Files
ik_llama.cpp/iqk_mul_mat.cpp
Kawrakow 9918542658 bitnet: remove iq1_bn lookup table storing +/- signs
The AVX2 implementation was the only one left using it, so
I decided to see if we can get a performant implementation
using the 0,1,2 lookup table. Turns out we can, and it is
even slightly faster than the sign based table. We now
get PP-512 = 275 t/s and TG-128 = 57.7 t/s with 16 threads
on the Ryzen-7950X.

With only one lookup table left for iq1_bn, I renamed it to
iq1bn_grid_u16.
2024-06-25 18:19:11 +03:00

4702 lines
202 KiB
C++

// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*-
// vi: set et ft=cpp fenc=utf-8 :vi
//
// Copyright 2024 Iwan Kawrakow
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#if defined IQK_IMPLEMENT
#undef IQK_IMPLEMENT
#endif
#if defined __AVX2__ || defined __ARM_FEATURE_DOTPROD
#define IQK_IMPLEMENT
#endif
#include <cstring>
#include <type_traits>
#if defined IQK_IMPLEMENT
#include "ggml-impl.h"
#include "ggml-quants.h"
#include "iqk_mul_mat.h"
#include "iqk-quantize.h"
#define GGML_COMMON_IMPL_C
#include "ggml-common.h"
// clang-format off
// This matrix - vector and matrix - matrix multiplication implementation
// for k-quants, i-quants, and legacy quants, makes prompt processing
// 150-350% faster (depending on quantization type) compared to mainline llama.cpp.
// It is AVX2 and ARM_NEON only for now.
// There are also implementations for fp16/32 x fp16/32 matrix multiplications
// on AVX2 and fp16 x fp16 on ARM_NEON.
//
// Main idea is that unpacking the quants and the block scales to
// be ready for dot products with the corresponding Q8_X quants
// takes time. Hence, if we are performing a QX x Q8_X matrix matrix
// multiplication (as needed for prompt processing), we can get
// a significant speedup by reusing the unpacked QX quants and scales
// for multiplication with several Q8_X columns.
//
// For fp16/fp32 matri multiplications tiling is used to improve
// performance.
#include <utility>
#include <array>
#ifdef _MSC_VER
#define IQK_NOINLINE __declspec(noinline)
#define IQK_ALWAYS_INLINE inline
#else
#define IQK_NOINLINE __attribute__((__noinline__))
#define IQK_ALWAYS_INLINE __attribute__((__always_inline__))
#endif
namespace {
typedef struct {
int32_t i1;
int32_t i2;
} mmid_row_mapping;
struct DataInfo {
float * s;
const char * cy;
size_t bs;
size_t by;
int cur_y = 0;
int ne11;
const mmid_row_mapping * row_mapping = nullptr;
size_t bs2 = 0;
inline const char * src1_row(int iy) const {
if (!row_mapping) return cy + (cur_y + iy)*by;
int i11 = row_mapping[cur_y + iy].i1 % ne11;
int i12 = row_mapping[cur_y + iy].i2;
return cy + (i11 + i12*ne11)*by;
}
inline void store(int ix, int iy, float result) const {
*(dst_row(iy) + ix) = result;
}
inline float * dst_row(int iy) const {
if (!row_mapping) return s + (cur_y + iy)*bs;
int i12 = row_mapping[cur_y + iy].i2;
int i1 = row_mapping[cur_y + iy].i1;
int i2 = i12;
return s + i1*bs + i2*bs2;
}
};
typedef void (*mul_mat_t)(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x);
struct MulMat {
std::array<mul_mat_t, 8> funcs = {};
inline void mul_mat_NxM(int n, const void * vx, size_t bx, DataInfo& info, int nrc_x, int nrc_y) {
#ifdef __aarch64__
constexpr int k_x_step = 64; //8192; // Tiling does not seem to help on my M2 Max (but difference to tiling is small)
#else
constexpr int k_x_step = 64; // This works best on my Ryzen-7950X (but differences to other tile size are small)
#endif
int ny = funcs.size();
while (!funcs[ny-1] && ny > 0) --ny;
int n_step = (nrc_y - info.cur_y)/ny;
if (n_step > 0) {
for (int ix = 0; ix < nrc_x; ix += k_x_step) {
auto this_info = info;
this_info.s += ix;
int this_nrc_x = ix + k_x_step <= nrc_x ? k_x_step : nrc_x - ix;
for (int iy = 0; iy < n_step; ++iy) {
funcs[ny-1](n, (const void *)((const char *)vx + ix*bx), bx, this_info, this_nrc_x);
this_info.cur_y += ny;
}
}
info.cur_y += ny * n_step;
}
int n_left = nrc_y - info.cur_y;
if (n_left > 0) {
funcs[n_left-1](n, vx, bx, info, nrc_x);
}
}
static bool prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny);
private:
template <typename Dequantizer> static void set_functions(MulMat& m);
};
}
bool iqk_mul_mat(int task_type, long Nx, long Ny, long ne00,
int typeA, const void * A, long strideA,
int typeB, const void * B, long strideB,
