mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-01-26 17:20:01 +00:00
* Merge vulkan code from mainline up to commit of 6/28/2025 * Vulkan Optimizations and Fixes (#8959) * Optimize Vulkan REPEAT performance * Use Vulkan GLSL fused multiply-add instruction where possible * Add GGML_VULKAN_PERF option to output performance data per operator * Rework and fix Vulkan descriptor set and descriptor pool handling * Fix float32 concat f16 shader validation error * Add Vulkan GROUP_NORM eps parameter * Fix validation error with transfer queue memory barrier flags * Remove trailing whitespaces vulkan : do not use tensor->extra (#9407) * vulkan : do not use tensor->extra This patch allows using the Vulkan backend with the RPC backend as tensor->extra is no longer used. Ref: #8536 * Adapt GGML_VULKAN_CHECK_RESULTS to extra removal (#2) --------- Co-authored-by: 0cc4m <picard12@live.de> # Conflicts: # ggml/src/ggml-vulkan.cpp vulkan : fix build (#0) ggml-ci Improve Vulkan shader build system (#9239) * Improve Vulkan shader builds system - Add dependency to vulkan-shaders-gen to rebuild shaders when changing the shader compilation utility. - Add option to generate debug info for Vulkan shaders to provide shader source to Vulkan shader profiling tools * remove not required self dependency ggml : fix build break for the vulkan-debug (#9265) - windows build : Ok. - linux build : Ok. Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com> vulkan: correctly report support for OP_CONT (ggml/946) test-backend-ops fails because ggml_cont aborts when invoked passing an unsupported type. This commit makes ggml_cont tests pass Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com> vulkan: add dryrun support to sin and cos ops (ggml/947) sin and cos failed test-backend-ops because they tried to dereference a context pointer that is null on dry runs. This commit prevents that segfault. Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com> # Conflicts: # ggml/src/ggml-vulkan.cpp Overlap cmdbuffer creation and cmdbuffer execution in Vulkan backend by submitting smaller cmdbuffers early. (#9118) * Overlap cmdbuffer creation and cmdbuffer execution in Vulkan backend by submitting smaller cmdbuffers early. * fix compile issues * Fix issues where the last submit wasn't executed or handled properly. * remove trailing whitespace * Repair GGML_VULKAN_CHECK_RESULTS * Increase submit counter only if actual work has been submitted and increase submit count to 100. * Fix some nodes are not checked with GGML_VULKAN_CHECK_RESULTS enabled. # Conflicts: # ggml/src/ggml-vulkan.cpp Enable use to the rebar feature to upload buffers to the device. (#9251) vulkan : argsort barriers must be under uniform control flow (ggml/951) a return before a barrier (that happens only in some threads in a workgroup) leads to UB. While the old code actually works on some devices, it fails on some others (i.e. "smaller" GPUs). BTW, I think it would be better to set specialization constants when the graph is built, in that way the local workgroup could be sized appropriately. But it would take a lot of work. Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com> vulkan : fix build for GGML_VULKAN_RUN_TESTS, add TFLOPS to log (ggml/961) vulkan : multithread pipeline creation (ggml/963) vulkan : mul_mat: fix UB with small warps (ggml/952) When the device's warp size is less than 16, it is possible for loadstride_a (mul_mm.comp:114) and loadstride_b (mul_mm.comp:115) to be set to 0. Because they are calculated as: the workgroup size, multiplied by LOAD_VEC_* (which can be 1) and divided by 16. And the workgroup size is set to be the same as the warp/subgroup size. The loadstride_* variables are used as increments in the loops that populate the buffers used for the multiplication. When they are 0 they cause an infinite loop. But infinite loops without side-effects are UB and the values of loadstride_* are known at compile time. So, the compiler quietly optimizes all the loops away. As a consequence, the buffers are not populated and the multiplication result is just a matrix with all elements set to 0. We prevent the UB by making sure that the workgroup size will never be less than 16, even if our device has a smaller warp size (e.g. 8). Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com> vulkan : retry allocation with fallback flags (whisper/2451) Co-authored-by: Samuel Morris <samuel.morris@artlist.io> vulkan : improve ggml_vk_create_buffer error handling (#9898) vulkan: Fix newly added tests for permuted mul_mat and 1D im2col (#10226) vulkan: Throttle the number of shader compiles during the build step. (#10222) Fixes #9582 Spawning too many concurrent copies of glslc leads to "Failed to create pipes" errors on Linux. This change applies the same throttling we use for multithreaded pipeline creation. # Conflicts: # ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp vulkan: Optimize contiguous copies (#10254) * tests: Fix memory bandwidth calculation for perf tests Add a flops calculation for flash attention. Add one GGML_OP_CPY perf test. * vulkan: Optimize contiguous copies Add a variant of the copy shader for when the tensors are contiguous. Avoid the complex addressing calculations, and do four elements per invocation to hide some other overhead. Apply similar changes to the scale shader, since scale is always contiguous. Add a "progress bar" for shader compiles. # Conflicts: # tests/test-backend-ops.cpp vulkan: Use macros to make the mat mul pipeline creation more concise (#10259) Also add vk_matmul_pipeline2 to hold f16/f32 accumulator versions of a pipeline. This isn't really used yet. vulkan: Optimize binary ops (#10270) Reuse the index calculations across all of src0/src1/dst. Add a shader variant for when src0/src1 are the same dimensions and additional modulus for src1 aren't needed. Div/mod are slow, so add "fast" div/mod that have a fast path when the calculation isn't needed or can be done more cheaply. # Conflicts: # ggml/src/ggml-vulkan.cpp # ggml/src/vulkan-shaders/acc.comp ggml : vulkan logs (whisper/2547) vulkan: Optimize some mat-vec mul quant shaders (#10296) Compute two result elements per workgroup (for Q{4,5}_{0,1}). This reuses the B loads across the rows and also reuses some addressing calculations. This required manually partially unrolling the loop, since the compiler is less willing to unroll outer loops. Add bounds-checking on the last iteration of the loop. I think this was at least partly broken before. Optimize the Q4_K shader to vectorize most loads and reduce the number of bit twiddling instructions. Vulkan: Fix device info output format specifiers (#10366) * Vulkan: Fix device info output format specifiers * Vulkan: Use zu printf specifier for size_t instead of ld vulkan: remove use of null initializer (#10372) Seems like this isn't working for vulkan-over-metal when the array is sized by a spec constant. Maybe a spirv-cross limitation? vulkan: Optimize soft_max (#10301) * vulkan: Optimize soft_max Large soft_max could already saturate memory, but small/medium sizes were pretty slow. The bulk of the gains for them comes from using a smaller workgroup size, and making the workgroup size match the subgroup size also makes the barriers much cheaper. Cache some values in locals to avoid refetching/recomputing. And stamp out a few "template instantiations" so smaller cases will fully unroll. Add a missing early return for OOB rows. This happens when there are more than 512 rows and the dispatch is 512 x H. * vulkan: Further soft_max optimizations Restore the workgroup size of 512 case, use it for >1024. Use unrollable loops for more iteration counts. vulkan: further optimize mul_mat_vec using larger loads (#10387) * vulkan: Use pipeline_robustness to disable robustness in mul_mat_vec. Add some early returns for nonexistent rows in mul_mat_vec shaders. These can only be hit when dispatching a 2D grid of workgroups. Fix the logic for the 2D grid of workgroups to round up. Enable the pipeline robustness extension if it's available, and use it to disable robustness for these pipelines. The instructions to do the bounds checking contend for the same ALU resources as the bit twiddling dequant instructions. * vulkan: Add GLSL structure aliases for quant types to allow larger loads In Vulkan it's not possible to cast pointer types, so instead you have to declare an aliased binding for the memory with a different type. This commit adds aliases for the quant formats using 16b ints, and in a few places where the struct size is a multiple of 4 also using 32b ints. Currently only q4_k's aliases are used, but others will be used in subsequent commits. * vulkan: use larger loads in q5_k and q6_k shaders. Similar to the optimization I did in q4_k recently, this vectorizes some loads and reduces the number of bit twiddling instructions. * vulkan: use larger K step per iteration in mul_mat_vec. Add vec4 dequantization functions, and use them to do K=8 per iteration in mul_mat_vec. This uses 16b loads for the quant values and 128b loads for B which helps reduce the load on the memory system. The K_PER_ITER==2 logic is still there, just for F16/F32, and really only because they support unaligned sizes. Tweak the num_iters/unrolling logic to be simpler and catch a couple missed unrolling opportunities. vulkan: copy iq4_nl LUT into shared memory (#10409) vulkan: predicate max operation in soft_max shaders/soft_max (#10437) Fixes #10434 vulkan: Fix a vulkan-shaders-gen arugment parsing error (#10484) The vulkan-shaders-gen was not parsing the --no-clean argument correctly. Because the previous code was parsing the arguments which have a value only and the --no-clean argument does not have a value, it was not being parsed correctly. This commit can now correctly parse arguments that don't have values. vulkan: fix group_norm (#10496) Fix bad calculation of the end of the range. Add a backend test that covers the bad case (taken from stable diffusion). Fixes https://github.com/leejet/stable-diffusion.cpp/issues/439. # Conflicts: # ggml/src/ggml-vulkan.cpp vulkan: optimize Q2_K and Q3_K mul_mat_vec (#10459) vulkan: skip integer div/mod in get_offsets for batch_idx==0 (#10506) vulkan: further optimize q5_k mul_mat_vec (#10479) vulkan: Handle GPUs with less shared memory (#10468) There have been reports of failure to compile on systems with <= 32KB of shared memory (e.g. #10037). This change makes the large tile size fall back to a smaller size if necessary, and makes mul_mat_id fall back to CPU if there's only 16KB of shared memory. vulkan: define all quant data structures in types.comp (#10440) vulkan: get the first command buffer submitted sooner (#10499) This is an incremental improvement over #9118 to get work to the GPU a bit sooner. The first part is to start with a smaller number of nodes before the first submit, and ramp it up to the current 100 nodes/submit. The second part is to reduce the dryrun overhead for all the nodes that just need to request descriptor space. With these changes I get around 1-2% speedup on RTX 4070 combined with my old Haswell-era CPU. vulkan: Dynamic subgroup size support for Q6_K mat_vec (#10536) * subgroup 64 version with subgroup add. 15% faster scalable version tested for subgroup sizes 16-128 * check for subgroup multiple of 16 and greater than 16 * subgroup sizes are always a power of 2 (https://github.com/KhronosGroup/GLSL/issues/45) * force 16 sequential threads per block * make 16 subgroup size a constant vulkan: optimize and reenable split_k (#10637) Use vector loads when possible in mul_mat_split_k_reduce. Use split_k when there aren't enough workgroups to fill the shaders. vulkan: Implement "fast divide" (mul+shift) for unary ops like copy (#10642) vulkan: Add