggml_type> type_k;
std::vector<ggml_type> type_v;
std::vector<std::pair<int,int>> n_threads;
std::vector<int> n_gpu_layers;
std::vector<std::string> rpc_servers;
std::vector<llama_split_mode> split_mode;
std::vector<int> main_gpu;
std::vector<bool> no_kv_offload;
std::vector<bool> flash_attn;
std::vector<int> mla_attn;
std::vector<int> attn_max_batch;
std::vector<Ser> ser;
std::vector<bool> reuse;
std::vector<std::vector<float>> tensor_split;
std::vector<bool> use_mmap;
std::vector<bool> embeddings;
std::vector<llama_model_tensor_buft_override> buft_overrides;
ggml_numa_strategy numa;
std::string cuda_params;
int reps;
bool verbose;
bool warmup;
bool repack = false;
bool fmoe = true;
bool ger = false; // ger = Grouped Expert Routing
bool no_fug = false;
bool use_thp = false;
bool no_ooae = false;
bool mqkv = false;
bool muge = false;
bool rcache = false;
output_formats output_format;
output_formats output_format_stderr;
};
static const cmd_params cmd_params_defaults = {
/* model */ {"models/7B/ggml-model-q4_0.gguf"},
/* n_prompt */ {512},
/* n_gen */ {128},
/* n_pg */ {},
/* n_gp */ {},
/* n_batch */ {2048},
/* n_ubatch */ {512},
/* type_k */ {GGML_TYPE_F16},
/* type_v */ {GGML_TYPE_F16},
/* n_threads */ {{cpu_get_num_math(), cpu_get_num_math()}},
/* n_gpu_layers */ {999},
/* rpc_servers */ {""},
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
/* main_gpu */ {0},
/* no_kv_offload */ {false},
/* flash_attn */ {true},
/* mla_attn */ {3},
/* attn_max_batch */ {0},
/* ser */ {{-1,0.0f}},
/* reuse */ {true},
/* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
/* use_mmap */ {true},
/* embeddings */ {false},
/* buft_overrides */ {},
/* numa */ GGML_NUMA_STRATEGY_DISABLED,
/* cuda_params */ {},
/* reps */ 5,
/* verbose */ false,
/* warmup */ true,
/* repack */ false,
/* fmoe */ true,
/* ger */ false,
/* no_fug */ false,
/* use_thp */ false,
/* no_ooae */ false,
/* mqkv */ false,
/* muge */ false,
/* rcache */ false,
/* output_format */ MARKDOWN,
/* output_format_stderr */ NONE,
};
static void print_usage(int /* argc */, char ** argv) {
printf("usage: %s [options]\n", argv[0]);
printf("\n");
printf("options:\n");
printf(" -h, --help\n");
printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
printf(" -gp <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_gp, pair_str), ",").c_str());
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
printf(" -tgb, --threads-gen-batch <n1,n2> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
printf(" --n-cpu-moe <n> (default: none)\n");
printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
printf(" -sm, --split-mode <none|row|layer> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
printf(" -mla, --mla-attn <0|1|2> (default: %s)\n", join(cmd_params_defaults.mla_attn, ",").c_str());
printf(" -amb, --attn-max-batch <i> (default: %s)\n", join(cmd_params_defaults.attn_max_batch, ",").c_str());
printf(" -ser, --smart-expert-reduction <i,f>(default: %s)\n", join(cmd_params_defaults.attn_max_batch, ",").c_str());
printf(" -gr, --graph-reuse <0|1> (default: %s)\n", join(cmd_params_defaults.reuse, ",").c_str());
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
printf(" -oe, --output-err <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
printf(" -w, --warmup <0|1> (default: %s)\n", cmd_params_defaults.warmup ? "1" : "0");
printf(" -rtr, --run-time-repack <0|1> (default: %s)\n", cmd_params_defaults.repack ? "1" : "0");
printf(" -cuda, --cuda-params <string> (default: %s)\n", cmd_params_defaults.cuda_params.c_str());
printf(" -mqkv, --merge-qkv (default: %s)\n", cmd_params_defaults.mqkv ? "1" : "0");
printf(" -muge, --merge-up-gate-experts (default: %s)\n", cmd_params_defaults.muge ? "1" : "0");
printf(" -rcache, --rope-cache (default: %s)\n", cmd_params_defaults.rcache ? "1" : "0");
printf(" -thp, --transparent-huge-pages <0|1> (default: %s)\n", cmd_params_defaults.use_thp? "1" : "0");
printf(" -ot, --override-tensor pattern (default: none)\n");
printf(" -fmoe, --fused-moe <0|1> (default: %s)\n", cmd_params_defaults.fmoe? "1" : "0");
printf(" -ger, --grouped-expert-routing <0|1>(default: %s)\n", cmd_params_defaults.ger ? "1" : "0");
printf(" -no-fug, --no-fused-up-gate <0|1> (default: %s)\n", cmd_params_defaults.no_fug? "1" : "0");
printf(" -no-ooae, --no-offload-only-active-experts <0|1> (default: %s)\n", cmd_params_defaults.no_ooae? "1" : "0");
printf("\n");
printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
}
static ggml_type ggml_type_from_name(const std::string & s) {
if (s == "f16") {
return GGML_TYPE_F16;
}
if (s == "bf16") {
return GGML_TYPE_BF16;
}
if (s == "q8_0") {
return GGML_TYPE_Q8_0;
}
if (s == "q4_0") {
return GGML_TYPE_Q4_0;
}
if (s == "q4_1") {
return GGML_TYPE_Q4_1;
}
if (s == "q5_0") {
return GGML_TYPE_Q5_0;
}
if (s == "q5_1") {
return GGML_TYPE_Q5_1;
}
if (s == "iq4_nl") {
return GGML_TYPE_IQ4_NL;
}
if (s == "q6_0") {
return GGML_TYPE_Q6_0;
}
if (s == "q8_KV") {
return GGML_TYPE_Q8_KV;
}
return GGML_TYPE_COUNT;
}
namespace {
bool parse_buft_overrides(const std::string& value, std::vector<llama_model_tensor_buft_override>& overrides) {
/* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
if (buft_list.empty()) {
// enumerate all the devices and add their buffer types to the list
for (size_t i = 0; i < ggml_backend_reg_get_count(); ++i) {
//auto * dev = ggml_backend_reg_get_name(i);
auto * buft = ggml_backend_reg_get_default_buffer_type(i);
if (buft) {
buft_list[ggml_backend_buft_name(buft)] = buft;
}
}
}
for (const auto & override : string_split<std::string>(value, ',')) {
std::string::size_type pos = override.find('=');
if (pos == std::string::npos) {
fprintf(stderr, "Invalid buft override argument %s\n", value.c_str());
return false;
}
std::string tensor_name = override.substr(0, pos);
std::string buffer_type = override.substr(pos + 1);
if (buft_list.find(buffer_type) == buft_list.end()) {
fprintf(stderr, "Available buffer types:\n");
for (const auto & it : buft_list) {
fprintf(stderr, " %s\n", ggml_backend_buft_name(it.second));
}
return false;