float * C, long stride_C, int ith, int nth) {
MulMat mm;
if (!MulMat::prepare(typeA, typeB, ne00, mm, Ny)) {
return false;
}
if (ggml_task_type(task_type) != GGML_TASK_TYPE_COMPUTE) return ggml_task_type(task_type) == GGML_TASK_TYPE_INIT;
auto row_size_qx = strideA*ggml_type_size(ggml_type(typeA));
auto row_size_qy = strideB*ggml_type_size(ggml_type(typeB));
auto nrc_x = (Nx + nth - 1)/nth;
auto first_x = ith*nrc_x;
if (first_x + nrc_x > Nx) nrc_x = Nx - first_x;
DataInfo info{C + first_x, (const char *)B, (size_t)stride_C, row_size_qy, 0, 1, nullptr, 0};
mm.mul_mat_NxM(ne00, (const char *)A + row_size_qx*first_x, row_size_qx, info, nrc_x, Ny);
return true;
}
bool iqk_mul_mat_moe(long Nx, long Ny, long ne00, int ne11,
int typeA, const void * A, long strideA,
int typeB, const void * B, long strideB,
float * C, long nb1, long nb2, const void * vrow_mapping, int ith, int nth) {
const mmid_row_mapping * row_mapping = (const mmid_row_mapping *)vrow_mapping;
assert(row_mapping != nullptr);
MulMat mm;
if (!MulMat::prepare(typeA, typeB, ne00, mm, Ny)) {
return false;
}
auto row_size_qx = strideA*ggml_type_size(ggml_type(typeA));
auto row_size_qy = strideB*ggml_type_size(ggml_type(typeB));
int nrc_x = (Nx + nth - 1)/nth;
int first_x = ith*nrc_x;
if (first_x + nrc_x > Nx) nrc_x = Nx - first_x;
DataInfo info{C + first_x, (const char *)B, nb1/sizeof(float),
row_size_qy, 0, ne11, row_mapping, nb2/sizeof(float)};
mm.mul_mat_NxM(ne00, (const char *)A + row_size_qx*first_x, row_size_qx, info, nrc_x, Ny);
return true;
}
namespace {
inline void make_q4_scales(const uint8_t * scales8, uint32_t * aux32) {
const uint16_t * scales = (const uint16_t *)scales8;
const uint32_t a0 = scales[0] | (scales[1] << 16);
const uint32_t a1 = scales[2] | (scales[3] << 16);
const uint32_t a2 = scales[4] | (scales[5] << 16);
aux32[3] = ((a2 >> 4) & 0x0f0f0f0f) | ((a1 >> 2) & 0x30303030);
aux32[1] = ((a2 >> 0) & 0x0f0f0f0f) | ((a0 >> 2) & 0x30303030);
aux32[2] = a1 & 0x3f3f3f3f;
aux32[0] = a0 & 0x3f3f3f3f;
}
const uint64_t keven_signs[128] = {
0x0101010101010101, 0xff010101010101ff, 0xff0101010101ff01, 0x010101010101ffff,
0xff01010101ff0101, 0x0101010101ff01ff, 0x0101010101ffff01, 0xff01010101ffffff,
0xff010101ff010101, 0x01010101ff0101ff, 0x01010101ff01ff01, 0xff010101ff01ffff,
0x01010101ffff0101, 0xff010101ffff01ff, 0xff010101ffffff01, 0x01010101ffffffff,
0xff0101ff01010101, 0x010101ff010101ff, 0x010101ff0101ff01, 0xff0101ff0101ffff,
0x010101ff01ff0101, 0xff0101ff01ff01ff, 0xff0101ff01ffff01, 0x010101ff01ffffff,
0x010101ffff010101, 0xff0101ffff0101ff, 0xff0101ffff01ff01, 0x010101ffff01ffff,
0xff0101ffffff0101, 0x010101ffffff01ff, 0x010101ffffffff01, 0xff0101ffffffffff,
0xff01ff0101010101, 0x0101ff01010101ff, 0x0101ff010101ff01, 0xff01ff010101ffff,
0x0101ff0101ff0101, 0xff01ff0101ff01ff, 0xff01ff0101ffff01, 0x0101ff0101ffffff,
0x0101ff01ff010101, 0xff01ff01ff0101ff, 0xff01ff01ff01ff01, 0x0101ff01ff01ffff,
0xff01ff01ffff0101, 0x0101ff01ffff01ff, 0x0101ff01ffffff01, 0xff01ff01ffffffff,
0x0101ffff01010101, 0xff01ffff010101ff, 0xff01ffff0101ff01, 0x0101ffff0101ffff,
0xff01ffff01ff0101, 0x0101ffff01ff01ff, 0x0101ffff01ffff01, 0xff01ffff01ffffff,
0xff01ffffff010101, 0x0101ffffff0101ff, 0x0101ffffff01ff01, 0xff01ffffff01ffff,
0x0101ffffffff0101, 0xff01ffffffff01ff, 0xff01ffffffffff01, 0x0101ffffffffffff,
0xffff010101010101, 0x01ff0101010101ff, 0x01ff01010101ff01, 0xffff01010101ffff,
0x01ff010101ff0101, 0xffff010101ff01ff, 0xffff010101ffff01, 0x01ff010101ffffff,
0x01ff0101ff010101, 0xffff0101ff0101ff, 0xffff0101ff01ff01, 0x01ff0101ff01ffff,
0xffff0101ffff0101, 0x01ff0101ffff01ff, 0x01ff0101ffffff01, 0xffff0101ffffffff,
0x01ff01ff01010101, 0xffff01ff010101ff, 0xffff01ff0101ff01, 0x01ff01ff0101ffff,
0xffff01ff01ff0101, 0x01ff01ff01ff01ff, 0x01ff01ff01ffff01, 0xffff01ff01ffffff,
0xffff01ffff010101, 0x01ff01ffff0101ff, 0x01ff01ffff01ff01, 0xffff01ffff01ffff,
0x01ff01ffffff0101, 0xffff01ffffff01ff, 0xffff01ffffffff01, 0x01ff01ffffffffff,
0x01ffff0101010101, 0xffffff01010101ff, 0xffffff010101ff01, 0x01ffff010101ffff,
0xffffff0101ff0101, 0x01ffff0101ff01ff, 0x01ffff0101ffff01, 0xffffff0101ffffff,
0xffffff01ff010101, 0x01ffff01ff0101ff, 0x01ffff01ff01ff01, 0xffffff01ff01ffff,
0x01ffff01ffff0101, 0xffffff01ffff01ff, 0xffffff01ffffff01, 0x01ffff01ffffffff,