VK_NV_cooperative_matrix2 support for mul_mat and flash attention (#10206) # Conflicts: # ggml/src/vulkan-shaders/dequant_funcs_cm2.comp # ggml/src/vulkan-shaders/flash_attn_cm2.comp # ggml/src/vulkan-shaders/mul_mm_cm2.comp Vulkan: VK_KHR_cooperative_matrix support to speed up prompt processing (#10597) * Vulkan: Implement VK_KHR_cooperative_matrix support in the matrix matrix multiplication shader * Improve performance with better q4_k and q5_k dequant and store unrolling * Add Vulkan MUL_MAT and MUL_MAT_ID accumulator precision selection * Rework mulmat shader selection and compilation logic, avoid compiling shaders that won't get used by device * Vulkan: Implement accumulator switch for specific mul mat mat shaders * Vulkan: Unroll more loops for more mul mat mat performance * Vulkan: Add VK_AMD_shader_core_properties2 support to read Compute Unit count for split_k logic * Disable coopmat support on AMD proprietary driver * Remove redundant checks * Add environment variable GGML_VK_DISABLE_COOPMAT to disable VK_KHR_cooperative_matrix support * Fix rebase typo * Fix coopmat2 MUL_MAT_ID pipeline selection # Conflicts: # ggml/src/ggml-vulkan.cpp vulkan: compile a test shader in cmake to check for coopmat2 support (#10713) # Conflicts: # ggml/src/ggml-vulkan.cpp # ggml/src/ggml-vulkan/CMakeLists.txt # ggml/src/vulkan-shaders/test_coopmat2_support.comp Vulkan: fix NaN in tanh.comp with AMD proprietary driver on Windows (#10723) * Vulkan: fix NaN in tanh.comp * Faster NaN-free tanh vulkan: fix compile warnings (#10731) vulkan: disable spirv-opt for coopmat shaders (#10763) There are some bugs in the 1.3.296 SDK, so disable this. It isn't strictly necessary anyway. Add missing dependency on vulkan-shaders-gen, so shaders get recompiled when it changes. Fix coopmat support reporting when glslc doesn't support NV_coopmat2. vulkan: dynamic subgroup size for the remaining k quants (#10745) * q5_k q4_k q3_k q2_k q6_k multi row example * revert as multi row isnt faster for k quants vulkan: request round-to-even for fp16 in im2col/rope_head (#10767) Vulkan doesn't mandate a specific rounding mode, but the shader_float_controls feature allows rounding mode to be requested if the implementation supports it. Vulkan: Add VK_EXT_subgroup_size_control support to ensure full subgroups for coopmats (#10721) * Vulkan: Add VK_EXT_subgroup_size_control support to ensure full subgroups for coopmats * Fix subgroup size control extension support check Add accf32 and accf16 checks for coopmats * Also disable coopmats on amdvlk Vulkan: Use improved q4_k and q5_k dequant code in dequant shaders (#10798) vulkan: small mul_mat_vec optimizations (#10665) * double the number of rows per workgroup * Update ggml-vulkan.cpp * Vulkan: Add VK_EXT_subgroup_size_control support to ensure full subgroups for coopmats * only increase the number of rows for amd and subgroup size 64 * fix missing NUM_ROWS for mul_mat_vec_iq4_nl_f16_f32, untested * use subgroup min and max to check for gcn (requires https://github.com/ggerganov/llama.cpp/pull/10721) * manual merge ggml-vulkan.cpp * set min and max subgroup size in any case * Also double the number of rows for Intel GPUs Change Debug print name add GGML_ROPE_TYPE_MROPE rwkv6: add wkv6 support for Vulkan backend (#10829) * rwkv_wkv6 vulkan shader * RWKV_WKV6 Vulkan op tests passed Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * Apply code format changes Signed-off-by: Molly Sophia <mollysophia379@gmail.com> * add [[unroll]] and remove unnecessary conditions * add uma support * fix erros in EditorConfig Checker --------- Signed-off-by: Molly Sophia <mollysophia379@gmail.com> Co-authored-by: Molly Sophia <mollysophia379@gmail.com> # Conflicts: # ggml/src/ggml-vulkan.cpp # ggml/src/vulkan-shaders/wkv6.comp vulkan: bugfixes for small subgroup size systems + llvmpipe test (#10809) * ensure mul mat shaders work on systems with subgroup size less than 32 more fixes add test * only s_warptile_mmq needs to be run with 32 threads or more # Conflicts: # .github/workflows/build.yml vulkan : fix soft_max.comp division by zero (whisper/2633) This change prevents a division by zero error when p.KY is 0. vulkan: optimize coopmat2 dequant functions (#10855) Change the code to do 16b loads when possible and extract the appropriate component late, so the code is effectively decoding a pair of elements and then selecting one. This can allow more commoning to happen in the compiler when neighboring elements are loaded. vulkan: build fixes for 32b (#10927) * vulkan: build fixes for 32b Should fix #10923 * vulkan: initialize some buffer/offset variables examples, ggml : fix GCC compiler warnings (#10983) Warning types fixed (observed under MSYS2 GCC 14.2.0): * format '%ld' expects argument of type 'long int', but argument has type 'size_t' * llama.cpp/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp:81:46: warning: missing initializer for member '_STARTUPINFOA::lpDesktop' [-Wmissing-field-initializers] (emitted for all struct field except first) # Conflicts: # examples/export-lora/export-lora.cpp vulkan: multi-row k quants (#10846) * multi row k quant shaders! * better row selection * more row choices * readjust row selection * rm_kq=2 by default vulkan: Use push constant offset to handle misaligned descriptors (#10987) vulkan: im2col and matmul optimizations for stable diffusion (#10942) * tests: Add im2col perf tests * vulkan: optimize im2col, more elements per thread * vulkan: increase small tile size for NV_coopmat2 * vulkan: change im2col to 512 elements per workgroup vulkan: optimize mul_mat for small values of N (#10991) Make the mul_mat_vec shaders support N>1 (as a spec constant, NUM_COLS) where the batch_strides are overloaded to hold the row strides. Put the loads from the B matrix in the innermost loop because it should cache better. Share some code for reducing the result values to memory in mul_mat_vec_base. # Conflicts: # tests/test-backend-ops.cpp fix: Vulkan shader gen binary path (#11037) Vulkan: Add device-specific blacklist for coopmat for the AMD proprietary driver (#11074) * Vulkan: Add device-specific blacklist for coopmat for the AMD proprietary driver * Add (TM) to AMD name check fix lora print Disable GL_KHR_cooperative_matrix Vulkan extension if not available. (#11117) * Disable GL_KHR_cooperative_matrix Vulkan extension if not available. * Perform Vulkan extensions checks in a more sensible order * Remove unnecessary #ifdef directive # Conflicts: # ggml/src/vulkan-shaders/test_coopmat_support.comp llama: add support for QRWKV6 model architecture (#11001) Vulkan: Fix float16 use on devices without float16 support + fix subgroup_size_control validation error (#11161) * Vulkan: Remove float16 use in shaders * Fix validation error about subgroup_size_control extension fix: ggml: fix vulkan-shaders-gen build (#10448) * fix: ggml: fix vulkan-shaders-gen build The vulkan-shaders-gen target was not being built correctly in case of cross-compilation. Other outputs need to be built for the cross compile target, but vulkan-shaders-gen needs to be built for the host. * refactor: ggml: Improve vulkan-shaders-gen toolchain setup - Add GGML_SHADERS_GEN_TOOLCHAIN CMake option. - Auto-detect host toolchain if not set. * refactor: ggml: Improve vulkan-shaders-gen toolchain setup Use configure_file to generate host_toolchain.cmake from template * fix: ggml: Fix compile error Fix compile error not finding vulkan-shaders-gen * fix: vulkan-shaders-gen build and path handling Fix build issues with vulkan-shaders-gen: - Add target dependency for correct build order - Use CMAKE_HOST_SYSTEM_NAME for executable suffix - Fix MSVC output directory in host toolchain - Normalize path handling for cross-compilation * fix: improve host compiler detection in vulkan shader build Improve host compiler detection for vulkan shader generation: - Add NO_CMAKE_FIND_ROOT_PATH to all compiler searches - Consolidate compiler detection logic - Fix Windows-specific MSVC detection - Ensure correct compiler search in cross-compilation * refactor: Simplify CMake function for detecting host compiler Simplified the CMake function to improve the process of detecting the host compiler. * fix: Remove unnecessary Vulkan library linkage in CMakeLists.txt Since `vulkan-shader-gen.cpp` only requires the `glslc` executable and not the Vulkan headers or libraries, CMakeLists.txt needs to be corrected. (See: ecc93d0558fc3ecb8a5af69d2ece02fae4710ade) * refactor: Rename host_toolchain.cmake.in - Rename host_toolchain.cmake.in to cmake/host-toolchain.cmake.in * refactor: GGML_VULKAN_SHADERS_GEN_TOOLCHAIN Rename the macro GGML_SHADERS_GEN_TOOLCHAIN to GGML_VULKAN_SHADERS_GEN_TOOLCHAIN # Conflicts: # ggml/src/ggml-vulkan/CMakeLists.txt vulkan: scale caching for k quants + misc fixes (#11081) * q6_k scale caching * 16 bit unpack * q4_k test (slow) * revert it * q3_k * q2_k * little stuff * try precalculating products of a and q2_k scales * Revert "try precalculating products of a and q2_k scales" This reverts commit 65110b81f23f66331a50c6e889a7c1ab9470a86b. * unpack should be u16, add vim swap to gitignore (about time) * better q4_k scales * q5_k * better q6_k with separate paths for all threads and partial threads in use, plus some more optimizations * q2_k better dequant * q3_k optimizations * q3_k use hmask simd from cpu avx version * make the caches happy * q3_k separate out calculation * q2_k separate out * little stuff * use calc_superblock everywhere * q2_k optimize scale calculation * more barriers vulkan: optimize coopmat2 q2_k dequant function (#11130) vulkan: optimize coopmat2 q4_k/q5_k dequant functions. (#11206) Do masking on whole dwords, fetch all scales at once. vulkan: support copy from f32 to q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl (#11166) * vulkan: support copy from f32 to q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl Shaders are based on cpy.cu. * vulkan: support copy from q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl to f32 * ggml: copy q->f32 assumes some contiguity in the destination # Conflicts: # ggml/src/ggml-cpu/ggml-cpu.c # ggml/src/vulkan-shaders/copy_from_quant.comp # ggml/src/vulkan-shaders/copy_to_quant.comp vulkan: fix coopmat2 flash attention for non-contiguous inputs (#11281) Add code similar to mul_mm_cm2 to force alignment of strides, to avoid a performance regression. Add noncontiguous FA tests in test-backend-ops. Fixes #11268. # Conflicts: # tests/test-backend-ops.cpp vulkan: fix coopmat2 validation failures (#11284) mul mat and flash attention shaders were loading f32 types directly into A/B matrices, which happens to work but is technically invalid usage. For FA, we can load it as an Accumulator matrix and convert and this is not in the inner loop and is cheap enough. For mul mat, it's more efficient to do this conversion in a separate pass and have the input(s) be f16. coopmat2 requires SPIR-V 1.6 (related using to LocalSizeId). LocalSizeId requires maintenance4 be enabled, and SPIR-V 1.6 requires Vulkan 1.3. vulkan: fix diag_mask_inf (#11323) With robustbufferaccess disabled, this shader was showing OOB stores. There is a bounds check in the code, but the workgrouop dimensions were reversed vs CUDA and it was running the wrong number of threads. So fix the workgroup dimensions and disable robustness for this pipeline. vulkan: sort shaders for more deterministic binary (#11315) Fixes #11306. Vulkan-run-test: fix mmq_wg_denoms (#11343) There should be a copy-and-paste error here. *mmq_wg_denoms should be used together with *warptile_mmq, instead of wg_denoms. vulkan: compile shaders on-demand (#11406) Reduce first-run startup time and memory consumption. Should fix #11339. vulkan: Catch pipeline creation failure and print an error message (#11436) * vulkan: Catch pipeline creation failure and print an error message Also, fix some warnings from my on-demand compile change. * vulkan: fix pipeline creation logging vulkan: implement initial support for IQ2 and IQ3 quantizations (#11360) * vulkan: initial support for IQ3_S * vulkan: initial support for IQ3_XXS * vulkan: initial support for IQ2_XXS * vulkan: initial support for IQ2_XS * vulkan: optimize Q3_K by removing branches * vulkan: implement dequantize variants for coopmat2 * vulkan: initial support for IQ2_S * vulkan: vertically realign code * port failing dequant callbacks from mul_mm * Fix array length mismatches * vulkan: avoid using workgroup size before it is referenced * tests: increase timeout for Vulkan llvmpipe backend --------- Co-authored-by: Jeff Bolz <jbolz@nvidia.com> # Conflicts: # ggml/src/vulkan-shaders/dequant_iq2_s.comp # ggml/src/vulkan-shaders/dequant_iq2_xs.comp # ggml/src/vulkan-shaders/dequant_iq2_xxs.comp # ggml/src/vulkan-shaders/dequant_iq3_s.comp # ggml/src/vulkan-shaders/dequant_iq3_xxs.comp CUDA: non-contiguous (RMS) norm support (#11659) vulkan: use smaller combined allocations to avoid fragmentation (#11551) # Conflicts: # ggml/src/ggml-alloc.c vulkan: initial support for IQ4_XS quantization (#11501) # Conflicts: # ggml/src/vulkan-shaders/dequant_iq4_xs.comp vulkan: optimize coopmat2 iq2/iq3 callbacks (#11521) * vulkan: optimize coopmat2 iq2/iq3 callbacks * build: trigger CI on GLSL compute shader changes vulkan: print shared memory size (#11719) # Conflicts: # ggml/src/ggml-vulkan.cpp vulkan: account for lookup tables when checking shared memory size (#11502) # Conflicts: # ggml/src/ggml-vulkan.cpp vulkan: add environment variable GGML_VK_PREFER_HOST_MEMORY to avoid VRAM allocation (#11592) vulkan: linux builds + small subgroup size fixes (#11767) * mm subgroup size * upload vulkan x86 builds vulkan: initial support for IQ1_S and IQ1_M quantizations (#11528) * vulkan: initial support for IQ1_S and IQ1_M quantizations * vulkan: define MMV kernels for IQ1 quantizations * devops: increase timeout of Vulkan tests again * vulkan: simplify ifdef for init_iq_shmem # Conflicts: # ggml/src/vulkan-shaders/dequant_iq1_m.comp # ggml/src/vulkan-shaders/dequant_iq1_s.comp # ggml/src/vulkan-shaders/mul_mat_vec_iq1_m.comp # ggml/src/vulkan-shaders/mul_mat_vec_iq1_s.comp vulkan: support multi/vision rope, and noncontiguous rope (#11902) # Conflicts: # ggml/src/ggml-vulkan.cpp # ggml/src/vulkan-shaders/rope_multi.comp # ggml/src/vulkan-shaders/rope_vision.comp vulkan: implement several ops relevant for ggml_opt (#11769) * vulkan: support memset_tensor * vulkan: support GGML_OP_SUM * vulkan: implement GGML_OP_ARGMAX * vulkan: implement GGML_OP_SUB * vulkan: implement GGML_OP_COUNT_EQUAL * vulkan: implement GGML_OP_OPT_STEP_ADAMW * vulkan: fix check_results RWKV_WKV6 crash and memory leaks * vulkan: implement GGML_OP_REPEAT_BACK * tests: remove invalid test-backend-ops REPEAT_BACK tests * vulkan: fix COUNT_EQUAL memset using a fillBuffer command # Conflicts: # ggml/src/ggml-vulkan.cpp # ggml/src/vulkan-shaders/argmax.comp # ggml/src/vulkan-shaders/count_equal.comp # ggml/src/vulkan-shaders/opt_step_adamw.comp # ggml/src/vulkan-shaders/repeat_back.comp # ggml/src/vulkan-shaders/sub.comp # tests/test-backend-ops.cpp vulkan: implement more backpropagation operators (#11914) * vulkan: implement GGML_OP_ROPE_BACK * vulkan: implement GGML_OP_RMS_NORM_BACK * vulkan: implement GGML_OP_SILU_BACK * vulkan: implement GGML_OP_SOFTMAX_BACK # Conflicts: # ggml/src/vulkan-shaders/rms_norm_back.comp # ggml/src/vulkan-shaders/silu_back.comp # ggml/src/vulkan-shaders/soft_max_back.comp Add memset tensor in all backend interface SYCL: implement memset ggml backend buffer interface (#12580) * SYCL: implement memset ggml backend buffer interface * use GGML_ABORT macro * Do not wait for all queues to finish for memset operation # Conflicts: # ggml/src/ggml-sycl.cpp add OP sigmoid (#12056) Co-authored-by: Judd <foldl@boxvest.com> # Conflicts: # ggml/src/vulkan-shaders/sigmoid.comp vulkan: fix assertion when qy_needs_dequant (#12068) Looks like a copy/paste bug from qx_needs_dequant. vulkan: improve im2col (#11826) * vulkan: improve im2col performance vulkan: matmul dequantization improvements (#12015) * faster dequant for old quants * dont use unpack for iq4_nl * vec2 unpack for q8 vulkan: add specific MMV kernels for IQ2 and IQ3 quants + optimizations (#11595) * vulkan: implement specialized MMV kernels for IQ2 quantizations * vulkan: add MMV kernels for IQ3 quants * vulkan: Increase MMV batch size and unroll IQ LUT setup * vulkan: fix init_iq_shmem for WG sizes larger than tables * vulkan: common batch size for all I-quants # Conflicts: # ggml/src/vulkan-shaders/mul_mat_vec_iq2_s.comp # ggml/src/vulkan-shaders/mul_mat_vec_iq2_xs.comp # ggml/src/vulkan-shaders/mul_mat_vec_iq2_xxs.comp # ggml/src/vulkan-shaders/mul_mat_vec_iq3_s.comp # ggml/src/vulkan-shaders/mul_mat_vec_iq3_xxs.comp cuda/vulkan: specify fp32-only support for some operations in supports_op (ggml/1129) ggml-ci # Conflicts: # ggml/src/ggml-cuda.cu # tests/test-backend-ops.cpp mat vec double buffer (#12188) vulkan: fix bug in coopmat1 mul_mat_id (#12316) * tests: run mul_mat_id with a larger N * vulkan: fix bug in coopmat1 mul_mat_id Update build.yml for Windows Vulkan builder to use Vulkan 1.4.304 SDK for VK_NV_cooperative_matrix2 support (#12301) vulkan: Adjust coopmat2 tile sizes and selection heuristic (#12258) vulkan: Pad N dimension of B matrix for coopmat2 perf, to avoid bounds checking (#12273) * vulkan: Pad N dimension of B matrix for coopmat2 perf, to avoid bounds checking vulkan: use fp32 in coopmat2 q4_k dequant function (#12309) vulkan: subgroup size tuning (#12087) * vulkan: subgroup size test * Vulkan: Add device architecture enum and logic to recognize AMD generations * vulkan: use new architecture logic to specify subgroup size * Initial vulkan subgroup size tuning for RDNA3 * vulkan: commonize RDNA subgroup tuning * vulkan: override subgroup size if required_subgroup_size = 0 * vulkan: disable warp 32 for RDNA3 * vulkan: fine tuned RDNA1 subgroup sizes * vulkan: adjusted subgroup size map * vulkan: fixed RDNA2 subgroup map --------- Co-authored-by: 0cc4m <picard12@live.de> vulkan: Add N/2 and N/4 optimized paths in coopmat2 shader (#12312) ggml-vulkan: remove unused find_program(glslc) (#12416) It's already found by FindVulkan.cmake in the parent CMakeLists Vulkan: Default to 1GB allocations instead of 4GB to avoid fragmentation and driver issues (#12434) vulkan: Submit once enough matmul work has been recorded (#12406) I've been seeing significantly worse performance for tg with flash attention enabled vs disabled, and it seems to be related to the submit heuristic. Change the heuristic to check how many bytes worth of weight matrix are used and flush every 100MB, and ramp up after the first few submits. This seems to resolve the issue, and also increases perf for non-FA a bit. vulkan: optimize iq1 coopmat2 dequant functions (#12427) vulkan: workaround for AMD Windows driver 16 bit unpack8 bug (#12472) Vulkan: RTE rounding for cpy to quant (#12480) * Vulkan: RTE rounding for cpy to quant Co-Authored-By: Jeff Bolz <jbolz@nvidia.com> * remove trailing whitespace * avoid duplicating pipeline_cpy_f32_quant * fix copypasting issue * remove duplicated code --------- Co-authored-by: Jeff Bolz <jbolz@nvidia.com> vulkan: Optimize mul_mat_vec p021 and nc shaders (#12505) * tests: add mul_mat perf/functional tests for p021/nc vulkan shaders * vulkan: Optimize mul_mat_vec p021 and nc shaders. These shaders are used in attention calculations, and when the KV cache grows large they start to dominate the run time. For the nc shader (which is called with large 'k' dimension), use unrolling and vector loads. For the p021 shader (which is called with large 'm' and small 'k' dimensions), take advantage of grouped query attention to reuse loads from the A matrix for the whole group, and reduce the number of workgroups (too much overhead from tiny dispatches). Using subgroupAdd in the p021 shader also helps, use that conditionally. # Conflicts: # tests/test-backend-ops.cpp vulkan: fix mul_mat_vec failure in backend tests (#12529) The OOB calculation could be wrong if the last iteration was during one of the unrolled loops. Adjust the unrolling counts to avoid this. Add a couple new backend tests that hit this failure on NVIDIA GPUs. vulkan: fix coopmat shader generation when cross-compiling (#12272) * vulkan: fix coopmat shader generation when cross-compiling Previously the status of coopmat{,2} support isn't passed to the vulkan-shaders-gen project building on the host, which leads to build failure because of the cross-compiling code expecting coopmat{,2} shaders that didn't get generated. Fix this by passing the coopmat{,2} support status to vulkan-shaders subproject. Signed-off-by: Icenowy Zheng <uwu@icenowy.me> * Only call coop-mat shaders once * Fix whitespace --------- Signed-off-by: Icenowy Zheng <uwu@icenowy.me> Co-authored-by: bandoti <141645996+bandoti@users.noreply.github.com> cmake: improve Vulkan cooperative matrix support checks (whisper/2966) Co-authored-by: Sandro Hanea <me@sandro.rocks> cmake : fix whitespace (#0) Vulkan: Add DP4A MMQ and Q8_1 quantization shader (#12135) * Vulkan: Add DP4A MMQ and Q8_1 quantization shader * Add q4_0 x q8_1 matrix matrix multiplication support * Vulkan: Add int8 coopmat MMQ support * Vulkan: Add q4_1, q5_0 and q5_1 quants, improve integer dot code * Add GL_EXT_integer_dot_product check * Remove ggml changes, fix mmq pipeline picker * Remove ggml changes, restore Intel coopmat behaviour * Fix glsl compile attempt when integer vec dot is not supported * Remove redundant code, use non-saturating integer dot, enable all matmul sizes for mmq * Remove redundant comment * Fix integer dot check * Fix compile issue with unsupported int dot glslc * Update Windows build Vulkan SDK version # Conflicts: # ggml/src/ggml-vulkan.cpp # ggml/src/vulkan-shaders/mul_mmq.comp # ggml/src/vulkan-shaders/mul_mmq_funcs.comp # ggml/src/vulkan-shaders/quantize_q8_1.comp # ggml/src/vulkan-shaders/test_integer_dot_support.comp vulkan: fix build when glslc doesn't support coopmat (#12683) Vulkan: Fix mmq int dot float cache size (#12722) vulkan: Implement grouped query attention in the coopmat2 FA shader (#12559) When adjacent batches of Q share the same batches of K/V, batch them into the same workgroup. For example, when: dst(128,32,1,1) = FA(q(128,1,32,1), k(128,16640,8,1), v(128,16640,8,1)) previously we would run 32 workgroups computing 1 result each, now we will run 8 workgroups computing 4 results each. This doesn't directly translate to better performance (at least when you have >=32 SMs), but in a subsequent change I'll enable split_k which will scale much better with 4x fewer workgroups. cmake: remove caching from vulkan coopmat checks (#12719) vulkan: Implement split_k for coopmat2 flash attention. (#12627) When using group query attention, we have one workgroup per KV batch and this can be very few workgroups (e.g. just 8 in some models). Enable split_k to spread the work across SMs. This helps a lot when the KV cache is large. # Conflicts: # ggml/src/vulkan-shaders/flash_attn_split_k_reduce.comp vulkan: Fix missing cmake logic for dot product extension (#12721) vulkan: set cmake minimum and project name in vulkan-shaders (#12744) vulkan: Hybrid waitForFences/getFenceStatus to reduce fence latency (#12630) There seems to be a bubble waking up from waitForFences, which costs a few percent performance and also increased variance in performance. This change inserts an "almost_ready" fence when the graph is about 80% complete and we waitForFences for the almost_ready fence and then spin (with _mm_pauses) waiting for the final fence to be signaled. # Conflicts: # ggml/src/ggml-vulkan.cpp cmake: fix ggml-shaders-gen compiler paths containing spaces (#12747) fixes error for compiler paths with spaces Vulkan: Tune Vulkan mmq int dot shader for performance (#12767) vulkan: Use unclamped loads for flash attention mask (#12720) nem1 must be a multiple of GGML_KQ_MASK_PAD, and GGML_KQ_MASK_PAD is a multiple of the number of rows in the matrix. The KV dim is a multiple of the number of columns for the aligned shader. vulkan: fix NaN issue in flash attention shader (#12776) Use -FLT_MAX/2 rather than -inf as the initial value for computing the maximum. vulkan: Use fp16 for the flash attention P*V multiplication (#12783) This is consistent with the ggml-cuda behavior and the mul_mat fallback. vulkan: In coopmat2 mmq, load q4_k/q5_k scales through shared memory (#12833) q4_k and q5_k had a lot of redundant global loads where the same 16B of scale information is repeatedly loaded and decoded during each loop iteration. This change restructures the loops to more explicitly iterate over whole blocks in the outer loop (with unrolled inner loop) and to copy/decode the scale data into shared memory once at the start of each outer loop. The copy is pipelined so the scale load from global memory is relatively cheap. This improves q4_k/q5_k model prompt processing performance by around 5-7%. I briefly tried applying this to q6_k and q4_0, and it didn't help for q6_k and hurt for q4_0. The big "else" path in mul_mm_cm2.comp that had all the clamped/unclamped variants isn't used as often as it originally was (e.g. due to the padded_N change), so I trimmed it down to offset some of the new complexity of the semi-manual loop unrolling. vulkan: use aligned loads for flash attention mask (#12853) Rewrite the stride logic for the mask tensor in the FA shader to force the stride to be aligned, to allow using more efficient loads. vulkan: enable coopmat2 FA gqa and split_k optimizations more often (#12931) The grouped query attention optmization doesn't require a power of two ratio, the only thing relying on it was the modulo operation written as bitwise &. split_k need not depend on gqa_ratio - enable it any time there's only one workgroup in the X dimension. The shader gets the split index from the x coord, and multiple workgroups in the X dimension (pre-split) indicates a larger FA operation that wouldn't need splitting. vulkan: support noncontiguous rms_norm (#13031) # Conflicts: # ggml/src/ggml-vulkan.cpp vulkan: matmul gcn tuning (#13016) * tune matmul for gcn * this one is more power efficient * Update ggml/src/ggml-vulkan/ggml-vulkan.cpp Co-authored-by: 0cc4m <picard12@live.de> * disable this tune for the proprietary driver --------- Co-authored-by: 0cc4m <picard12@live.de> vulkan: use uint array index to avoid glslang bug (#13193) vulkan: Handle src1 batch dimension in non-contiguous mat-vec-mul shader (#13191) * vulkan: Handle src1 batch dimension in non-contiguous mat-vec-mul shader vulkan: Add bfloat16 support (#12554) * vulkan: Add bfloat16 support This adds bfloat16 matrix multiply support based on VK_KHR_shader_bfloat16. The extension is required for coopmat multiply support, but matrix-vector multiply trivially promotes bf16 to fp32 and doesn't require the extension. The copy/get_rows shaders also don't require the extension. It's probably possible to fall back to non-coopmat and promote to fp32 when the extension isn't supported, but this change doesn't do that. The coopmat support also requires a glslc that supports the extension, which currently requires a custom build. * vulkan: Support bf16 tensors without the bf16 extension or coopmat support Compile a variant of the scalar mul_mm shader that will promote the bf16 values to float, and use that when either the bf16 extension or the coopmat extensions aren't available. * vulkan: bfloat16 fixes (really works without bfloat16 support now) * vulkan: fix spirv-val failure and reenable -O # Conflicts: # ggml/src/vulkan-shaders/test_bfloat16_support.comp vulkan: Additional type support for unary, binary, and copy (#13266) Support f16->f32 copy. Support f16->f16 and f32->f32 unary ops. Support all combinations of f16/f32 for src0/src1/dst for add/sub/mul/div. # Conflicts: # ggml/src/ggml-vulkan.cpp vulkan: Allow up to 4096 elements for mul_mat_id row_ids (#13326) This assert fired running Qwen_Qwen3-30B-A3B-Q2_K.gguf: GGML_ASSERT(nei0 * nei1 <= 3072); The tensor is 8 x 512. Increase this array size to accommodate. vulkan: scalar flash attention implementation (#13324) * vulkan: scalar flash attention implementation * vulkan: always use fp32 for scalar flash attention * vulkan: use vector loads in scalar flash attention shader * vulkan: remove PV matrix, helps with register usage * vulkan: reduce register usage in scalar FA, but perf may be slightly worse * vulkan: load each Q value once. optimize O reduction. more tuning * vulkan: support q4_0/q8_0 KV in scalar FA * CI: increase timeout to accommodate newly-supported tests * vulkan: for scalar FA, select between 1 and 8 rows * vulkan: avoid using Float16 capability in scalar FA # Conflicts: # ggml/src/ggml-vulkan.cpp # ggml/src/vulkan-shaders/flash_attn.comp vulkan: workaround FA compile failures on macos (#13517) vulkan: KHR_coopmat flash attention (#13506) This shader uses coopmat1 to do the Q*K^T multiply. The P*V multiply is more difficult for various reasons so I haven't done it. Performance for this shader is around 2.5x better than for the scalar shader when doing prompt processing. Some of the benefit may be from other optimizations like staging through shared memory, or splitting by rows. # Conflicts: # ggml/src/vulkan-shaders/flash_attn_cm1.comp cmake: simplify vulkan shader test logic (#13263) vulkan: use scalar FA rather than coopmat2 when N==1 (#13554) Add pipeline_acc_f32 vulkan: move common FA code to flash_attn_base.comp (#13556) * vulkan: move common FA code to flash_attn_base.comp * vulkan: move common FA index/stride setup code to flash_attn_base.comp * build fix # Conflicts: # ggml/src/vulkan-shaders/flash_attn_base.comp cmake: use the current build config for vulkan-shaders-gen (#13595) * fix: use the current build config for `vulkan-shaders-gen` * fix: only pass a valid build type to `--config` Vulkan: Add f32 accumulator support to quantized mul mat to fix GLM4 32B incoherence (#13607) # Conflicts: # ggml/src/ggml-vulkan.cpp vulkan: fix warnings (#13626) * small fixes * remove ifdef use LOG_WARN to replace `std::cerr` (#13657) vulkan: Disable coopmat/coopmat2/bfloat extensions if glslc doesn't support it (#13696) vulkan: support CPY from any type to itself (#13695) Reuse the f16/f32 copy shaders, and just scale the number of elements according to the type size. add GGML_LOG_WARN vulkan: mark IM2COL as supporting non-contig (#13783) # Conflicts: # ggml/src/ggml-vulkan.cpp vulkan: use timestamp queries for GGML_VULKAN_PERF (#13817) Also change it to be controlled by an env var rather than cmake flag vulkan : Remove unexpected ; (ggml/1253) vulkan: fix warnings in perf logger querypool code (#13937) ggml-vulkan: adds support for op CONV_TRANSPOSE_1D (#13813) * * ggml-vulkan: adds op CONV_TRANSPOSE_1D * test-backend-ops: adds more spohisticated tests for CONV_TRANSPOSE_1D * Missing barrier added to shader. Number of additional tests reduced to 108. * * Fixes typo in variable name. * Removes extra whitespaces. * Adds int64->int32 casts to prevent possible warnings. * Problem size reduced in tests to pass tests with llvmpipe. * supports_op condition moved from unintended position # Conflicts: # ggml/src/ggml-vulkan.cpp # ggml/src/vulkan-shaders/conv_transpose_1d.comp vulkan: Enable VK_KHR_cooperative_matrix extension for Intel Xe2 GPUs (#14001) * allowing B580 and U9-288V * experimenting code to detect Xe2 * allowing coopmat only for Xe2 GPUs * fixed comment wording * fixed comment wording * removed unnecessary driver check Vulkan: Don't default to CPU device (like llvmpipe), even if no other device is available, to allow fallback to CPU backend (#14099) # Conflicts: # ggml/src/ggml-vulkan.cpp vulkan: force device 0 in CI (#14106) Add GGML_LOG_INFO vulkan: Track descriptor pools/sets per-context (#14109) Use the same descriptor set layout for all pipelines (MAX_PARAMETER_COUNT == 8) and move it to the vk_device. Move all the descriptor pool and set tracking to the context - none of it is specific to pipelines anymore. It has a single vector of pools and vector of sets, and a single counter to track requests and a single counter to track use. vulkan: Better thread-safety for command pools/buffers (#14116) This change moves the command pool/buffer tracking into a vk_command_pool structure. There are two instances per context (for compute+transfer) and two instances per device for operations that don't go through a context. This should prevent separate contexts from stomping on each other. # Conflicts: # ggml/src/ggml-vulkan.cpp vulkan: mutex around vkQueueSubmit (#14127) This fixes the remaining crash in test-thread-safety on my system. cmake: clean up external project logic for vulkan-shaders-gen (#14179) * Remove install step for vulkan-shaders-gen * Add install step to normalize msvc with make * Regenerate modified shaders at build-time # Conflicts: # .github/workflows/build.yml cmake: remove shader-gen step-targets from ggml-vulkan (#14226) * Remove step-targets from vulkan-shaders-gen * Unset DESTDIR when building vulkan-shaders-gen Vulkan: Set device max size for host memory to avoid OOM warning and fallback to CPU buffer (#14249) Add support for VK_EXT_debug_utils to add labels to Vulkan objects. (#13792) * Add support for VK_EXT_debug_utils to add labels to Vulkan objects. In step 1 compute pipelines are getting labeled. * remove #ifdef for debug utils and add queue marker. # Conflicts: # ggml/src/ggml-vulkan.cpp vulkan: update windows SDK in CI (#14334) vulkan: update windows SDK in release.yml (#14344) # Conflicts: # .github/workflows/release.yml cmake: regen vulkan shaders when shaders-gen sources change (#14398) * Add shaders-gen sources as target deps vulkan: Fix GGML_VULKAN_SHADER_DEBUG_INFO (#14427) This setting needs to be passed through to vulkan-shaders-gen vulkan: lock accesses of pinned_memory vector (#14333) vulkan: handle noncontig in the final case of ggml_vk_get_cpy_pipeline (#14378) Fix cuda build error test * remove new cpu backend and yml files * remove new op and GGML_ROPE_TYPE_NEOX * fix build error * change cmake file to add matrix operation * remove coopmat2 check in flash attention * print gpu info for vulkan * disable fuse to recover vulkan performance --------- Co-authored-by: 0cc4m <picard12@live.de> Co-authored-by: firecoperana <firecoperana>
1381 lines
64 KiB
C++
1381 lines
64 KiB
C++
//
|
||
// Copyright (C) 2023-2025 The llama.cpp authors
|
||
// Copyright (C) 2024-2025 Iwan Kawrakow
|
||
// MIT license
|
||
// SPDX-License-Identifier: MIT
|
||
//
|
||
|
||
#ifndef LLAMA_H
|
||
#define LLAMA_H
|
||
|
||
#include "ggml.h"
|
||
#include "ggml-backend.h"
|
||
|
||
#include <stddef.h>
|
||
#include <stdint.h>
|
||
#include <stdio.h>
|
||
#include <stdbool.h>
|
||
|
||
#ifdef LLAMA_SHARED
|
||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||
# ifdef LLAMA_BUILD
|
||
# define LLAMA_API __declspec(dllexport)
|
||
# else
|
||
# define LLAMA_API __declspec(dllimport)
|
||
# endif
|
||
# else
|
||
# define LLAMA_API __attribute__ ((visibility ("default")))
|
||
# endif
|
||
#else
|
||
# define LLAMA_API
|
||
#endif
|
||
|
||
#ifdef __GNUC__
|
||
# define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
|
||
#elif defined(_MSC_VER)
|
||
# define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
|
||
#else
|
||