}
overrides.push_back({strdup(tensor_name.c_str()), buft_list.at(buffer_type)});
}
return true;
}
bool add_cpu_buft_overrides(const char * arg, std::vector<llama_model_tensor_buft_override>& overrides) {
int n_layers = std::stoi(arg);
if (n_layers < 0) {
fprintf(stderr, "error: Invalid value for --n-cpu-moe: %s\n", arg);
return false;
}
for (int32_t l = 0; l < n_layers; ++l) {
std::string pattern = "blk\\." + std::to_string(l) + "\\.(ffn_(up|down|gate)_exps\\.weight)";
overrides.push_back({strdup(pattern.c_str()), ggml_backend_cpu_buffer_type()});
}
return true;
}
template<class T1, class T2>
std::vector<std::pair<T1,T2>> string_split_pairs(const std::string & str, char delim) {
std::vector<std::pair<T1,T2>> values;
std::istringstream str_stream(str);
std::string token;
T1 first_value;
int i = 0;
while (std::getline(str_stream, token, delim)) {
std::istringstream token_stream(token);
if (i%2 == 0) {
token_stream >> first_value;
if (token_stream.fail()) return {};
} else {
T2 value;
token_stream >> value;
if (token_stream.fail()) return {};
values.emplace_back(first_value, value);
}
i++;
}
return values;
}
bool operator==(const llama_model_tensor_buft_override & lhs, const llama_model_tensor_buft_override & rhs) {
return lhs.buft == rhs.buft &&
((lhs.pattern == nullptr && rhs.pattern == nullptr) || strcmp(lhs.pattern, rhs.pattern) == 0);
}
bool operator==(const std::vector<llama_model_tensor_buft_override> & lhs, const std::vector<llama_model_tensor_buft_override> & rhs) {
if (lhs.size() != rhs.size()) return false;
for (int i = 0; i < int(lhs.size()); ++i) {
if (!(lhs[i] == rhs[i])) return false;
}
return true;
}
}
static cmd_params parse_cmd_params(int argc, char ** argv) {
cmd_params params;
std::string arg;
bool invalid_param = false;
const std::string arg_prefix = "--";
const char split_delim = ',';
params.verbose = cmd_params_defaults.verbose;
params.output_format = cmd_params_defaults.output_format;
params.output_format_stderr = cmd_params_defaults.output_format_stderr;
params.reps = cmd_params_defaults.reps;
params.numa = cmd_params_defaults.numa;
params.warmup = cmd_params_defaults.warmup;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
std::replace(arg.begin(), arg.end(), '_', '-');
}
if (arg == "-h" || arg == "--help") {
print_usage(argc, argv);
exit(0);
} else if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<std::string>(argv[i], split_delim);
params.model.insert(params.model.end(), p.begin(), p.end());
} else if (arg == "-p" || arg == "--n-prompt") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<int>(argv[i], split_delim);
params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
} else if (arg == "-n" || arg == "--n-gen") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<int>(argv[i], split_delim);
params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
} else if (arg == "-pg") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<std::string>(argv[i], ',');
if (p.size() != 2) {
invalid_param = true;
break;
}
params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])});
} else if (arg == "-gp") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<std::string>(argv[i], ',');
if (p.size() != 2) {
invalid_param = true;
break;
}
params.n_gp.push_back({ std::stoi(p[0]), std::stoi(p[1]) });
} else if (arg == "-b" || arg == "--batch-size") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<int>(argv[i], split_delim);
params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
} else if (arg == "-ub" || arg == "--ubatch-size") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<int>(argv[i], split_delim);
params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
} else if (arg == "-ctk" || arg == "--cache-type-k") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<std::string>(argv[i], split_delim);
std::vector<ggml_type> types;
for (const auto & t : p) {
ggml_type gt = ggml_type_from_name(t);
if (gt == GGML_TYPE_COUNT) {
invalid_param = true;
break;
}
types.push_back(gt);
}
params.type_k.insert(params.type_k.end(), types.begin(), types.end());
} else if (arg == "-ctv" || arg == "--cache-type-v") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<std::string>(argv[i], split_delim);
std::vector<ggml_type> types;
for (const auto & t : p) {
ggml_type gt = ggml_type_from_name(t);
if (gt == GGML_TYPE_COUNT) {
invalid_param = true;
break;
}
types.push_back(gt);
}
params.type_v.insert(params.type_v.end(), types.begin(), types.end());
} else if (arg == "-t" || arg == "--threads") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<int>(argv[i], split_delim);
params.n_threads.reserve(params.n_threads.size() + p.size());
for (auto t : p) params.n_threads.push_back({t, t});
//params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
} else if (arg == "-tgb" || arg == "--threads-gen-batch") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto ps = string_split<std::string>(argv[i], ';');
for (auto& s : ps) {
auto p = string_split<int>(s.c_str(), ',');
if (p.size() != 2) {
invalid_param = true;
break;
}
params.n_threads.push_back({p[0], p[1]});
}
} else if (arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<int>(argv[i], split_delim);
params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
} else if (arg == "-rpc" || arg == "--rpc") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rpc_servers.push_back(argv[i]);
} else if (arg == "-sm" || arg == "--split-mode") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<std::string>(argv[i], split_delim);
std::vector<llama_split_mode> modes;
for (const auto & m : p) {
llama_split_mode mode;
if (m == "none") {
mode = LLAMA_SPLIT_MODE_NONE;
} else if (m == "layer") {
mode = LLAMA_SPLIT_MODE_LAYER;
} else if (m == "graph") {
mode = LLAMA_SPLIT_MODE_GRAPH;
} else {
invalid_param = true;
break;
}
modes.push_back(mode);
}
params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
} else if (arg == "-mg" || arg == "--main-gpu") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.main_gpu = string_split<int>(argv[i], split_delim);