0xffffffff01010101, 0x01ffffff010101ff, 0x01ffffff0101ff01, 0xffffffff0101ffff,
0x01ffffff01ff0101, 0xffffffff01ff01ff, 0xffffffff01ffff01, 0x01ffffff01ffffff,
0x01ffffffff010101, 0xffffffffff0101ff, 0xffffffffff01ff01, 0x01ffffffff01ffff,
0xffffffffffff0101, 0x01ffffffffff01ff, 0x01ffffffffffff01, 0xffffffffffffffff,
};
}
#if defined __x86_64__
#if defined HAVE_FANCY_SIMD
#undef HAVE_FANCY_SIMD
#endif
#if defined(__AVX512F__) && defined(__AVX512VNNI__) && defined(__AVX512VL__) && defined(__AVX512BW__) && defined(__AVX512DQ__)
#define HAVE_FANCY_SIMD
#endif
namespace {
inline float hsum_float_4(__m128 x) {
x = _mm_add_ps(x, _mm_movehl_ps(x, x));
x = _mm_add_ss(x, _mm_movehdup_ps(x));
return _mm_cvtss_f32(x);
}
inline float hsum_float_8(__m256 x) {
return hsum_float_4(_mm_add_ps(_mm256_castps256_ps128(x), _mm256_extractf128_ps(x, 1)));
}
inline int hsum_i32_8(const __m256i a) {
const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
const __m128i sum64 = _mm_add_epi32(hi64, sum128);
const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
}
#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
template <int nrc, typename block_q8 = block_q8_K> struct Q8 {
constexpr static int nrc_y = nrc;
Q8(const DataInfo& info) {
for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const block_q8 *)info.src1_row(iy);
}
#ifdef HAVE_FANCY_SIMD
inline __m512i load_quants64(int iy, int i, int j) const { return _mm512_loadu_si512((const __m512i*)y[iy][i].qs + j); }
#endif
inline __m256i load_quants(int iy, int i, int j) const { return _mm256_loadu_si256((const __m256i*)y[iy][i].qs + j); }
inline __m256i load_bsums(int iy, int i) const { return _mm256_loadu_si256((const __m256i*)y[iy][i].bsums); }
inline float scale(int iy, int i) const { return y[iy][i].d; }
const block_q8 * y[nrc_y];
};
struct Scales8KBase {
template <typename Q8>
inline void accum_mins(const __m128i& mins128, const Q8& q8, int i, float c, __m256 * accd) const {
const __m256i mins = MM256_SET_M128I(_mm_shuffle_epi8(mins128, shuffles[1]), _mm_shuffle_epi8(mins128, shuffles[0]));
for (int iy = 0; iy < Q8::nrc_y; ++iy) {
const __m256i q8s = q8.load_bsums(iy, i);
const __m256i prod = _mm256_madd_epi16(mins, q8s);
accd[iy] = _mm256_fmadd_ps(_mm256_set1_ps(c*q8.scale(iy, i)), _mm256_cvtepi32_ps(prod), accd[iy]);
}
}
inline __m256i shuffle(__m128i mins) const {
return MM256_SET_M128I(_mm_shuffle_epi8(mins, shuffles[1]), _mm_shuffle_epi8(mins, shuffles[0]));
}
const __m128i shuffles[2] = {_mm_set_epi32(0x07060706, 0x05040504, 0x03020302, 0x01000100),
_mm_set_epi32(0x0f0e0f0e, 0x0d0c0d0c, 0x0b0a0b0a, 0x09080908)};
};
// Handles q4_K and q5_K scales/mins
struct Scales8K {
template <typename Q8>
inline __m256i process_mins_and_scales(const uint8_t * data, float c, int i, const Q8& q8, __m256 * accd) {
make_q4_scales(data, utmp);
const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
const __m128i mins128 = _mm256_extracti128_si256(mins_and_scales, 1);
accum_mins(mins128, q8, i, c, accd);
const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
return MM256_SET_M128I(sc128, sc128);
}
#ifdef HAVE_FANCY_SIMD
template <typename Q8>
inline __m512i process_mins_and_scales_64(const uint8_t * data, float c, int i, const Q8& q8, __m256 * accd) {
auto scales = process_mins_and_scales(data, c, i, q8, accd);
return _mm512_inserti32x8(_mm512_castsi256_si512(scales), scales, 1);
}
#endif
template <typename Q8>
inline void accum_mins(const __m128i& mins128, const Q8& q8, int i, float c, __m256 * accd) const {
base.accum_mins(mins128, q8, i, c, accd);
}
#ifdef HAVE_FANCY_SIMD
const __m512i shuffles512[2] = {
_mm512_set_epi64(0x0706070607060706, 0x0302030203020302, 0x0706070607060706, 0x0302030203020302,
0x0504050405040504, 0x0100010001000100, 0x0504050405040504, 0x0100010001000100),
_mm512_set_epi64(0x0f0e0f0e0f0e0f0e, 0x0b0a0b0a0b0a0b0a, 0x0f0e0f0e0f0e0f0e, 0x0b0a0b0a0b0a0b0a,
0x0d0c0d0c0d0c0d0c, 0x0908090809080908, 0x0d0c0d0c0d0c0d0c, 0x0908090809080908)
};
#endif
Scales8KBase base;
uint32_t utmp[4];
};
template <typename Q8>
inline void process_mins_16(const __m256i& all_scales, const Q8& q8, int i, float d, __m256 * accm) {
for (int iy = 0; iy < Q8::nrc_y; ++iy) {
const __m256i prod = _mm256_madd_epi16(all_scales, q8.load_bsums(iy, i));