# define DEPRECATED(func, hint) func
|
||
#endif
|
||
|
||
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
|
||
|
||
#define LLAMA_TOKEN_NULL -1
|
||
|
||
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
|
||
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
||
#define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
|
||
|
||
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||
#define LLAMA_SESSION_VERSION 8
|
||
|
||
#define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
|
||
#define LLAMA_STATE_SEQ_VERSION 2
|
||
|
||
#ifdef __cplusplus
|
||
extern "C" {
|
||
#endif
|
||
|
||
//
|
||
// C interface
|
||
//
|
||
// TODO: show sample usage
|
||
//
|
||
|
||
struct llama_model;
|
||
struct llama_context;
|
||
|
||
typedef int32_t llama_pos;
|
||
typedef int32_t llama_token;
|
||
typedef int32_t llama_seq_id;
|
||
|
||
enum llama_vocab_type {
|
||
LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
|
||
LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
|
||
LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
|
||
LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
|
||
LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
|
||
};
|
||
|
||
// pre-tokenization types
|
||
enum llama_vocab_pre_type {
|
||
LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
|
||
LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
|
||
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
|
||
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
|
||
LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
|
||
LLAMA_VOCAB_PRE_TYPE_MPT = 5,
|
||
LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
|
||
LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
|
||
LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
|
||
LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
|
||
LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
|
||
LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
|
||
LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
|
||
LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
|
||
LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
|
||
LLAMA_VOCAB_PRE_TYPE_PORO = 15,
|
||
LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
|
||
LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
|
||
LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
|
||
LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
|
||
LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20,
|
||
LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21,
|
||
LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
|
||
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28, //llama.cpp lists this as 28
|
||
LLAMA_VOCAB_PRE_TYPE_GPT4O = 29,
|
||
LLAMA_VOCAB_PRE_TYPE_SUPERBPE = 30,
|
||
LLAMA_VOCAB_PRE_TYPE_TRILLION = 31,
|
||
LLAMA_VOCAB_PRE_TYPE_BAILINGMOE = 32,
|
||
LLAMA_VOCAB_PRE_TYPE_LLAMA4 = 33,
|
||
LLAMA_VOCAB_PRE_TYPE_FALCON_3 = 34,
|
||
LLAMA_VOCAB_PRE_TYPE_FALCON_E = 35,
|
||
};
|
||
|
||
// note: these values should be synchronized with ggml_rope
|
||
// TODO: maybe move this enum to ggml.h (ggml_rope_type)
|
||
enum llama_rope_type {
|
||
LLAMA_ROPE_TYPE_NONE = -1,
|
||
LLAMA_ROPE_TYPE_NORM = 0,
|
||
LLAMA_ROPE_TYPE_NEOX = 2,
|
||
LLAMA_ROPE_TYPE_GLM = 4,
|
||
};
|
||
|
||
enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
|
||
LLAMA_TOKEN_TYPE_UNDEFINED = 0,
|
||
LLAMA_TOKEN_TYPE_NORMAL = 1,
|
||
LLAMA_TOKEN_TYPE_UNKNOWN = 2,
|
||
LLAMA_TOKEN_TYPE_CONTROL = 3,
|
||
LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
|
||
LLAMA_TOKEN_TYPE_UNUSED = 5,
|
||
LLAMA_TOKEN_TYPE_BYTE = 6,
|
||
};
|
||
|
||
enum llama_token_attr {
|
||
LLAMA_TOKEN_ATTR_UNDEFINED = 0,
|
||
LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
|
||
LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
|
||
LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
|
||
LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
|
||
LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
|
||
LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
|
||
LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
|
||
LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
|
||
LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
|
||
LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
|
||
};
|
||
|
||
// model file types
|
||
enum llama_ftype {
|
||
LLAMA_FTYPE_ALL_F32 = 0,
|
||
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
||
// LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
||
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
|
||
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
|
||
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // except 1d tensors
|
||
//
|
||
LLAMA_FTYPE_MOSTLY_Q6_0 = 135, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ1_BN = 136, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ2_BN = 137, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ2_K = 138, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ3_K = 139, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ4_K = 140, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ5_K = 141, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ6_K = 142, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ4_KS = 145, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ3_KL = 146, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ2_KS = 147, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ4_KSS = 148, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q8_KV = 149, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ5_KS = 150, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ2_KT = 151, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ3_KT = 152, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ4_KT = 153, // except 1d tensors
|
||
//
|
||
LLAMA_FTYPE_MOSTLY_Q4_0_R8 = 202, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q8_0_R8 = 207, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q5_0_R4 = 208, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q2_K_R4 = 210, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q3_K_R4 = 211, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q4_K_R4 = 214, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q5_K_R4 = 216, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q6_K_R4 = 218, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4 = 219, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ2_XS_R4 = 220, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4 = 223, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ1_S_R4 = 224, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ4_NL_R4 = 225, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ3_S_R4 = 226, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ2_M_R4 = 229, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ4_XS_R8 = 230, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ1_M_R4 = 231, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q6_0_R4 = 335, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_BF16_R16 = 232, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ2_BN_R4 = 337, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ2_K_R4 = 338, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ3_K_R4 = 339, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ4_K_R4 = 340, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ5_K_R4 = 341, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ4_KS_R4 = 345, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ5_KS_R4 = 350, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q8_KV_R8 = 398, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q8_K_R8 = 399, // except 1d tensors
|
||
|
||
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
|
||
};
|
||
|
||
enum llama_rope_scaling_type {
|
||
LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
|
||
LLAMA_ROPE_SCALING_TYPE_NONE = 0,
|
||
LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
|
||
LLAMA_ROPE_SCALING_TYPE_YARN = 2,
|
||
LLAMA_ROPE_SCALING_TYPE_LONGROPE = 3,
|
||
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_LONGROPE,
|
||
};
|
||
|
||
enum llama_pooling_type {
|
||
LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
|
||
LLAMA_POOLING_TYPE_NONE = 0,
|
||
LLAMA_POOLING_TYPE_MEAN = 1,
|
||
LLAMA_POOLING_TYPE_CLS = 2,
|
||
LLAMA_POOLING_TYPE_LAST = 3,
|
||
};
|
||
|
||
enum llama_attention_type {
|
||
LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
|
||
LLAMA_ATTENTION_TYPE_CAUSAL = 0,
|
||
LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1,
|
||
};
|
||
|
||
enum llama_split_mode {
|
||
LLAMA_SPLIT_MODE_NONE = 0, // single GPU
|
||
LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
|
||
LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
|
||
};
|
||
|
||
typedef struct llama_token_data {
|
||
llama_token id; // token id
|
||
float logit; // log-odds of the token
|
||
float p; // probability of the token
|
||
} llama_token_data;
|
||
|
||
typedef struct llama_token_data_array {
|
||
llama_token_data * data;
|
||
size_t size;
|
||
bool sorted;
|
||
} llama_token_data_array;
|
||
|
||
typedef bool (*llama_progress_callback)(float progress, void * user_data);
|
||
|
||
// Input data for llama_decode
|
||
// A llama_batch object can contain input about one or many sequences
|
||
// The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
|
||
//
|
||
// - token : the token ids of the input (used when embd is NULL)
|
||
// - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
|
||
// - pos : the positions of the respective token in the sequence
|
||
// - seq_id : the sequence to which the respective token belongs
|
||
// - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
|
||
//
|
||
typedef struct llama_batch {
|
||
int32_t n_tokens;
|
||
|
||
llama_token * token;
|
||
float * embd;
|
||
llama_pos * pos;
|
||
int32_t * n_seq_id;
|
||
llama_seq_id ** seq_id;
|
||
int8_t * logits; // TODO: rename this to "output"
|
||
|
||
// NOTE: helpers for smooth API transition - can be deprecated in the future
|
||
// for future-proof code, use the above fields instead and ignore everything below
|
||
//
|
||
// pos[i] = all_pos_0 + i*all_pos_1
|
||
//
|
||
llama_pos all_pos_0; // used if pos == NULL
|
||
llama_pos all_pos_1; // used if pos == NULL
|
||
llama_seq_id all_seq_id; // used if seq_id == NULL
|
||
} llama_batch;
|
||
|
||
enum llama_model_kv_override_type {
|
||
LLAMA_KV_OVERRIDE_TYPE_INT,
|
||
LLAMA_KV_OVERRIDE_TYPE_FLOAT,
|
||
LLAMA_KV_OVERRIDE_TYPE_BOOL,
|
||
LLAMA_KV_OVERRIDE_TYPE_STR,
|
||
};
|
||
|
||
struct llama_model_kv_override {
|
||
enum llama_model_kv_override_type tag;
|
||
|
||
char key[128];
|
||
|
||
union {
|
||
int64_t val_i64;
|
||
double val_f64;
|
||
bool val_bool;
|
||
char val_str[128];
|
||
};
|
||
};
|
||
|
||
struct llama_model_tensor_buft_override {
|
||
const char * pattern;
|
||
ggml_backend_buffer_type_t buft;
|
||
};
|
||
|
||
struct llama_model_params {
|
||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||
int32_t mla; // MLA implementation to use (only applicable to DeepSeek models at this point)
|
||
enum llama_split_mode split_mode; // how to split the model across multiple GPUs
|
||
|
||
// main_gpu interpretation depends on split_mode:
|
||
// LLAMA_SPLIT_NONE: the GPU that is used for the entire model
|
||
// LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
|
||
// LLAMA_SPLIT_LAYER: ignored
|
||
int32_t main_gpu;
|
||
|
||
// proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
|
||
const float * tensor_split;
|
||
|
||
// comma separated list of RPC servers to use for offloading
|
||
const char * rpc_servers;
|
||
|
||
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
|
||
// If the provided progress_callback returns true, model loading continues.
|
||
// If it returns false, model loading is immediately aborted.