} else if (arg == "-nkvo" || arg == "--no-kv-offload") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<bool>(argv[i], split_delim);
params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
} else if (arg == "--numa") {
if (++i >= argc) {
invalid_param = true;
break;
} else {
std::string value(argv[i]);
/**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
else { invalid_param = true; break; }
}
} else if (arg == "-fa" || arg == "--flash-attn") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<bool>(argv[i], split_delim);
params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
} else if (arg == "-mla" || arg == "--mla-attn") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<int>(argv[i], split_delim);
params.mla_attn.insert(params.mla_attn.end(), p.begin(), p.end());
} else if (arg == "-amb" || arg == "--attn-max-batch") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<int>(argv[i], split_delim);
params.attn_max_batch.insert(params.attn_max_batch.end(), p.begin(), p.end());
} else if (arg == "-gr" || arg == "--graph-reuse") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<bool>(argv[i], split_delim);
params.reuse.insert(params.reuse.end(), p.begin(), p.end());
} else if (arg == "-ser" || arg == "--smart-expert-reduction") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split_pairs<int,float>(argv[i], split_delim);
params.ser.insert(params.ser.end(), p.begin(), p.end());
} else if (arg == "-mmp" || arg == "--mmap") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<bool>(argv[i], split_delim);
params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
} else if (arg == "-embd" || arg == "--embeddings") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = string_split<bool>(argv[i], split_delim);
params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
} else if (arg == "-ts" || arg == "--tensor-split") {
if (++i >= argc) {
invalid_param = true;
break;
}
for (auto ts : string_split<std::string>(argv[i], split_delim)) {
// split string by ; and /
const std::regex regex{R"([;/]+)"};
std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
GGML_ASSERT(split_arg.size() <= llama_max_devices());
std::vector<float> tensor_split(llama_max_devices());
for (size_t i = 0; i < llama_max_devices(); ++i) {
if (i < split_arg.size()) {
tensor_split[i] = std::stof(split_arg[i]);
} else {
tensor_split[i] = 0.0f;
}
}
params.tensor_split.push_back(tensor_split);
}
} else if (arg == "-r" || arg == "--repetitions") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.reps = std::stoi(argv[i]);
} else if (arg == "-o" || arg == "--output") {
if (++i >= argc) {
invalid_param = true;
break;
}
invalid_param = !output_format_from_str(argv[i], params.output_format);
} else if (arg == "-oe" || arg == "--output-err") {
if (++i >= argc) {
invalid_param = true;
break;
}
invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
} else if (arg == "-v" || arg == "--verbose") {
params.verbose = true;
} else if (arg == "-w" || arg == "--warmup") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.warmup = std::stoi(argv[i]);
} else if (arg == "-rtr" || arg == "--run-time-repack") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.repack = std::stoi(argv[i]);
} else if (arg == "-cuda" || arg == "--cuda-params") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.cuda_params = argv[i];
} else if (arg == "-mqkv" || arg == "--merge-qkv") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.mqkv = std::stoi(argv[i]);
} else if (arg == "-muge" || arg == "--merge-up-gate-exps") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.muge = std::stoi(argv[i]);
} else if (arg == "-rcache" || arg == "--rope-cache") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rcache = std::stoi(argv[i]);
} else if (arg == "-thp" || arg == "--transparent-huge-pages") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.use_thp = std::stoi(argv[i]);
} else if (arg == "-fmoe" || arg == "--fused-moe") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.fmoe = std::stoi(argv[i]);
} else if (arg == "-ger" || arg == "--grouped-expert-routing") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.ger = std::stoi(argv[i]);
} else if (arg == "-no-fug" || arg == "--no-fused-up-gate") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.no_fug = std::stoi(argv[i]);
} else if (arg == "-no-ooae" || arg == "--no-offload-only-active-experts") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.no_ooae = std::stoi(argv[i]);
} else if (arg == "-ot" || arg == "--override-tensor") {
if (++i >= argc) {
invalid_param = true;
break;
}
if (!parse_buft_overrides(std::string{argv[i]}, params.buft_overrides)) {
fprintf(stderr, "error: Invalid tensor buffer type override: %s\n", argv[i]);
invalid_param = true;
break;
}
} else if (arg == "--n-cpu-moe") {
if (++i >= argc) {
invalid_param = true;
break;
}
if (!add_cpu_buft_overrides(argv[i], params.buft_overrides)) {
invalid_param = true;
break;
}
} else {
invalid_param = true;
break;
}
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
print_usage(argc, argv);
exit(1);
}
// set defaults
if (params.model.empty()) { params.model = cmd_params_defaults.model; }
if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
if (params.n_gp.empty()) { params.n_gp = cmd_params_defaults.n_gp; }
if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
if (params.mla_attn.empty()) { params.mla_attn = cmd_params_defaults.mla_attn; }
if (params.attn_max_batch.empty()){ params.attn_max_batch = cmd_params_defaults.attn_max_batch; }
if (params.reuse.empty()) { params.reuse = cmd_params_defaults.reuse; }
if (params.ser.empty()) { params.ser = cmd_params_defaults.ser; }
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
if (!params.buft_overrides.empty()) params.buft_overrides.emplace_back(llama_model_tensor_buft_override{nullptr, nullptr});
return params;
}
enum test_kind_type {
// measure mean prompt processing rate without token generation
TEST_KIND_PP,
// measure mean token generation rate without prompt processing
TEST_KIND_TG,