accm[iy] = _mm256_fmadd_ps(_mm256_set1_ps(d * q8.scale(iy, i)), _mm256_cvtepi32_ps(prod), accm[iy]);
}
}
inline void prepare_scales_16(const __m256i& all_scales, __m256i * scales) {
const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
scales[0] = MM256_SET_M128I(l_scales, l_scales);
scales[1] = MM256_SET_M128I(h_scales, h_scales);
}
struct ScaleQ3 {
inline __m128i make_scales(const uint16_t * s8) const {
const uint16_t * scales16 = (const uint16_t *)s8;
uint32_t aux0 = scales16[0] | (scales16[1] << 16);
uint32_t aux1 = scales16[2] | (scales16[3] << 16);
uint32_t aux2 = scales16[4] | (scales16[5] << 16);
__m128i scales128 = _mm_set_epi32(
((aux1 >> 4) & 0x0f0f0f0f) | ((aux2 >> 2) & 0x30303030),
((aux0 >> 4) & 0x0f0f0f0f) | ((aux2 >> 0) & 0x30303030),
(aux1 & 0x0f0f0f0f) | ((aux2 << 2) & 0x30303030),
(aux0 & 0x0f0f0f0f) | ((aux2 << 4) & 0x30303030));
return _mm_add_epi8(scales128, m32);
}
const __m128i m32 = _mm_set1_epi8(-32);
};
struct ScaleIQ4XS {
inline __m128i make_scales(const uint32_t scales_l, const uint16_t scales_h) {
uint32_t tmp32 = scales_h | (scales_h << 14);
const __m128i sh = _mm_slli_epi16(_mm_and_si128(_mm_srlv_epi32(_mm_set1_epi32(tmp32), hshift), hmask), 4);
const __m128i sl = _mm_and_si128(_mm_srlv_epi32(_mm_set1_epi32(scales_l), lshift), lmask);
return _mm_add_epi16(_mm_or_si128(sh, _mm_cvtepi8_epi16(_mm_shuffle_epi8(sl, lshuffle))), m32);
}
const __m128i hshift = _mm_set_epi32(12, 8, 4, 0);
const __m128i lshift = _mm_set_epi32(4, 0, 4, 0);
const __m128i hmask = _mm_set1_epi16(0x03);
const __m128i lmask = _mm_set1_epi8(0xf);
const __m128i lshuffle = _mm_set_epi32(0x07030602, 0x05010400, 0x07030602, 0x05010400);
const __m128i m32 = _mm_set1_epi16(-32);
};
template <typename Block>
struct BaseDequantizer {
BaseDequantizer(const void * vx, size_t bx) : vx(vx), bx(bx) {}
inline void new_row(int ix) {
x = (const Block *)((const char *)vx + bx*ix);
}
const void * vx;
const size_t bx;
const Block * x;
float d;
};
inline __m256i get_scale_shuffle_8(int i) {
return _mm256_set1_epi16((2*i) | ((2*i+1) << 8));
}
inline void set_scales_8(const __m256i& all_scales, int j, __m256i * scales) {
scales[0] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_8(4*j+0));
scales[1] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_8(4*j+1));
scales[2] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_8(4*j+2));
scales[3] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_8(4*j+3));
}
inline __m256i get_scale_shuffle_16(int i) {
static const uint8_t k_shuffle[128] = {
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
};
return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
}
inline void set_scales_16(const __m256i& all_scales, __m256i * scales) {
scales[0] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_16(0));
scales[1] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_16(1));
scales[2] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_16(2));
scales[3] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_16(3));
}
template <typename Q8, typename Bits>
inline void multiply_add(const Bits& bits, const __m256i * scales, int j, int i, const Q8& q8, __m256i * sumi) {
if (j == 0) {
#if defined(__AVX512VNNI__) && defined(__AVX512VL__)
for (int iy = 0; iy < Q8::nrc_y; ++iy) {
sumi[iy] = _mm256_dpwssd_epi32(_mm256_setzero_si256(), scales[0], _mm256_maddubs_epi16(bits.values[0], q8.load_quants(iy, i, 0)));
sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[1], _mm256_maddubs_epi16(bits.values[1], q8.load_quants(iy, i, 1)));
sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[2], _mm256_maddubs_epi16(bits.values[2], q8.load_quants(iy, i, 2)));
sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[3], _mm256_maddubs_epi16(bits.values[3], q8.load_quants(iy, i, 3)));
}
#else
for (int iy = 0; iy < Q8::nrc_y; ++iy) {
const __m256i p1 = _mm256_madd_epi16(scales[0], _mm256_maddubs_epi16(bits.values[0], q8.load_quants(iy, i, 0)));
const __m256i p2 = _mm256_madd_epi16(scales[1], _mm256_maddubs_epi16(bits.values[1], q8.load_quants(iy, i, 1)));
const __m256i p3 = _mm256_madd_epi16(scales[2], _mm256_maddubs_epi16(bits.values[2], q8.load_quants(iy, i, 2)));
const __m256i p4 = _mm256_madd_epi16(scales[3], _mm256_maddubs_epi16(bits.values[3], q8.load_quants(iy, i, 3)));