|
||
llama_progress_callback progress_callback;
|
||
|
||
// context pointer passed to the progress callback
|
||
void * progress_callback_user_data;
|
||
|
||
// override key-value pairs of the model meta data
|
||
const struct llama_model_kv_override * kv_overrides;
|
||
|
||
const struct llama_model_tensor_buft_override * tensor_buft_overrides;
|
||
|
||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||
bool vocab_only; // only load the vocabulary, no weights
|
||
bool use_mmap; // use mmap if possible
|
||
bool use_mlock; // force system to keep model in RAM
|
||
bool check_tensors; // validate model tensor data
|
||
bool repack_tensors;// repack if available
|
||
bool use_thp; // uase transparent huge pages (linux only)
|
||
};
|
||
|
||
// NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
|
||
// https://github.com/ggerganov/llama.cpp/pull/7544
|
||
struct llama_context_params {
|
||
uint32_t seed; // RNG seed, -1 for random
|
||
uint32_t n_ctx; // text context, 0 = from model
|
||
uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
|
||
uint32_t n_ubatch; // physical maximum batch size
|
||
uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
|
||
uint32_t n_threads; // number of threads to use for generation
|
||
uint32_t n_threads_batch; // number of threads to use for batch processing
|
||
|
||
enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
|
||
enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
|
||
enum llama_attention_type attention_type; // attention type to use for embeddings
|
||
|
||
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
||
float rope_freq_base; // RoPE base frequency, 0 = from model
|
||
float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
|
||
float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
|
||
float yarn_attn_factor; // YaRN magnitude scaling factor
|
||
float yarn_beta_fast; // YaRN low correction dim
|
||
float yarn_beta_slow; // YaRN high correction dim
|
||
uint32_t yarn_orig_ctx; // YaRN original context size
|
||
float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
|
||
|
||
ggml_backend_sched_eval_callback cb_eval;
|
||
void * cb_eval_user_data;
|
||
|
||
enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
|
||
enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
|
||
|
||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||
bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
|
||
bool embeddings; // if true, extract embeddings (together with logits)
|
||
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
|
||
bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
|
||
int mla_attn; // whether to use MLA attention [EXPERIMENTAL]
|
||
int attn_max_batch; // maximum batch size for attention computations [EXPERIMENTAL]
|
||
bool fused_moe_up_gate; // whether to use fused MoE up/down op [EXPERIMENTAL]
|
||
int min_experts;
|
||
float thresh_experts;
|
||
|
||
// Abort callback
|
||
// if it returns true, execution of llama_decode() will be aborted
|
||
// currently works only with CPU execution
|
||
ggml_abort_callback abort_callback;
|
||
void * abort_callback_data;
|
||
void * offload_policy;
|
||
};
|
||
|
||
// model quantization parameters
|
||
typedef struct llama_model_quantize_params {
|
||
int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
||
enum llama_ftype ftype; // quantize to this llama_ftype
|
||
enum ggml_type output_tensor_type; // output tensor type
|
||
enum ggml_type token_embedding_type; // token embeddings tensor type
|
||
enum ggml_type attn_q_type; // attention query tensor type
|
||
enum ggml_type attn_k_type; // attention key tensor type
|
||
enum ggml_type attn_v_type; // attention value tensor type
|
||
enum ggml_type attn_qkv_type; // attention query-key-value tensor type
|
||
enum ggml_type attn_output_type; // attention output tensor type
|
||
enum ggml_type ffn_gate_type; // feedforward network gate type
|
||
enum ggml_type ffn_down_type; // feedforward network down type
|
||
enum ggml_type ffn_up_type; // feedforward network up type
|
||
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
||
bool quantize_output_tensor; // quantize output.weight
|
||
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
|
||
bool pure; // quantize all tensors to the default type
|
||
bool keep_split; // quantize to the same number of shards
|
||
bool ignore_imatrix_rules; // If set to true, the built-in rules for refusing to quantize into certain quants without imatrix are ignored
|
||
bool only_repack; // Only repack tensors
|
||
void * imatrix; // pointer to importance matrix data
|
||
void * kv_overrides; // pointer to vector containing overrides
|
||
void * custom_quants; // pointer to vector containing custom quantization rules
|
||
void * repack_pattern; // pointer to a vector containing regexes to be used for matching tensor names. Can be null
|
||
} llama_model_quantize_params;
|
||
|
||
// grammar types
|
||
struct llama_grammar;
|
||
|
||
// grammar element type
|
||
enum llama_gretype {
|
||
// end of rule definition
|
||
LLAMA_GRETYPE_END = 0,
|
||
|
||
// start of alternate definition for rule
|
||
LLAMA_GRETYPE_ALT = 1,
|
||
|
||
// non-terminal element: reference to rule
|
||
LLAMA_GRETYPE_RULE_REF = 2,
|
||
|
||
// terminal element: character (code point)
|
||
LLAMA_GRETYPE_CHAR = 3,
|
||
|
||
// inverse char(s) ([^a], [^a-b] [^abc])
|
||
LLAMA_GRETYPE_CHAR_NOT = 4,
|
||
|
||
// modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
|
||
// be an inclusive range ([a-z])
|
||
LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
|
||
|
||
// modifies a preceding LLAMA_GRETYPE_CHAR or
|
||
// LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
|
||
LLAMA_GRETYPE_CHAR_ALT = 6,
|
||
|
||
// any character (.)
|
||
LLAMA_GRETYPE_CHAR_ANY = 7,
|
||
};
|
||
|
||
typedef struct llama_grammar_element {
|
||
enum llama_gretype type;
|
||
uint32_t value; // Unicode code point or rule ID
|
||
} llama_grammar_element;
|
||
|
||
// performance timing information
|
||
struct llama_timings {
|
||
double t_start_ms;
|
||
double t_end_ms;
|
||
double t_load_ms;
|
||
double t_sample_ms;
|
||
double t_p_eval_ms;
|
||
double t_eval_ms;
|
||
|
||
int32_t n_sample;
|
||
int32_t n_p_eval;
|
||
int32_t n_eval;
|
||
};
|
||
|
||
// used in chat template
|
||
typedef struct llama_chat_message {
|
||
const char * role;
|
||
const char * content;
|
||
} llama_chat_message;
|
||
|
||
// lora adapter
|
||
struct llama_lora_adapter;
|
||
|
||
// Helpers for getting default parameters
|
||
LLAMA_API struct llama_model_params llama_model_default_params(void);
|
||
LLAMA_API struct llama_context_params llama_context_default_params(void);
|
||
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
|
||
|
||
// Initialize the llama + ggml backend
|
||
// If numa is true, use NUMA optimizations
|
||
// Call once at the start of the program
|
||
LLAMA_API void llama_backend_init(void);
|
||
|
||
//optional:
|
||
LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
|
||
|
||
// Call once at the end of the program - currently only used for MPI
|
||
LLAMA_API void llama_backend_free(void);
|
||
|
||
LLAMA_API struct llama_model * llama_load_model_from_file(
|
||
const char * path_model,
|
||
struct llama_model_params params);
|
||
|
||
LLAMA_API void llama_free_model(struct llama_model * model);
|
||
|
||
LLAMA_API struct llama_context * llama_new_context_with_model(
|
||
struct llama_model * model,
|
||
struct llama_context_params params);
|
||
|
||
LLAMA_API void llama_set_offload_policy(struct llama_context * lctx, int op, bool on_or_off);
|
||
|
||
// Frees all allocated memory
|
||
LLAMA_API void llama_free(struct llama_context * ctx);
|
||
|
||
LLAMA_API int64_t llama_time_us(void);
|
||
|
||
LLAMA_API size_t llama_max_devices(void);
|
||
|
||
LLAMA_API bool llama_supports_mmap (void);
|
||
LLAMA_API bool llama_supports_mlock (void);
|
||
LLAMA_API bool llama_supports_gpu_offload(void);
|
||
|
||
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
|
||
|
||
LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
|
||
LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
|
||
LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
|
||
LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
|
||
|
||
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
|
||
|
||
LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
|
||
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
|
||
|
||
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
|
||
LLAMA_API const struct llama_vocab* llama_get_model_vocab(const struct llama_model* model);
|
||
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
|
||
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
|
||
LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
|
||
|
||
// Get the model's RoPE frequency scaling factor
|
||
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
|
||
|
||
// Functions to access the model's GGUF metadata scalar values
|
||
// - The functions return the length of the string on success, or -1 on failure
|
||
// - The output string is always null-terminated and cleared on failure
|
||
// - GGUF array values are not supported by these functions
|
||
|
||
// Get metadata value as a string by key name
|
||
LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
|
||
|
||
// Get the number of metadata key/value pairs
|
||
LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
|
||
|
||
// Get metadata key name by index
|
||
LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
|
||
|
||
// Get metadata value as a string by index
|
||
LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
|
||
|
||
// Get a string describing the model type
|
||
LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
|
||
|
||
// Returns the total size of all the tensors in the model in bytes
|
||
LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
|
||
|
||
// Returns the total number of parameters in the model
|
||
LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
|
||
|
||
// Get a llama model tensor
|
||
LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
|
||
|
||
// Returns true if the model contains an encoder that requires llama_encode() call
|
||
LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
|
||
|
||
// Returns true if the model contains a decoder that requires llama_decode() call
|
||
LLAMA_API bool llama_model_has_decoder(const struct llama_model * model);
|
||
|
||
// For encoder-decoder models, this function returns id of the token that must be provided
|
||
// to the decoder to start generating output sequence. For other models, it returns -1.
|
||
LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);
|
||
|
||
// Returns 0 on success
|
||
LLAMA_API uint32_t llama_model_quantize(
|
||
const char * fname_inp,
|
||
const char * fname_out,
|
||
const llama_model_quantize_params * params);
|
||
|
||
// Load a LoRA adapter from file
|
||
// The loaded adapter will be associated to the given model, and will be free when the model is deleted
|
||
LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
|
||
struct llama_model * model,
|
||
const char * path_lora);
|
||
|
||
// Add a loaded LoRA adapter to given context
|
||
// This will not modify model's weight
|
||
LLAMA_API int32_t llama_lora_adapter_set(
|
||
struct llama_context * ctx,
|
||
struct llama_lora_adapter * adapter,
|
||
float scale);
|
||
|
||
// Remove a specific LoRA adapter from given context
|
||
// Return -1 if the adapter is not present in the context
|
||
LLAMA_API int32_t llama_lora_adapter_remove(
|
||
struct llama_context * ctx,
|
||
struct llama_lora_adapter * adapter);
|
||
|
||
// Remove all LoRA adapters from given context
|
||
LLAMA_API void llama_lora_adapter_clear(
|
||
struct llama_context * ctx);
|
||
|
||
// Manually free a LoRA adapter
|
||
// Note: loaded adapters will be free when the associated model is deleted
|
||
LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
|
||
|
||
// Apply a loaded control vector to a llama_context, or if data is NULL, clear
|
||
// the currently loaded vector.
|
||
// n_embd should be the size of a single layer's control, and data should point
|
||
// to an n_embd x n_layers buffer starting from layer 1.
|
||
// il_start and il_end are the layer range the vector should apply to (both inclusive)
|
||
// See llama_control_vector_load in common to load a control vector.
|
||
LLAMA_API int32_t llama_control_vector_apply(
|
||
struct llama_context * lctx,
|
||
const float * data,
|
||
size_t len,
|
||
int32_t n_embd,
|
||
int32_t il_start,
|
||
int32_t il_end);
|
||
|
||
//
|
||
// KV cache
|
||
//
|
||
|
||
// Information associated with an individual cell in the KV cache view.
|
||
struct llama_kv_cache_view_cell {
|
||
// The position for this cell. Takes KV cache shifts into account.
|
||
// May be negative if the cell is not populated.
|
||
llama_pos pos;
|
||
};
|
||
|
||
// An updateable view of the KV cache.
|
||
struct llama_kv_cache_view {
|
||
// Number of KV cache cells. This will be the same as the context size.
|
||
int32_t n_cells;
|
||
|
||
// Maximum number of sequences that can exist in a cell. It's not an error
|
||
// if there are more sequences in a cell than this value, however they will
|
||
// not be visible in the view cells_sequences.
|
||
int32_t n_seq_max;
|
||
|
||
// Number of tokens in the cache. For example, if there are two populated
|
||
// cells, the first with 1 sequence id in it and the second with 2 sequence
|
||
// ids then you'll have 3 tokens.
|
||
int32_t token_count;
|
||
|
||
// Number of populated cache cells.
|
||
int32_t used_cells;
|
||
|
||
// Maximum contiguous empty slots in the cache.
|
||
int32_t max_contiguous;
|
||
|
||
// Index to the start of the max_contiguous slot range. Can be negative
|
||
// when cache is full.