// measure mean prompt processing and token generation rate
TEST_KIND_PG,
// measure mean token generation rate after processing prompt of given length
TEST_KIND_GP,
};
struct cmd_params_instance {
test_kind_type test_kind;
std::string model;
int n_prompt;
int n_gen;
int n_batch;
int n_ubatch;
ggml_type type_k;
ggml_type type_v;
std::pair<int,int> n_threads;
int n_gpu_layers;
std::string rpc_servers;
llama_split_mode split_mode;
int main_gpu;
bool no_kv_offload;
bool flash_attn;
int mla_attn;
int attn_max_batch;
bool reuse;
Ser ser;
std::vector<float> tensor_split;
std::string cuda_params;
bool use_mmap;
bool embeddings;
bool repack = false;
bool fmoe = true;
bool ger = false;
bool no_fug = false;
bool use_thp = false;
bool no_ooae = false;
bool mqkv = false;
bool muge = false;
bool rcache = false;
const llama_model_tensor_buft_override* buft_overrides;
llama_model_params to_llama_mparams() const {
llama_model_params mparams = llama_model_default_params();
mparams.n_gpu_layers = n_gpu_layers;
if (!rpc_servers.empty()) {
mparams.rpc_servers = rpc_servers.c_str();
}
mparams.split_mode = split_mode;
mparams.main_gpu = main_gpu;
mparams.tensor_split = tensor_split.data();
mparams.use_mmap = use_mmap;
mparams.repack_tensors = repack;
mparams.use_thp = use_thp;
mparams.merge_qkv = mqkv;
mparams.merge_up_gate_exps = muge;
mparams.tensor_buft_overrides = buft_overrides;
mparams.mla = mla_attn;
return mparams;
}
bool equal_mparams(const cmd_params_instance & other) const {
return model == other.model &&
n_gpu_layers == other.n_gpu_layers &&
rpc_servers == other.rpc_servers &&
split_mode == other.split_mode &&
main_gpu == other.main_gpu &&
use_mmap == other.use_mmap &&
repack == other.repack &&
mqkv == other.mqkv &&
muge == other.muge &&
use_thp == other.use_thp &&
tensor_split == other.tensor_split;
}
llama_context_params to_llama_cparams() const {
llama_context_params cparams = llama_context_default_params();
cparams.n_ctx = n_prompt + n_gen;
cparams.n_batch = n_batch;
cparams.n_ubatch = n_ubatch;
cparams.type_k = type_k;
cparams.type_v = type_v;
cparams.offload_kqv = !no_kv_offload;
cparams.flash_attn = flash_attn;
cparams.mla_attn = mla_attn;
cparams.attn_max_batch = attn_max_batch;
cparams.graph_reuse = reuse;
cparams.fused_moe_up_gate = fmoe;
cparams.grouped_expert_routing = ger;
cparams.rope_cache = rcache;
cparams.fused_up_gate = !no_fug;
cparams.only_active_experts = !no_ooae;
cparams.min_experts = ser.first;
cparams.thresh_experts = ser.second;
cparams.embeddings = embeddings;
cparams.cuda_params = (void *)cuda_params.data();
return cparams;
}
};
static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
std::vector<cmd_params_instance> instances;
// this ordering minimizes the number of times that each model needs to be reloaded
for (const auto & m : params.model)
for (const auto & nl : params.n_gpu_layers)
for (const auto & rpc : params.rpc_servers)
for (const auto & sm : params.split_mode)
for (const auto & mg : params.main_gpu)
for (const auto & ts : params.tensor_split)
for (const auto & mmp : params.use_mmap)
for (const auto & embd : params.embeddings)
for (const auto & nb : params.n_batch)
for (const auto & nub : params.n_ubatch)
for (const auto & tk : params.type_k)
for (const auto & tv : params.type_v)
for (const auto & nkvo : params.no_kv_offload)
for (const auto & fa : params.flash_attn)
for (const auto & mla : params.mla_attn)
for (const auto & amb : params.attn_max_batch)
for (const auto & reuse : params.reuse)
for (const auto & ser : params.ser)
for (const auto & nt : params.n_threads) {
for (const auto & n_prompt : params.n_prompt) {
if (n_prompt == 0) {
continue;
}
cmd_params_instance instance = {
/* .test_kind = */ TEST_KIND_PP,
/* .model = */ m,
/* .n_prompt = */ n_prompt,
/* .n_gen = */ 0,
/* .n_batch = */ nb,
/* .n_ubatch = */ nub,
/* .type_k = */ tk,
/* .type_v = */ tv,
/* .n_threads = */ nt,
/* .n_gpu_layers = */ nl,
/* .rpc_servers = */ rpc,
/* .split_mode = */ sm,
/* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
/* .flash_attn = */ fa,
/* .mla_attn = */ mla,
/* .attn_max_b = */ amb,
/* .reuse = */ reuse,
/* .ser = */ ser,
/* .tensor_split = */ ts,
/* .cuda_params = */ params.cuda_params,
/* .use_mmap = */ mmp,
/* .embeddings = */ embd,
/* .repack = */ params.repack,
/* .fmoe = */ params.fmoe,
/* .ger = */ params.ger,
/* .no_fug = */ params.no_fug,
/* .use_thp = */ params.use_thp,
/* .no_ooae = */ params.no_ooae,
/* .mqkv = */ params.mqkv,
/* .muge = */ params.muge,
/* .rcache = */ params.rcache,
/* .buft_overrides=*/ params.buft_overrides.data(),
};
instances.push_back(instance);
}
for (const auto & n_gen : params.n_gen) {
if (n_gen == 0) {
continue;
}
cmd_params_instance instance = {
/* .test_kind = */ TEST_KIND_TG,
/* .model = */ m,
/* .n_prompt = */ 0,
/* .n_gen = */ n_gen,
/* .n_batch = */ nb,
/* .n_ubatch = */ nub,
/* .type_k = */ tk,
/* .type_v = */ tv,
/* .n_threads = */ nt,
/* .n_gpu_layers = */ nl,
/* .rpc_servers = */ rpc,
/* .split_mode = */ sm,
/* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
/* .flash_attn = */ fa,
/* .mla_attn = */ mla,
/* .attn_max_b = */ amb,
/* .reuse = */ reuse,
/* .ser = */ ser,
/* .tensor_split = */ ts,
/* .cuda_params = */ params.cuda_params,
/* .use_mmap = */ mmp,
/* .embeddings = */ embd,
/* .repack = */ params.repack,
/* .fmoe = */ params.fmoe,
/* .ger = */ params.ger,
/* .no_fug = */ params.no_fug,
/* .use_thp = */ params.use_thp,
/* .no_ooae = */ params.no_ooae,
/* .mqkv = */ params.mqkv,
/* .muge = */ params.muge,
/* .rcache = */ params.rcache,
/* .buft_overrides=*/ params.buft_overrides.data(),
};
instances.push_back(instance);
}
for (const auto & n_pg : params.n_pg) {
if (n_pg.first == 0 && n_pg.second == 0) {
continue;
}
cmd_params_instance instance = {
/* .test_kind = */ TEST_KIND_PG,
/* .model = */ m,
/* .n_prompt = */ n_pg.first,
/* .n_gen = */ n_pg.second,
/* .n_batch = */ nb,
/* .n_ubatch = */ nub,
/* .type_k = */ tk,
/* .type_v = */ tv,
/* .n_threads = */ nt,
/* .n_gpu_layers = */ nl,
/* .rpc_servers = */ rpc,
/* .split_mode = */ sm,
/* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
/* .flash_attn = */ fa,
/* .mla_attn = */ mla,
/* .attn_max_b = */ amb,
/* .reuse = */ reuse,
/* .ser = */ ser,
/* .tensor_split = */ ts,
/* .cuda_params = */ params.cuda_params,
/* .use_mmap = */ mmp,
/* .embeddings = */ embd,
/* .repack = */ params.repack,
/* .fmoe = */ params.fmoe,
/* .ger = */ params.ger,
/* .no_fug = */ params.no_fug,
/* .use_thp = */ params.use_thp,
/* .no_ooae = */ params.no_ooae,
/* .mqkv = */ params.mqkv,
/* .muge = */ params.muge,
/* .rcache = */ params.rcache,
/* .buft_overrides=*/ params.buft_overrides.data(),
};
instances.push_back(instance);
}
for (const auto & n_gp : params.n_gp) {
if (n_gp.first == 0 && n_gp.second == 0) {
continue;
}
cmd_params_instance instance = {
/* .test_kind = */ TEST_KIND_GP,
/* .model = */ m,
/* .n_prompt = */ n_gp.first,
/* .n_gen = */ n_gp.second,
/* .n_batch = */ nb,
/* .n_ubatch = */ nub,
/* .type_k = */ tk,
/* .type_v = */ tv,
/* .n_threads = */ nt,
/* .n_gpu_layers = */ nl,
/* .rpc_servers = */ rpc,
/* .split_mode = */ sm,
/* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
/* .flash_attn = */ fa,
/* .mla_attn = */ mla,
/* .attn_max_b = */ amb,
/* .reuse = */ reuse,
/* .ser = */ ser,
/* .tensor_split = */ ts,
/* .cuda_params = */ params.cuda_params,
/* .use_mmap = */ mmp,
/* .embeddings = */ embd,
/* .repack = */ params.repack,
/* .fmoe = */ params.fmoe,
/* .ger = */ params.ger,
/* .no_fug = */ params.no_fug,
/* .use_thp = */ params.use_thp,
/* .no_ooae = */ params.no_ooae,
/* .mqkv = */ params.mqkv,
/* .muge = */ params.muge,
/* .rcache = */ params.rcache,
/* .buft_overrides=*/ params.buft_overrides.data(),
};
instances.push_back(instance);
}
}
return instances;
}
struct test {
static const std::string build_commit;
static const int build_number;
static const bool cuda;
static const bool vulkan;
static const bool kompute;
static const bool metal;
static const bool sycl;
static const bool gpu_blas;
static const bool blas;
static const std::string cpu_info;
static const std::string gpu_info;
std::string model_filename;
std::string model_type;
uint64_t model_size;
uint64_t model_n_params;
int n_batch;
int n_ubatch;
std::pair<int,int> n_threads;
bool has_rpc;
ggml_type type_k;
ggml_type type_v;
int n_gpu_layers;
llama_split_mode split_mode;
int main_gpu;
bool no_kv_offload;
bool flash_attn;
int mla_attn;
int attn_max_batch;
bool reuse;
Ser ser;
std::vector<float> tensor_split;
std::string cuda_params;
bool use_mmap;
bool embeddings;
bool repack = false;
bool fmoe = false;
bool ger = false;
bool no_fug = false;
bool use_thp = false;
bool no_ooae = false;
bool mqkv = false;
bool muge = false;
bool rcache = false;
std::string override_tensor;
int n_prompt;
int n_gen;
std::string test_time;
std::vector<uint64_t> samples_ns;
test_kind_type test_kind;
std::string test_label;
test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
model_filename = inst.model;
char buf[128];
llama_model_desc(lmodel, buf, sizeof(buf));
model_type = buf;
model_size = llama_model_size(lmodel);
model_n_params = llama_model_n_params(lmodel);
n_batch = inst.n_batch;
n_ubatch = inst.n_ubatch;
n_threads = inst.n_threads;
has_rpc = !inst.rpc_servers.empty();
type_k = inst.type_k;
type_v = inst.type_v;
n_gpu_layers = inst.n_gpu_layers;
split_mode = inst.split_mode;
main_gpu = inst.main_gpu;
no_kv_offload = inst.no_kv_offload;
flash_attn = inst.flash_attn;
mla_attn = inst.mla_attn;
attn_max_batch = inst.attn_max_batch;
reuse = inst.reuse;
ser = inst.ser;
tensor_split = inst.tensor_split;
cuda_params = inst.cuda_params;
use_mmap = inst.use_mmap;
embeddings = inst.embeddings;
repack = inst.repack;
mqkv = inst.mqkv;
muge = inst.muge;
fmoe = inst.fmoe;
ger = inst.ger;
rcache = inst.rcache;
no_fug = inst.no_fug;
use_thp = inst.use_thp;
no_ooae = inst.no_ooae;
if (inst.buft_overrides) {
const auto * bo = inst.buft_overrides;
while (bo->pattern) {
if (!override_tensor.empty()) {
override_tensor += ",";
}
override_tensor += bo->pattern;
override_tensor += "=";
override_tensor += ggml_backend_buft_name(bo->buft);
++bo;
}
}
n_prompt = inst.n_prompt;
n_gen = inst.n_gen;
test_kind = inst.test_kind;
// RFC 3339 date-time format
time_t t = time(NULL);
std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
test_time = buf;
// prepare test label for printing
switch (test_kind) {
case TEST_KIND_PP:
snprintf(buf, sizeof(buf), "pp%d", n_prompt);
break;
case TEST_KIND_TG:
snprintf(buf, sizeof(buf), "tg%d", n_gen);
break;
case TEST_KIND_PG:
snprintf(buf, sizeof(buf), "pp%d+tg%d", n_prompt, n_gen);
break;
case TEST_KIND_GP:
snprintf(buf, sizeof(buf), "tg%d@pp%d", n_gen, n_prompt);
break;
default:
snprintf(buf, sizeof(buf), "unknown");
break;
}
test_label = buf;
(void) ctx;
}
uint64_t avg_ns() const {
return ::avg(samples_ns);
}
uint64_t stdev_ns() const {
return ::stdev(samples_ns);
}
std::vector<double> get_ts() const {
int n_tokens = (test_kind == TEST_KIND_GP ? 0 : n_prompt) + n_gen;
std::vector<double> ts;
std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
return ts;
}
double avg_ts() const {
return ::avg(get_ts());
}
double stdev_ts() const {
return ::stdev(get_ts());
}
static std::string get_backend() {
if (cuda) {
return GGML_CUDA_NAME;
}
if (vulkan) {
return "Vulkan";
}
if (kompute) {
return "Kompute";
}
if (metal) {
return "Metal";
}
if (sycl) {
return GGML_SYCL_NAME;
}
if (gpu_blas) {
return "GPU BLAS";
}
if (blas) {
return "BLAS";
}
return "CPU";
}
static const std::vector<std::string> & get_fields() {
static const std::vector<std::string> fields = {
"build_commit", "build_number",
"cuda", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas",
"cpu_info", "gpu_info",
"model_filename", "model_type", "model_size", "model_n_params",
"n_batch", "n_ubatch",
"n_threads", "type_k", "type_v",
"n_gpu_layers", "split_mode",
"main_gpu", "no_kv_offload", "flash_attn", "mla_attn", "attn_max_batch", "ser", "reuse",
"tensor_split", "use_mmap", "embeddings", "repack", "mqkv", "muge", "fused_moe", "grouped_er",
"no_fused_up_gate", "use_thp", "no_ooae", "rcache", "cuda_params", "override_tensor",