sumi[iy] = _mm256_add_epi32(_mm256_add_epi32(p1, p3), _mm256_add_epi32(p2, p4));
}
#endif
} else {
#if defined(__AVX512VNNI__) && defined(__AVX512VL__)
for (int iy = 0; iy < Q8::nrc_y; ++iy) {
sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[0], _mm256_maddubs_epi16(bits.values[0], q8.load_quants(iy, i, 4)));
sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[1], _mm256_maddubs_epi16(bits.values[1], q8.load_quants(iy, i, 5)));
sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[2], _mm256_maddubs_epi16(bits.values[2], q8.load_quants(iy, i, 6)));
sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[3], _mm256_maddubs_epi16(bits.values[3], q8.load_quants(iy, i, 7)));
}
#else
for (int iy = 0; iy < Q8::nrc_y; ++iy) {
const __m256i p1 = _mm256_madd_epi16(scales[0], _mm256_maddubs_epi16(bits.values[0], q8.load_quants(iy, i, 4)));
const __m256i p2 = _mm256_madd_epi16(scales[1], _mm256_maddubs_epi16(bits.values[1], q8.load_quants(iy, i, 5)));
const __m256i p3 = _mm256_madd_epi16(scales[2], _mm256_maddubs_epi16(bits.values[2], q8.load_quants(iy, i, 6)));
const __m256i p4 = _mm256_madd_epi16(scales[3], _mm256_maddubs_epi16(bits.values[3], q8.load_quants(iy, i, 7)));
sumi[iy] = _mm256_add_epi32(sumi[iy], _mm256_add_epi32(p1, p3));
sumi[iy] = _mm256_add_epi32(sumi[iy], _mm256_add_epi32(p2, p4));
}
#endif
}
}
struct SignHelper {
inline __m256i make_signs(uint32_t sign_bits) const {
auto aux256 = _mm256_set1_epi32(sign_bits);
aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256, mask1), mask2);
return _mm256_or_si256(_mm256_cmpeq_epi8(aux256, mask2), mone);
}
// inline __m256i make_signs(const uint16_t * sign_bits) const {
//#ifdef HAVE_FANCY_SIMD
//#else
// return make_signs(sign_bits[0] | (sign_bits[1] << 16));
//#endif
// }
inline __m256i sign_value(const uint16_t * sign_bits, const __m256i& value) const {
#ifdef HAVE_FANCY_SIMD
const __mmask32 * mask = (const __mmask32 *)sign_bits;
return _mm256_mask_sub_epi8(value, mask[0], _mm256_setzero_si256(), value);
#else
return _mm256_sign_epi8(value, make_signs(sign_bits[0] | (sign_bits[1] << 16)));
#endif
}
inline void sign_4_values(const uint16_t * sign_bits, __m256i * values) const {
#ifdef HAVE_FANCY_SIMD
const __mmask32 * mask = (const __mmask32 *)sign_bits;
values[0] = _mm256_mask_sub_epi8(values[0], mask[0], _mm256_setzero_si256(), values[0]);
values[1] = _mm256_mask_sub_epi8(values[1], mask[1], _mm256_setzero_si256(), values[1]);
values[2] = _mm256_mask_sub_epi8(values[2], mask[2], _mm256_setzero_si256(), values[2]);
values[3] = _mm256_mask_sub_epi8(values[3], mask[3], _mm256_setzero_si256(), values[3]);
#else
auto s128 = _mm_loadu_si128((const __m128i *)sign_bits);
auto s256 = MM256_SET_M128I(s128, s128);
__m256i aux256;
auto shuffle = mask1;
auto step = _mm256_set1_epi8(4);
aux256 = _mm256_and_si256(_mm256_shuffle_epi8(s256, shuffle), mask2); shuffle = _mm256_add_epi8(shuffle, step);
values[0] = _mm256_sign_epi8(values[0], _mm256_or_si256(_mm256_cmpeq_epi8(aux256, mask2), mone));
aux256 = _mm256_and_si256(_mm256_shuffle_epi8(s256, shuffle), mask2); shuffle = _mm256_add_epi8(shuffle, step);
values[1] = _mm256_sign_epi8(values[1], _mm256_or_si256(_mm256_cmpeq_epi8(aux256, mask2), mone));
aux256 = _mm256_and_si256(_mm256_shuffle_epi8(s256, shuffle), mask2); shuffle = _mm256_add_epi8(shuffle, step);
values[2] = _mm256_sign_epi8(values[2], _mm256_or_si256(_mm256_cmpeq_epi8(aux256, mask2), mone));
aux256 = _mm256_and_si256(_mm256_shuffle_epi8(s256, shuffle), mask2); shuffle = _mm256_add_epi8(shuffle, step);
values[3] = _mm256_sign_epi8(values[3], _mm256_or_si256(_mm256_cmpeq_epi8(aux256, mask2), mone));
#endif
}
const __m256i mask1 = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000);
const __m256i mask2 = _mm256_set1_epi64x(0x8040201008040201ull);
const __m256i mone = _mm256_set1_epi8(1);
};
struct SimpleBits {
__m256i values[4];
};
#ifdef HAVE_FANCY_SIMD
//====================================== Zen4 ==================================================
struct BlockPermuter {
const __m512i permute1 = _mm512_set_epi64(11, 10, 9, 8, 3, 2, 1, 0);
const __m512i permute2 = _mm512_set_epi64(15, 14, 13, 12, 7, 6, 5, 4);
};
struct Q4Bits {
inline void prepare(const uint8_t * q4) {
auto q4bits = _mm512_loadu_si512((const __m512i*)q4 + 0);