|
||
int32_t max_contiguous_idx;
|
||
|
||
// Information for an individual cell.
|
||
struct llama_kv_cache_view_cell * cells;
|
||
|
||
// The sequences for each cell. There will be n_seq_max items per cell.
|
||
llama_seq_id * cells_sequences;
|
||
};
|
||
|
||
// Create an empty KV cache view. (use only for debugging purposes)
|
||
LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
|
||
|
||
// Free a KV cache view. (use only for debugging purposes)
|
||
LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
|
||
|
||
// Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
|
||
LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
|
||
|
||
// Returns the number of tokens in the KV cache (slow, use only for debug)
|
||
// If a KV cell has multiple sequences assigned to it, it will be counted multiple times
|
||
LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
|
||
|
||
// Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
|
||
LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
|
||
|
||
// Clear the KV cache - both cell info is erased and KV data is zeroed
|
||
LLAMA_API void llama_kv_cache_clear(
|
||
struct llama_context * ctx);
|
||
|
||
// Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
|
||
// Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
|
||
// seq_id < 0 : match any sequence
|
||
// p0 < 0 : [0, p1]
|
||
// p1 < 0 : [p0, inf)
|
||
LLAMA_API bool llama_kv_cache_seq_rm(
|
||
struct llama_context * ctx,
|
||
llama_seq_id seq_id,
|
||
llama_pos p0,
|
||
llama_pos p1);
|
||
|
||
// Copy all tokens that belong to the specified sequence to another sequence
|
||
// Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
|
||
// p0 < 0 : [0, p1]
|
||
// p1 < 0 : [p0, inf)
|
||
LLAMA_API void llama_kv_cache_seq_cp(
|
||
struct llama_context * ctx,
|
||
llama_seq_id seq_id_src,
|
||
llama_seq_id seq_id_dst,
|
||
llama_pos p0,
|
||
llama_pos p1);
|
||
|
||
// Removes all tokens that do not belong to the specified sequence
|
||
LLAMA_API void llama_kv_cache_seq_keep(
|
||
struct llama_context * ctx,
|
||
llama_seq_id seq_id);
|
||
|
||
// Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
|
||
// If the KV cache is RoPEd, the KV data is updated accordingly:
|
||
// - lazily on next llama_decode()
|
||
// - explicitly with llama_kv_cache_update()
|
||
// p0 < 0 : [0, p1]
|
||
// p1 < 0 : [p0, inf)
|
||
LLAMA_API void llama_kv_cache_seq_add(
|
||
struct llama_context * ctx,
|
||
llama_seq_id seq_id,
|
||
llama_pos p0,
|
||
llama_pos p1,
|
||
llama_pos delta);
|
||
|
||
// Integer division of the positions by factor of `d > 1`
|
||
// If the KV cache is RoPEd, the KV data is updated accordingly:
|
||
// - lazily on next llama_decode()
|
||
// - explicitly with llama_kv_cache_update()
|
||
// p0 < 0 : [0, p1]
|
||
// p1 < 0 : [p0, inf)
|
||
LLAMA_API void llama_kv_cache_seq_div(
|
||
struct llama_context * ctx,
|
||
llama_seq_id seq_id,
|
||
llama_pos p0,
|
||
llama_pos p1,
|
||
int d);
|
||
|
||
// Returns the largest position present in the KV cache for the specified sequence
|
||
LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
|
||
struct llama_context * ctx,
|
||
llama_seq_id seq_id);
|
||
|
||
// Defragment the KV cache
|
||
// This will be applied:
|
||
// - lazily on next llama_decode()
|
||
// - explicitly with llama_kv_cache_update()
|
||
LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
|
||
|
||
// Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
|
||
LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
|
||
|
||
//
|
||
// State / sessions
|
||
//
|
||
|
||
// Returns the *actual* size in bytes of the state
|
||
// (rng, logits, embedding and kv_cache)
|
||
// Only use when saving the state, not when restoring it, otherwise the size may be too small.
|
||
LLAMA_API size_t llama_state_get_size(struct llama_context * ctx);
|
||
LLAMA_API DEPRECATED(size_t llama_get_state_size(struct llama_context * ctx),
|
||
"use llama_state_get_size instead");
|
||
|
||
// Copies the state to the specified destination address.
|
||
// Destination needs to have allocated enough memory.
|
||
// Returns the number of bytes copied
|
||
LLAMA_API size_t llama_state_get_data(
|
||
struct llama_context * ctx,
|
||
uint8_t * dst,
|
||
size_t size);
|
||
LLAMA_API DEPRECATED(size_t llama_copy_state_data(
|
||
struct llama_context * ctx,
|
||
uint8_t * dst),
|
||
"use llama_state_get_data instead");
|
||
|
||
// Set the state reading from the specified address
|
||
// Returns the number of bytes read
|
||
LLAMA_API size_t llama_state_set_data(
|
||
struct llama_context * ctx,
|
||
const uint8_t * src,
|
||
size_t size);
|
||
LLAMA_API DEPRECATED(size_t llama_set_state_data(
|
||
struct llama_context * ctx,
|
||
const uint8_t * src),
|
||
"use llama_state_set_data instead");
|
||
|
||
// Save/load session file
|
||
LLAMA_API bool llama_state_load_file(
|
||
struct llama_context * ctx,
|
||
const char * path_session,
|
||
llama_token * tokens_out,
|
||
size_t n_token_capacity,
|
||
size_t * n_token_count_out);
|
||
LLAMA_API DEPRECATED(bool llama_load_session_file(
|
||
struct llama_context * ctx,
|
||
const char * path_session,
|
||
llama_token * tokens_out,
|
||
size_t n_token_capacity,
|
||
size_t * n_token_count_out),
|
||
"use llama_state_load_file instead");
|
||
|
||
LLAMA_API bool llama_state_save_file(
|
||
struct llama_context * ctx,
|
||
const char * path_session,
|
||
const llama_token * tokens,
|
||
size_t n_token_count);
|
||
LLAMA_API DEPRECATED(bool llama_save_session_file(
|
||
struct llama_context * ctx,
|
||
const char * path_session,
|
||
const llama_token * tokens,
|
||
size_t n_token_count),
|
||
"use llama_state_save_file instead");
|
||
|
||
// Get the exact size needed to copy the KV cache of a single sequence
|
||
LLAMA_API size_t llama_state_seq_get_size(
|
||
struct llama_context * ctx,
|
||
llama_seq_id seq_id);
|
||
|
||
// Copy the KV cache of a single sequence into the specified buffer
|
||
LLAMA_API size_t llama_state_seq_get_data(
|
||
struct llama_context * ctx,
|
||
uint8_t * dst,
|
||
size_t size,
|
||
llama_seq_id seq_id);
|
||
|
||
// Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
|
||
// Returns:
|
||
// - Positive: Ok
|
||
// - Zero: Failed to load
|
||
LLAMA_API size_t llama_state_seq_set_data(
|
||
struct llama_context * ctx,
|
||
const uint8_t * src,
|
||
size_t size,
|
||
llama_seq_id dest_seq_id);
|
||
|
||
LLAMA_API size_t llama_state_seq_save_file(
|
||
struct llama_context * ctx,
|
||
const char * filepath,
|
||
llama_seq_id seq_id,
|
||
const llama_token * tokens,
|
||
size_t n_token_count);
|
||
|
||
LLAMA_API size_t llama_state_seq_load_file(
|
||
struct llama_context * ctx,
|
||
const char * filepath,
|
||
llama_seq_id dest_seq_id,
|
||
llama_token * tokens_out,
|
||
size_t n_token_capacity,
|
||
size_t * n_token_count_out);
|
||
|
||
//
|
||
// Decoding
|
||
//
|
||
|
||
// Return batch for single sequence of tokens starting at pos_0
|
||
//
|
||
// NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
|
||
//
|
||
LLAMA_API struct llama_batch llama_batch_get_one(
|
||
llama_token * tokens,
|
||
int32_t n_tokens,
|
||
llama_pos pos_0,
|
||
llama_seq_id seq_id);
|
||
|
||
// Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
|
||
// Each token can be assigned up to n_seq_max sequence ids
|
||
// The batch has to be freed with llama_batch_free()
|
||
// If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
|
||
// Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
|
||
// The rest of the llama_batch members are allocated with size n_tokens
|
||
// All members are left uninitialized
|
||
LLAMA_API struct llama_batch llama_batch_init(
|
||
int32_t n_tokens,
|
||
int32_t embd,
|
||
int32_t n_seq_max);
|
||
|
||
// Frees a batch of tokens allocated with llama_batch_init()
|
||
LLAMA_API void llama_batch_free(struct llama_batch batch);
|
||
|
||
// Processes a batch of tokens with the ecoder part of the encoder-decoder model.
|
||
// Stores the encoder output internally for later use by the decoder cross-attention layers.
|
||
// 0 - success
|
||
// < 0 - error
|
||
LLAMA_API int32_t llama_encode(
|
||
struct llama_context * ctx,
|
||
struct llama_batch batch);
|
||
|
||
// Positive return values does not mean a fatal error, but rather a warning.
|
||
// 0 - success
|
||
// 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
|
||
// < 0 - error
|
||
LLAMA_API int32_t llama_decode(
|
||
struct llama_context * ctx,
|
||
struct llama_batch batch);
|
||
|
||
// Set the number of threads used for decoding
|
||
// n_threads is the number of threads used for generation (single token)
|
||
// n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
|
||
LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
|
||
|
||
// Get the number of threads used for generation of a single token.
|
||
LLAMA_API uint32_t llama_n_threads(struct llama_context * ctx);
|
||
|
||
// Get the number of threads used for prompt and batch processing (multiple token).
|
||
LLAMA_API uint32_t llama_n_threads_batch(struct llama_context * ctx);
|
||
|
||
// Set whether the model is in embeddings mode or not
|
||
// If true, embeddings will be returned but logits will not
|
||
LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
|
||
|
||
// Set whether to use causal attention or not
|
||
// If set to true, the model will only attend to the past tokens
|
||
LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
|
||
|
||
// Set abort callback
|
||
LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
|
||
|
||
// Wait until all computations are finished
|
||
// This is automatically done when using one of the functions below to obtain the computation results
|
||
// and is not necessary to call it explicitly in most cases
|
||
LLAMA_API void llama_synchronize(struct llama_context * ctx);
|
||
|
||
// Token logits obtained from the last call to llama_decode()
|
||
// The logits for which llama_batch.logits[i] != 0 are stored contiguously
|
||
// in the order they have appeared in the batch.
|
||
// Rows: number of tokens for which llama_batch.logits[i] != 0
|
||
// Cols: n_vocab
|
||
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
|
||
|
||
// Logits for the ith token. For positive indices, Equivalent to:
|
||
// llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
|
||
// Negative indicies can be used to access logits in reverse order, -1 is the last logit.
|
||
// returns NULL for invalid ids.
|
||
LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
|
||
|
||
// Get all output token embeddings.
|
||
// when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
|
||
// the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
|
||
// in the order they have appeared in the batch.
|
||
// shape: [n_outputs*n_embd]
|
||
// Otherwise, returns NULL.
|
||
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
||
|
||
// Get the embeddings for the ith token. For positive indices, Equivalent to:
|
||
// llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
|
||
// Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
|
||
// shape: [n_embd] (1-dimensional)
|
||
// returns NULL for invalid ids.
|
||
LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
|
||
|
||
// Get the embeddings for a sequence id
|
||
// Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
|
||
// shape: [n_embd] (1-dimensional)
|
||
LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
|
||
|
||
//
|
||
// Vocab
|
||
//
|
||
|
||
LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
|
||
|
||
LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
|
||
|
||
LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
|
||
|
||
// Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
|
||
LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
|
||
|
||
// Identify if Token Id is a control token or a render-able token
|
||
LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
|
||
|
||
// Special tokens
|
||
LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
|
||
LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
|
||
LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
|
||
LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
|
||
LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
|
||
LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
|
||
|
||
// Returns -1 if unknown, 1 for true or 0 for false.