"n_prompt", "n_gen", "test_time",
"avg_ns", "stddev_ns",
"avg_ts", "stddev_ts", "test",
};
return fields;
}
enum field_type {STRING, BOOL, INT, FLOAT};
static field_type get_field_type(const std::string & field) {
if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
field == "n_threads" ||
field == "model_size" || field == "model_n_params" ||
field == "n_gpu_layers" || field == "main_gpu" ||
field == "n_prompt" || field == "n_gen" || field == "mla_attn" || field == "attn_max_batch" ||
field == "avg_ns" || field == "stddev_ns") {
return INT;
}
if (field == "cuda" || field == "vulkan" || field == "kompute" || field == "metal" ||
field == "gpu_blas" || field == "blas" || field == "sycl" || field == "no_kv_offload" ||
field == "flash_attn" || field == "use_mmap" || field == "embeddings" || field == "repack" || field == "use_thp" ||
field == "fused_moe" || field == "grouped_er" || field == "no_fused_up_gate" || field == "no_ooae" || field == "mqkv" ||
field == "rcache" || field == "reuse" || field == "muge") {
return BOOL;
}
if (field == "avg_ts" || field == "stddev_ts") {
return FLOAT;
}
return STRING;
}
std::vector<std::string> get_values() const {
std::string tensor_split_str;
int max_nonzero = 0;
for (size_t i = 0; i < llama_max_devices(); i++) {
if (tensor_split[i] > 0) {
max_nonzero = i;
}
}
for (int i = 0; i <= max_nonzero; i++) {
char buf[32];
snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
tensor_split_str += buf;
if (i < max_nonzero) {
tensor_split_str += "/";
}
}
auto ser_to_string = [] (const Ser& ser) {
std::ostringstream str;
str << ser.first << ',' << ser.second;
return str.str();
};
bool is_gen = n_gen > 0;
std::vector<std::string> values = {
build_commit, std::to_string(build_number),
std::to_string(cuda), std::to_string(vulkan), std::to_string(kompute),
std::to_string(metal), std::to_string(sycl), std::to_string(has_rpc), std::to_string(gpu_blas), std::to_string(blas),
cpu_info, gpu_info,
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
std::to_string(n_batch), std::to_string(n_ubatch),
std::to_string(is_gen ? n_threads.first : n_threads.second), ggml_type_name(type_k), ggml_type_name(type_v),
std::to_string(n_gpu_layers), split_mode_str(split_mode),
std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
std::to_string(mla_attn), std::to_string(attn_max_batch), ser_to_string(ser), std::to_string(reuse),
tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
std::to_string(repack), std::to_string(mqkv), std::to_string(muge), std::to_string(fmoe), std::to_string(ger),
std::to_string(no_fug), std::to_string(use_thp), std::to_string(no_ooae), std::to_string(rcache),
cuda_params, override_tensor,
std::to_string(n_prompt), std::to_string(n_gen), test_time,
std::to_string(avg_ns()), std::to_string(stdev_ns()),
std::to_string(avg_ts()), std::to_string(stdev_ts()),
test_label
};
return values;
}
std::map<std::string, std::string> get_map() const {
std::map<std::string, std::string> map;
auto fields = get_fields();
auto values = get_values();
std::transform(fields.begin(), fields.end(), values.begin(),
std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
return map;
}
};
const std::string test::build_commit = LLAMA_COMMIT;
const int test::build_number = LLAMA_BUILD_NUMBER;
const bool test::cuda = !!ggml_cpu_has_cuda();
const bool test::vulkan = !!ggml_cpu_has_vulkan();
const bool test::kompute = !!ggml_cpu_has_kompute();
const bool test::metal = !!ggml_cpu_has_metal();
const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
const bool test::blas = !!ggml_cpu_has_blas();
const bool test::sycl = !!ggml_cpu_has_sycl();
const std::string test::cpu_info = get_cpu_info();
const std::string test::gpu_info = get_gpu_info();
struct printer {
virtual ~printer() {}
FILE * fout;
virtual void print_header(const cmd_params & params) { (void) params; }
virtual void print_test(const test & t) = 0;
virtual void print_footer() { }
};
struct csv_printer : public printer {
static std::string escape_csv(const std::string & field) {
std::string escaped = "\"";
for (auto c : field) {
if (c == '"') {
escaped += "\"";
}
escaped += c;
}
escaped += "\"";
return escaped;
}
void print_header(const cmd_params & params) override {
std::vector<std::string> fields = test::get_fields();
fprintf(fout, "%s\n", join(fields, ",").c_str());
(void) params;
}
void print_test(const test & t) override {
std::vector<std::string> values = t.get_values();
std::transform(values.begin(), values.end(), values.begin(), escape_csv);
fprintf(fout, "%s\n", join(values, ",").c_str());
}
};
struct json_printer : public printer {
bool first = true;
static std::string escape_json(const std::string & value) {
std::string escaped;
for (auto c : value) {
if (c == '"') {
escaped += "\\\"";
} else if (c == '\\') {
escaped += "\\\\";
} else if (c <= 0x1f) {
char buf[8];
snprintf(buf, sizeof(buf), "\\u%04x", c);
escaped += buf;
} else {
escaped += c;
}
}
return escaped;
}
static std::string format_value(const std::string & field, const std::string & value) {
switch (test::get_field_type(field)) {
case test::STRING:
return "\"" + escape_json(value) + "\"";
case test::BOOL:
return value == "0" ? "false" : "true";
default:
return value;
}
}
void print_header(const cmd_params & params) override {
fprintf(fout, "[\n");
(void) params;
}
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
assert(fields.size() == values.size());
for (size_t i = 0; i < fields.size(); i++) {
fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
}
}
void print_test(const test & t) override {
if (first) {
first = false;
} else {
fprintf(fout, ",\n");
}
fprintf(fout, " {\n");
print_fields(test::get_fields(), t.get_values());
fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
fprintf(fout, " }");
fflush(fout);
}
void print_footer() override {
fprintf(fout, "\n]\n");
}
};
struct markdown_printer : public printer {
std::vector<std::string> fields;
static int get_field_width(const std::string & field) {
if (field == "model") {
return -30;
}
if (field == "t/s") {
return 16;
}