auto tmp1 = _mm512_and_si512(q4bits, ml);
auto tmp2 = _mm512_and_si512(_mm512_srli_epi16(q4bits, 4), ml);
values[0] = _mm512_permutex2var_epi64(tmp1, perm.permute1, tmp2);
values[1] = _mm512_permutex2var_epi64(tmp1, perm.permute2, tmp2);
q4bits = _mm512_loadu_si512((const __m512i*)q4 + 1);
tmp1 = _mm512_and_si512(q4bits, ml);
tmp2 = _mm512_and_si512(_mm512_srli_epi16(q4bits, 4), ml);
values[2] = _mm512_permutex2var_epi64(tmp1, perm.permute1, tmp2);
values[3] = _mm512_permutex2var_epi64(tmp1, perm.permute2, tmp2);
}
inline void prepare64(const uint8_t * q4) {
auto q4bits = _mm512_loadu_si512((const __m512i*)q4 + 0);
values[0] = _mm512_and_si512(q4bits, ml);
values[1] = _mm512_and_si512(_mm512_srli_epi16(q4bits, 4), ml);
q4bits = _mm512_loadu_si512((const __m512i*)q4 + 1);
values[2] = _mm512_and_si512(q4bits, ml);
values[3] = _mm512_and_si512(_mm512_srli_epi16(q4bits, 4), ml);
}
__m512i values[4];
const __m512i ml = _mm512_set1_epi8(0xf);
BlockPermuter perm;
};
struct Q2Bits {
inline void prepare(const uint8_t * q2) {
auto q2bits = _mm512_loadu_si512((const __m512i*)q2);
auto tmp = _mm512_srli_epi16(q2bits, 2);
values[0] = _mm512_permutex2var_epi64(q2bits, perm.permute1, tmp);
values[2] = _mm512_permutex2var_epi64(q2bits, perm.permute2, tmp);
values[1] = _mm512_and_si512(_mm512_srli_epi16(values[0], 4), ml);
values[3] = _mm512_and_si512(_mm512_srli_epi16(values[2], 4), ml);
values[0] = _mm512_and_si512(values[0], ml);
values[2] = _mm512_and_si512(values[2], ml);
}
__m512i values[4];
const __m512i ml = _mm512_set1_epi8(0x03);
BlockPermuter perm;
};
struct DequantizerQ4K final : public BaseDequantizer<block_q4_K> {
DequantizerQ4K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {}
template <typename Q8>
inline void new_block(int i, const Q8& q8, __m256 * accd, __m512i * scales) {
d = GGML_FP16_TO_FP32(x[i].d);
bits.prepare(x[i].qs);
auto all_scales = s8k.process_mins_and_scales_64(x[i].scales, -GGML_FP16_TO_FP32(x[i].dmin), i, q8, accd);
scales[0] = _mm512_shuffle_epi8(all_scales, s8k.shuffles512[0]);
scales[1] = _mm512_shuffle_epi8(all_scales, s8k.shuffles512[1]);
}
Q4Bits bits;
Scales8K s8k;
};
struct DequantizerIQ4XS final : public BaseDequantizer<block_iq4_xs> {
DequantizerIQ4XS(const void * vx, size_t bx) : BaseDequantizer(vx, bx), values(load_values()) {}
template <typename Q8>
inline void new_block(int i, const Q8& q8, __m256 * accd, __m512i * scales) {
d = GGML_FP16_TO_FP32(x[i].d);
prepare(x[i].qs);
auto scales128 = siq4.make_scales(*(const uint32_t *)x[i].scales_l, x[i].scales_h);
s8k.accum_mins(scales128, q8, i, -128.f*d, accd);
auto scales256 = MM256_SET_M128I(scales128, scales128);
auto all_scales = _mm512_inserti32x8(_mm512_castsi256_si512(scales256), scales256, 1);
scales[0] = _mm512_shuffle_epi8(all_scales, s8k.shuffles512[0]);
scales[1] = _mm512_shuffle_epi8(all_scales, s8k.shuffles512[1]);
}
static __m512i load_values() {
static const uint8_t kvalues_iq4nl[16] = {1, 24, 45, 63, 79, 93, 106, 118, 129, 141, 153, 166, 181, 197, 217, 241};
auto val128 = _mm_loadu_si128((const __m128i *)kvalues_iq4nl);
auto val256 = MM256_SET_M128I(val128, val128);
return _mm512_inserti32x8(_mm512_castsi256_si512(val256), val256, 1);
}
inline void prepare(const uint8_t * q4) {
bits.prepare64(q4);
// We now have in bits.valuse[0]: 0...15, 32...47, 64...79, 96...111
// bits.valuse[1]: 16..31, 48...63, 80...95, 112..127
// etc.
auto tmp = _mm512_permutex2var_epi64(bits.values[0], permute1, bits.values[1]);
bits.values[1] = _mm512_shuffle_epi8(values, _mm512_permutex2var_epi64(bits.values[0], permute2, bits.values[1]));
bits.values[0] = _mm512_shuffle_epi8(values, tmp);
tmp = _mm512_permutex2var_epi64(bits.values[2], permute1, bits.values[3]);
bits.values[3] = _mm512_shuffle_epi8(values, _mm512_permutex2var_epi64(bits.values[2], permute2, bits.values[3]));
bits.values[2] = _mm512_shuffle_epi8(values, tmp);
}
Q4Bits bits;
Scales8K s8k;
ScaleIQ4XS siq4;
const __m512i values;
const __m512i permute1 = _mm512_set_epi64(11, 10, 3, 2, 9, 8, 1, 0);
const __m512i permute2 = _mm512_set_epi64(15, 14, 7, 6, 13, 12, 5, 4);
};
struct HighBit5 {
inline void apply(const uint8_t * h, Q4Bits& bits) {
auto hbits256 = _mm256_loadu_si256((const __m256i *)h);
auto hbits = _mm512_inserti32x8(_mm512_castsi256_si512(hbits256), _mm256_srli_epi16(hbits256, 1), 1);