|
||
LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
|
||
|
||
// Returns -1 if unknown, 1 for true or 0 for false.
|
||
LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
|
||
|
||
// Codellama infill tokens
|
||
LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
|
||
LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
|
||
LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
|
||
LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
|
||
|
||
//
|
||
// Tokenization
|
||
//
|
||
|
||
/// @details Convert the provided text into tokens.
|
||
/// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
|
||
/// @return Returns the number of tokens on success, no more than n_tokens_max
|
||
/// @return Returns a negative number on failure - the number of tokens that would have been returned
|
||
/// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
|
||
/// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
|
||
/// as plaintext. Does not insert a leading space.
|
||
LLAMA_API int32_t llama_tokenize(
|
||
const struct llama_model * model,
|
||
const char * text,
|
||
int32_t text_len,
|
||
llama_token * tokens,
|
||
int32_t n_tokens_max,
|
||
bool add_special,
|
||
bool parse_special);
|
||
|
||
// Token Id -> Piece.
|
||
// Uses the vocabulary in the provided context.
|
||
// Does not write null terminator to the buffer.
|
||
// User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
|
||
// @param special If true, special tokens are rendered in the output.
|
||
LLAMA_API int32_t llama_token_to_piece(
|
||
const struct llama_model * model,
|
||
llama_token token,
|
||
char * buf,
|
||
int32_t length,
|
||
int32_t lstrip,
|
||
bool special);
|
||
|
||
/// @details Convert the provided tokens into text (inverse of llama_tokenize()).
|
||
/// @param text The char pointer must be large enough to hold the resulting text.
|
||
/// @return Returns the number of chars/bytes on success, no more than text_len_max.
|
||
/// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
|
||
/// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
|
||
/// @param unparse_special If true, special tokens are rendered in the output.
|
||
LLAMA_API int32_t llama_detokenize(
|
||
const struct llama_model * model,
|
||
const llama_token * tokens,
|
||
int32_t n_tokens,
|
||
char * text,
|
||
int32_t text_len_max,
|
||
bool remove_special,
|
||
bool unparse_special);
|
||
|
||
//
|
||
// Chat templates
|
||
//
|
||
|
||
/// Apply chat template. Inspired by hf apply_chat_template() on python.
|
||
/// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
|
||
/// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
|
||
/// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
|
||
/// @param chat Pointer to a list of multiple llama_chat_message
|
||
/// @param n_msg Number of llama_chat_message in this chat
|
||
/// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
|
||
/// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
|
||
/// @param length The size of the allocated buffer
|
||
/// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
|
||
LLAMA_API int32_t llama_chat_apply_template(
|
||
const struct llama_model * model,
|
||
const char * tmpl,
|
||
const struct llama_chat_message * chat,
|
||
size_t n_msg,
|
||
bool add_ass,
|
||
char * buf,
|
||
int32_t length);
|
||
// Get list of built-in chat templates
|
||
LLAMA_API int32_t llama_chat_builtin_templates(const char ** output, size_t len);
|
||
|
||
//
|
||
// Grammar
|
||
//
|
||
|
||
/// Initialize a llama_grammar.
|
||
///
|
||
/// @param rules The rule elements of the grammar to initialize.
|
||
/// @param n_rules The number of rules.
|
||
/// @param start_rule_index The index of the root rule (the starting point of the grammar).
|
||
/// @return The initialized llama_grammar or nullptr if initialization failed.
|
||
LLAMA_API struct llama_grammar * llama_grammar_init(
|
||
const llama_grammar_element ** rules,
|
||
size_t n_rules,
|
||
size_t start_rule_index);
|
||
|
||
LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
|
||
|
||
LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
|
||
|
||
/// @details Apply constraints from grammar
|
||
LLAMA_API void llama_grammar_sample(
|
||
const struct llama_grammar * grammar,
|
||
const struct llama_context * ctx,
|
||
llama_token_data_array * candidates);
|
||
LLAMA_API DEPRECATED(void llama_sample_grammar(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
const struct llama_grammar * grammar),
|
||
"use llama_grammar_sample instead");
|
||
|
||
/// @details Accepts the sampled token into the grammar
|
||
LLAMA_API void llama_grammar_accept_token(
|
||
struct llama_grammar * grammar,
|
||
struct llama_context * ctx,
|
||
llama_token token);
|
||
|
||
//
|
||
// Sampling functions
|
||
//
|
||
|
||
// Sets the current rng seed.
|
||
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
|
||
|
||
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
||
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
||
LLAMA_API void llama_sample_repetition_penalties(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
const llama_token * last_tokens,
|
||
size_t penalty_last_n,
|
||
float penalty_repeat,
|
||
float penalty_freq,
|
||
float penalty_present);
|
||
|
||
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
|
||
/// @param logits Logits extracted from the original generation context.
|
||
/// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
|
||
/// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
|
||
LLAMA_API void llama_sample_apply_guidance(
|
||
struct llama_context * ctx,
|
||
float * logits,
|
||
float * logits_guidance,
|
||
float scale);
|
||
|
||
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||
LLAMA_API void llama_sample_softmax(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates);
|
||
|
||
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||
LLAMA_API void llama_sample_top_k(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
int32_t k,
|
||
size_t min_keep);
|
||
|
||
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||
LLAMA_API void llama_sample_top_p(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
float p,
|
||
size_t min_keep);
|
||
|
||
/// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
|
||
LLAMA_API void llama_sample_min_p(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
float p,
|
||
size_t min_keep);
|
||
|
||
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
||
LLAMA_API void llama_sample_tail_free(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
float z,
|
||
size_t min_keep);
|
||
|
||
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
||
LLAMA_API void llama_sample_typical(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
float p,
|
||
size_t min_keep);
|
||
|
||
/// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
|
||
LLAMA_API void llama_sample_entropy(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates_p,
|
||
float min_temp,
|
||
float max_temp,
|
||
float exponent_val);
|
||
|
||
LLAMA_API void llama_sample_temp(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
float temp);
|
||
|
||
/// @details XTC sampler as described in https://github.com/oobabooga/text-generation-webui/pull/6335
|
||
LLAMA_API void llama_sample_xtc(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates_p,
|
||
float probability,
|
||
float threshold,
|
||
size_t min_keep);
|
||
|
||
/// @details Top n sigma sampling as described in academic paper "Top-nσ: Not All Logits Are You Need" https://arxiv.org/pdf/2411.07641
|
||
LLAMA_API void llama_sample_top_n_sigma(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates_p,
|
||
float top_n_sigma);
|
||
|
||
/// @details DRY sampler, designed by p-e-w, as described in: https://github.com/oobabooga/text-generation-webui/pull/5677, porting Koboldcpp implementation authored by pi6am: https://github.com/LostRuins/koboldcpp/pull/982
|
||
LLAMA_API struct llama_sampler_dry * llama_sampler_init_dry(
|
||
const struct llama_vocab* model,
|
||
float dry_multiplier,
|
||
float dry_base,
|
||
int32_t dry_allowed_length,
|
||
int32_t dry_penalty_last_n,
|
||
const char** seq_breakers,
|
||
size_t num_breakers);
|
||
|
||
//LLAMA_API void llama_sample_dry(struct llama_context* ctx, llama_token_data_array* candidates_p, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers);
|
||
|
||
void llama_sample_dry(struct llama_context* ctx, struct llama_sampler_dry* smpl, llama_token_data_array* candidates_p);
|
||
|
||
void llama_sampler_dry_reset(struct llama_sampler_dry* smpl);
|
||
|
||
void llama_sampler_dry_free(struct llama_sampler_dry* smpl);
|
||
|
||
struct llama_sampler_dry* llama_sampler_dry_clone(struct llama_sampler_dry* smpl);
|
||
|
||
void llama_sampler_dry_accept(struct llama_sampler_dry* smpl, llama_token token);
|
||
|
||
/// @details DRY sampler, designed by p-e-w, as described in: https://github.com/oobabooga/text-generation-webui/pull/5677, porting Koboldcpp implementation authored by pi6am: https://github.com/LostRuins/koboldcpp/pull/982
|
||
|
||
|
||
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
||
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
|
||
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||
LLAMA_API llama_token llama_sample_token_mirostat(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
float tau,
|
||
float eta,
|
||
int32_t m,
|
||
float * mu);
|
||
|
||
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
||
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||
LLAMA_API llama_token llama_sample_token_mirostat_v2(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
float tau,
|
||
float eta,
|
||
float * mu);
|
||
|
||
/// @details Selects the token with the highest probability.
|
||
/// Does not compute the token probabilities. Use llama_sample_softmax() instead.
|
||
LLAMA_API llama_token llama_sample_token_greedy(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates);
|
||
|
||
/// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
|
||
LLAMA_API llama_token llama_sample_token(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates);
|
||
|
||
//
|
||
// Model split
|
||
//
|
||
|
||
/// @details Build a split GGUF final path for this chunk.
|
||
/// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
|
||
// Returns the split_path length.
|
||
LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
|
||
|
||
/// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
|
||
/// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
|
||
// Returns the split_prefix length.
|
||
LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
|
||
|
||
// Performance information
|
||
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
|
||
|
||
LLAMA_API void llama_print_timings(struct llama_context * ctx);
|
||
LLAMA_API void llama_reset_timings(struct llama_context * ctx);
|
||
|
||
// Print system information
|
||
LLAMA_API const char * llama_print_system_info(void);
|
||
|
||
// Set callback for all future logging events.
|
||
// If this is not called, or NULL is supplied, everything is output on stderr.
|
||
LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
|
||
|
||
LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
|
||
|
||
#ifdef __cplusplus
|
||
}
|
||
#endif
|
||
|
||
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
|
||
#ifdef LLAMA_API_INTERNAL
|
||
|
||
#include <random>
|
||
#include <string>
|
||
#include <vector>
|
||
|
||
struct ggml_tensor;
|
||
|
||
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
|
||
struct llama_context * ctx
|
||
);
|
||
|
||
struct llama_partial_utf8 {
|
||
uint32_t value; // bit value so far (unshifted)
|
||
int n_remain; // num bytes remaining; -1 indicates invalid sequence
|
||
};
|
||
|
||
struct llama_grammar_candidate {
|
||
size_t index;
|
||
const uint32_t * code_points;
|
||
llama_partial_utf8 partial_utf8;
|
||
};
|
||
|
||
using llama_grammar_rule = std::vector< llama_grammar_element>;
|
||
using llama_grammar_stack = std::vector<const llama_grammar_element *>;
|
||
|
||
using llama_grammar_rules = std::vector<llama_grammar_rule>;
|
||
using llama_grammar_stacks = std::vector<llama_grammar_stack>;
|
||
using llama_grammar_candidates = std::vector<llama_grammar_candidate>;
|
||
|
||
const llama_grammar_rules & llama_grammar_get_rules (const struct llama_grammar * grammar);
|
||
llama_grammar_stacks & llama_grammar_get_stacks( struct llama_grammar * grammar);
|
||
|
||
void llama_grammar_accept(
|
||
const llama_grammar_rules & rules,
|
||
const llama_grammar_stacks & stacks,
|
||
const uint32_t chr,
|
||
llama_grammar_stacks & new_stacks);
|
||
|
||
std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
|
||
const llama_grammar_rules & rules,
|
||
const llama_grammar_stack & stack,
|
||
const llama_grammar_candidates & candidates);
|
||
|
||
std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
|
||
const std::string & src,
|
||
llama_partial_utf8 partial_start);
|
||
|
||
// Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
|
||
// This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
|
||
llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
|
||
|
||
#endif // LLAMA_API_INTERNAL
|
||
|
||
#endif // LLAMA_H
|