if (field == "size" || field == "params") {
return 10;
}
if (field == "n_gpu_layers") {
return 3;
}
if (field == "n_threads") {
return 7;
}
if (field == "n_batch") {
return 7;
}
if (field == "n_ubatch") {
return 8;
}
if (field == "type_k" || field == "type_v") {
return 6;
}
if (field == "split_mode") {
return 5;
}
if (field == "flash_attn") {
return 2;
}
if (field == "mla_attn") {
return 3;
}
if (field == "attn_max_batch") {
return 5;
}
if (field == "reuse") {
return 2;
}
if (field == "ser") {
return 10;
}
if (field == "use_mmap") {
return 4;
}
if (field == "repack") {
return 3;
}
if (field == "mqkv") {
return 4;
}
if (field == "muge") {
return 4;
}
if (field == "use_thp") {
return 3;
}
if (field == "fused_moe") {
return 4;
}
if (field == "grouped_er") {
return 3;
}
if (field == "rcache") {
return 6;
}
if (field == "no_fused_up_gate") {
return 6;
}
if (field == "no_ooae") {
return 7;
}
if (field == "test") {
return 13;
}
int width = std::max((int)field.length(), 10);
if (test::get_field_type(field) == test::STRING) {
return -width;
}
return width;
}
static std::string get_field_display_name(const std::string & field) {
if (field == "n_gpu_layers") {
return "ngl";
}
if (field == "split_mode") {
return "sm";
}
if (field == "n_threads") {
return "threads";
}
if (field == "no_kv_offload") {
return "nkvo";
}
if (field == "flash_attn") {
return "fa";
}
if (field == "mla_attn") {
return "mla";
}
if (field == "attn_max_batch") {
return "amb";
}
if (field == "reuse") {
return "gr";
}
if (field == "ser") {
return "ser";
}
if (field == "use_mmap") {
return "mmap";
}
if (field == "repack") {
return "rtr";
}
if (field == "mqkv") {
return "mqkv";
}
if (field == "muge") {
return "muge";
}
if (field == "use_thp") {
return "thp";
}
if (field == "fused_moe") {
return "fmoe";
}
if (field == "grouped_er") {
return "ger";
}
if (field == "rcache") {
return "rcache";
}
if (field == "no_fused_up_gate") {
return "no-fug";
}
if (field == "no_ooae") {
return "no-ooae";
}
if (field == "embeddings") {
return "embd";
}
if (field == "tensor_split") {
return "ts";
}
if (field == "cuda_params") {
return "cuda";
}
if (field == "override_tensor") {
return "ot";
}
return field;
}
void print_header(const cmd_params & params) override {
// select fields to print
fields.emplace_back("model");
fields.emplace_back("size");
fields.emplace_back("params");
fields.emplace_back("backend");
bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
if (!is_cpu_backend) {
fields.emplace_back("n_gpu_layers");
}
if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
fields.emplace_back("n_threads");
}
if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
fields.emplace_back("n_batch");
}
if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
fields.emplace_back("n_ubatch");
}
if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
fields.emplace_back("type_k");
}
if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
fields.emplace_back("type_v");
}
if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
fields.emplace_back("main_gpu");
}
if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
fields.emplace_back("split_mode");
}
if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
fields.emplace_back("no_kv_offload");
}
if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
fields.emplace_back("flash_attn");
}
if (params.mla_attn.size() > 1 || params.mla_attn != cmd_params_defaults.mla_attn) {
fields.emplace_back("mla_attn");
}
if (params.attn_max_batch.size() > 1 || params.attn_max_batch != cmd_params_defaults.attn_max_batch) {
fields.emplace_back("attn_max_batch");
}
if (params.reuse.size() > 1 || params.reuse != cmd_params_defaults.reuse) {
fields.emplace_back("reuse");
}
if (params.ser.size() > 1 || params.ser != cmd_params_defaults.ser) {
fields.emplace_back("ser");
}
if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
fields.emplace_back("tensor_split");
}
if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
fields.emplace_back("use_mmap");
}
if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
fields.emplace_back("embeddings");
}
if (params.cuda_params != cmd_params_defaults.cuda_params) {
fields.emplace_back("cuda_params");
}
if (!(params.buft_overrides == cmd_params_defaults.buft_overrides)) {
fields.emplace_back("override_tensor");
}
if (params.repack != cmd_params_defaults.repack) {
fields.emplace_back("repack");
}
if (params.mqkv != cmd_params_defaults.mqkv) {
fields.emplace_back("mqkv");
}
if (params.muge != cmd_params_defaults.muge) {
fields.emplace_back("muge");
}
if (params.use_thp != cmd_params_defaults.use_thp) {
fields.emplace_back("use_thp");
}
if (params.fmoe != cmd_params_defaults.fmoe) {
fields.emplace_back("fused_moe");
}
if (params.ger != cmd_params_defaults.ger) {
fields.emplace_back("grouped_er");
}
if (params.rcache != cmd_params_defaults.rcache) {
fields.emplace_back("rcache");
}
if (params.no_fug != cmd_params_defaults.no_fug) {
fields.emplace_back("no_fused_up_gate");
}
if (params.no_ooae != cmd_params_defaults.no_ooae) {
fields.emplace_back("no_ooae");
}
fields.emplace_back("test");
fields.emplace_back("t/s");
fprintf(fout, "|");
for (const auto & field : fields) {
fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
}
fprintf(fout, "\n");
fprintf(fout, "|");
for (const auto & field : fields) {
int width = get_field_width(field);
fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
}
fprintf(fout, "\n");
}
void print_test(const test & t) override {
std::map<std::string, std::string> vmap = t.get_map();
fprintf(fout, "|");
for (const auto & field : fields) {
std::string value;
char buf[128];
if (field == "model") {
value = t.model_type;
} else if (field == "size") {
if (t.model_size < 1024*1024*1024) {
snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
} else {
snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
}
value = buf;
} else if (field == "params") {
if (t.model_n_params < 1000*1000*1000) {
snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
} else {
snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
}