bits.values[0] = _mm512_or_si512(bits.values[0], _mm512_and_si512(_mm512_slli_epi16(hbits, 4), mh));
bits.values[1] = _mm512_or_si512(bits.values[1], _mm512_and_si512(_mm512_slli_epi16(hbits, 2), mh));
bits.values[2] = _mm512_or_si512(bits.values[2], _mm512_and_si512(hbits, mh));
bits.values[3] = _mm512_or_si512(bits.values[3], _mm512_and_si512(_mm512_srli_epi16(hbits, 2), mh));
}
const __m512i mh = _mm512_set1_epi8(0x10);
};
struct HighBit3 {
inline void apply(const uint8_t * h, Q2Bits& bits) {
auto hbits256 = _mm256_loadu_si256((const __m256i *)h);
auto hbits = _mm512_inserti32x8(_mm512_castsi256_si512(hbits256), _mm256_srli_epi16(hbits256, 1), 1);
bits.values[0] = _mm512_or_si512(bits.values[0], _mm512_and_si512(_mm512_slli_epi16(hbits, 2), mh));
bits.values[1] = _mm512_or_si512(bits.values[1], _mm512_and_si512(hbits, mh));
bits.values[2] = _mm512_or_si512(bits.values[2], _mm512_and_si512(_mm512_srli_epi16(hbits, 2), mh));
bits.values[3] = _mm512_or_si512(bits.values[3], _mm512_and_si512(_mm512_srli_epi16(hbits, 4), mh));
}
const __m512i mh = _mm512_set1_epi8(0x04);
};
struct DequantizerQ5K final : public BaseDequantizer<block_q5_K> {
DequantizerQ5K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {}
template <typename Q8>
inline void new_block(int i, const Q8& q8, __m256 * accd, __m512i * scales) {
d = GGML_FP16_TO_FP32(x[i].d);
bits.prepare(x[i].qs);
hbits.apply(x[i].qh, bits);
auto all_scales = s8k.process_mins_and_scales_64(x[i].scales, -GGML_FP16_TO_FP32(x[i].dmin), i, q8, accd);
scales[0] = _mm512_shuffle_epi8(all_scales, s8k.shuffles512[0]);
scales[1] = _mm512_shuffle_epi8(all_scales, s8k.shuffles512[1]);
}
Q4Bits bits;
HighBit5 hbits;
Scales8K s8k;
};
struct Scale16 {
inline void make_scales(const __m128i& scales8, __m512i * scales) const {
auto all_scales8 = MM256_SET_M128I(scales8, scales8);
auto scales1 = _mm256_shuffle_epi8(all_scales8, shuffle1);
auto scales2 = _mm256_shuffle_epi8(all_scales8, shuffle2);
scales[0] = _mm512_cvtepi8_epi16(scales1);
scales[1] = _mm512_cvtepi8_epi16(scales2);
}
template <typename Q8>
inline void process_mins_and_scales(int i, float c, const __m128i& mins8, const __m128i& scales8,
const Q8& q8, __m256 * accm, __m512i * scales) const {
process_mins_16(_mm256_cvtepi8_epi16(mins8), q8, i, c, accm);
make_scales(scales8, scales);
}
const __m256i shuffle1 = _mm256_set_epi32(0x07070707, 0x03030303, 0x06060606, 0x02020202,
0x05050505, 0x01010101, 0x04040404, 0x00000000);
const __m256i shuffle2 = _mm256_set_epi32(0x0f0f0f0f, 0x0b0b0b0b, 0x0e0e0e0e, 0x0a0a0a0a,
0x0d0d0d0d, 0x09090909, 0x0c0c0c0c, 0x08080808);
};
struct DequantizerQ2K final : public BaseDequantizer<block_q2_K> {
DequantizerQ2K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {}
template <typename Q8>
inline void new_block(int i, const Q8& q8, __m256 * accm, __m512i * scales) {
d = GGML_FP16_TO_FP32(x[i].d);
bits.prepare(x[i].qs);
const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
sc16.process_mins_and_scales(i, -GGML_FP16_TO_FP32(x[i].dmin), mins8, scales8, q8, accm, scales);
}
Q2Bits bits;
Scale16 sc16;
const __m128i m4 = _mm_set1_epi8(0xf);
};
struct DequantizerQ3K final : public BaseDequantizer<block_q3_K> {
DequantizerQ3K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {}
template <typename Q8>
inline void new_block(int i, const Q8& q8, __m256 * accm, __m512i * scales) {
d = GGML_FP16_TO_FP32(x[i].d);
bits.prepare(x[i].qs);
hbits.apply(x[i].hmask, bits);
auto scales128 = sc3.make_scales((const uint16_t *)x[i].scales);
sc16.process_mins_and_scales(i, -4.f*d, scales128, scales128, q8, accm, scales);
}
Q2Bits bits;
HighBit3 hbits;
ScaleQ3 sc3;
Scale16 sc16;
const __m128i m4 = _mm_set1_epi8(0xf);
const __m128i m32 = _mm_set1_epi8(-32);
};
struct DequantizerQ6K final : public BaseDequantizer<block_q6_K> {
DequantizerQ6K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {}
template <typename Q8>
inline void new_block(int i, const Q8& q8, __m256 * accm, __m512i * scales) {
d = GGML_FP16_TO_FP32(x[i].d);
bits.prepare64(x[i].ql);
add_high_bits(x[i].qh, bits);
auto scales128 = _mm_loadu_si128((const __m128i *)x[i].scales);
sc16.process_mins_and_scales(i, -32.f*d, scales128, scales128, q8, accm, scales);
}
inline void add_high_bits(const uint8_t * qh, Q4Bits& bits) const {