value = buf;
} else if (field == "backend") {
value = test::get_backend();
if (t.has_rpc) {
value += "+RPC";
}
} else if (field == "test") {
//if (t.n_prompt > 0 && t.n_gen == 0) {
// snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
//} else if (t.n_gen > 0 && t.n_prompt == 0) {
// snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
//} else {
// snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
//}
//value = buf;
value = t.test_label;
} else if (field == "t/s") {
snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
value = buf;
} else if (vmap.find(field) != vmap.end()) {
value = vmap.at(field);
} else {
assert(false);
exit(1);
}
int width = get_field_width(field);
if (field == "t/s") {
// HACK: the utf-8 character is 2 bytes
width += 1;
}
fprintf(fout, " %*s |", width, value.c_str());
}
fprintf(fout, "\n");
}
void print_footer() override {
fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
}
};
struct sql_printer : public printer {
static std::string escape_sql(const std::string & value) {
std::string escaped;
for (auto c : value) {
if (c == '\'') {
escaped += "''";
} else {
escaped += c;
}
}
return escaped;
}
static std::string get_sql_field_type(const std::string & field) {
switch (test::get_field_type(field)) {
case test::STRING:
return "TEXT";
case test::BOOL:
case test::INT:
return "INTEGER";
case test::FLOAT:
return "REAL";
default:
assert(false);
exit(1);
}
}
void print_header(const cmd_params & params) override {
std::vector<std::string> fields = test::get_fields();
fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
for (size_t i = 0; i < fields.size(); i++) {
fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
}
fprintf(fout, ");\n");
fprintf(fout, "\n");
(void) params;
}
void print_test(const test & t) override {
fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
fprintf(fout, "VALUES (");
std::vector<std::string> values = t.get_values();
std::transform(values.begin(), values.end(), values.begin(), escape_sql);
for (size_t i = 0; i < values.size(); i++) {
fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
}
fprintf(fout, ");\n");
}
};
static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
llama_set_n_threads(ctx, n_threads, n_threads);
const llama_model * model = llama_get_model(ctx);
const int32_t n_vocab = llama_n_vocab(model);
std::vector<llama_token> tokens(n_batch);
int n_processed = 0;
while (n_processed < n_prompt) {
int n_tokens = std::min(n_prompt - n_processed, n_batch);
tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
for (int i = 1; i < n_tokens; i++) {
tokens[i] = std::rand() % n_vocab;
}
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
n_processed += n_tokens;
}
llama_synchronize(ctx);
}
static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
llama_set_n_threads(ctx, n_threads, n_threads);
const llama_model * model = llama_get_model(ctx);
const int32_t n_vocab = llama_n_vocab(model);
llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
for (int i = 0; i < n_gen; i++) {
llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
llama_synchronize(ctx);
token = std::rand() % n_vocab;
}
}
static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) text;
(void) user_data;
}
static std::unique_ptr<printer> create_printer(output_formats format) {
switch (format) {
case NONE:
return nullptr;
case CSV:
return std::unique_ptr<printer>(new csv_printer());
case JSON:
return std::unique_ptr<printer>(new json_printer());
case MARKDOWN:
return std::unique_ptr<printer>(new markdown_printer());
case SQL:
return std::unique_ptr<printer>(new sql_printer());
}
GGML_ABORT("fatal error");
}
int main(int argc, char ** argv) {
// try to set locale for unicode characters in markdown
setlocale(LC_CTYPE, ".UTF-8");
#if !defined(NDEBUG)
fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
#endif
#if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
fprintf(stderr, "warning: debug build, performance may be affected\n");
#endif
#if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
#endif
cmd_params params = parse_cmd_params(argc, argv);
// initialize llama.cpp
if (!params.verbose) {
llama_log_set(llama_null_log_callback, NULL);
}
llama_backend_init();
llama_numa_init(params.numa);
// initialize printer
std::unique_ptr<printer> p = create_printer(params.output_format);
std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
if (p) {
p->fout = stdout;
p->print_header(params);
}
if (p_err) {
p_err->fout = stderr;
p_err->print_header(params);
}
std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
llama_model * lmodel = nullptr;
const cmd_params_instance * prev_inst = nullptr;
for (const auto & inst : params_instances) {
// keep the same model between tests when possible
if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
if (lmodel) {
llama_free_model(lmodel);
}
lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
if (lmodel == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
return 1;
}
prev_inst = &inst;
}
llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
llama_free_model(lmodel);
return 1;
}
test t(inst, lmodel, ctx);
llama_kv_cache_clear(ctx);
// warmup run
if (params.warmup) {
if (t.n_prompt > 0) {
//test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
test_prompt(ctx, 1, 0, t.n_batch, t.n_threads.second);
}
if (t.n_gen > 0) {
test_gen(ctx, 1, 0, t.n_threads.first);
}
}
for (int i = 0; i < params.reps; i++) {
llama_kv_cache_clear(ctx);
uint64_t t_start = get_time_ns();
if (t.n_prompt > 0) {
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads.second);
}
if (t.test_kind == TEST_KIND_GP) t_start = get_time_ns();
if (t.n_gen > 0) {
test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads.first);
}
uint64_t t_ns = get_time_ns() - t_start;
t.samples_ns.push_back(t_ns);
}
if (p) {
p->print_test(t);
fflush(p->fout);
}
if (p_err) {
p_err->print_test(t);
fflush(p_err->fout);
}
llama_print_timings(ctx);
llama_free(ctx);
}
llama_free_model(lmodel);
if (p) {
p->print_footer();
}
if (p_err) {
p_err->print_footer();
}
llama_backend_free();
return 0;
}