auto hbits = _mm512_loadu_si512((const __m512i *)qh);
auto tmp1 = _mm512_and_si512(_mm512_slli_epi16(hbits, 4), mh);
auto tmp2 = _mm512_and_si512(_mm512_slli_epi16(hbits, 2), mh);
bits.values[0] = _mm512_or_si512(bits.values[0], _mm512_permutex2var_epi64(tmp1, bits.perm.permute1, tmp2));
bits.values[2] = _mm512_or_si512(bits.values[2], _mm512_permutex2var_epi64(tmp1, bits.perm.permute2, tmp2));
tmp1 = _mm512_and_si512(hbits, mh);
tmp2 = _mm512_and_si512(_mm512_srli_epi16(hbits, 2), mh);
bits.values[1] = _mm512_or_si512(bits.values[1], _mm512_permutex2var_epi64(tmp1, bits.perm.permute1, tmp2));
bits.values[3] = _mm512_or_si512(bits.values[3], _mm512_permutex2var_epi64(tmp1, bits.perm.permute2, tmp2));
}
Q4Bits bits;
HighBit3 hbits;
Scale16 sc16;
const __m512i mh = _mm512_set1_epi8(0x30);
};
template <typename Q8>
inline void compute_block(int iy, int i, float d, const Q8& q8, const __m512i * values, const __m512i * scales, __m512 * accd) {
const __m512i p1 = _mm512_dpbusd_epi32(_mm512_setzero_si512(), values[0], q8.load_quants64(iy, i, 0));
const __m512i p2 = _mm512_dpbusd_epi32(_mm512_setzero_si512(), values[1], q8.load_quants64(iy, i, 1));
const __m512i p3 = _mm512_dpbusd_epi32(_mm512_setzero_si512(), values[2], q8.load_quants64(iy, i, 2));
const __m512i p4 = _mm512_dpbusd_epi32(_mm512_setzero_si512(), values[3], q8.load_quants64(iy, i, 3));
auto sumi = _mm512_dpwssd_epi32(_mm512_setzero_si512(), scales[0], _mm512_packs_epi32(p1, p2));
sumi = _mm512_dpwssd_epi32(sumi, scales[1], _mm512_packs_epi32(p3, p4));
accd[iy] = _mm512_fmadd_ps(_mm512_set1_ps(d*q8.scale(iy, i)), _mm512_cvtepi32_ps(sumi), accd[iy]);
}
template <typename Dequantizer, int nrc_y>
static void mul_mat_qX_K_q8_K_AVX512(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
assert(n % QK_K == 0);
const int nb = n / QK_K;
Q8<nrc_y> q8(info);
Dequantizer deq(vx, bx);
__m256 accm[nrc_y];
__m512 accd[nrc_y];
__m512i scales[2];
for (int ix = 0; ix < nrc_x; ++ix) {
for (int iy = 0; iy < nrc_y; ++iy) accd[iy] = _mm512_setzero_ps();
for (int iy = 0; iy < nrc_y; ++iy) accm[iy] = _mm256_setzero_ps();
deq.new_row(ix);
for (int i = 0; i < nb; ++i) {
deq.new_block(i, q8, accm, scales);
for (int iy = 0; iy < nrc_y; ++iy) {
//compute_block(iy, i, deq.d, q8, deq.bits.values, scales, accd);
const __m512i p1 = _mm512_dpbusd_epi32(_mm512_setzero_si512(), deq.bits.values[0], q8.load_quants64(iy, i, 0));
const __m512i p2 = _mm512_dpbusd_epi32(_mm512_setzero_si512(), deq.bits.values[1], q8.load_quants64(iy, i, 1));
const __m512i p3 = _mm512_dpbusd_epi32(_mm512_setzero_si512(), deq.bits.values[2], q8.load_quants64(iy, i, 2));
const __m512i p4 = _mm512_dpbusd_epi32(_mm512_setzero_si512(), deq.bits.values[3], q8.load_quants64(iy, i, 3));
auto sumi = _mm512_dpwssd_epi32(_mm512_setzero_si512(), scales[0], _mm512_packs_epi32(p1, p2));
sumi = _mm512_dpwssd_epi32(sumi, scales[1], _mm512_packs_epi32(p3, p4));
accd[iy] = _mm512_fmadd_ps(_mm512_set1_ps(deq.d*q8.scale(iy, i)), _mm512_cvtepi32_ps(sumi), accd[iy]);
}
}
for (int iy = 0; iy < nrc_y; ++iy) {
auto sum256 = _mm256_add_ps(_mm512_castps512_ps256(accd[iy]), _mm512_extractf32x8_ps(accd[iy], 1));
info.store(ix, iy, hsum_float_8(_mm256_add_ps(accm[iy], sum256)));
}
}
}
template <typename Dequantizer>
static void mul_mat_qX_K_q8_K_AVX512_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
assert(n % QK_K == 0);
const int nb = n / QK_K;
constexpr int k_nx = 2;
Q8<1> q8(info);
Dequantizer deq1(vx, bx);
Dequantizer deq2(vx, bx);
Dequantizer * deq[k_nx];
deq[0] = &deq1;
deq[1] = &deq2;
__m512i scales[2*k_nx];
for (int ix = 0; ix < nrc_x; ++ix) {
auto accd = _mm512_setzero_ps();
auto accm = _mm256_setzero_ps();
for (int kx = 0; kx < k_nx; ++kx) deq[kx]->new_row(ix);
for (int i = 0; i < nb/k_nx; ++i) {
for (int kx = 0; kx < k_nx; ++kx) deq[kx]->new_block(k_nx*i+kx, q8, &accm, scales+2*kx);
for (int kx = 0; kx < k_nx; ++kx) {
compute_block(0, k_nx*i+kx, deq[kx]->d, q8, deq[kx]->bits.values, scales+2*kx, &accd);
}
}
if (2*(nb/2) < nb) {
int i0 = 2*(nb/2);
deq[0]->new_block(i0, q8, &accm, scales);
compute_block(0, i0, deq[0]->d, q8, deq[0]->bits.values, scales, &accd);
}
auto sum256 = _mm256_add_ps(_mm512_castps512_ps256(accd), _mm512_extractf32x8_ps(accd, 1));
info.store(ix, 0, hsum_float_8(_mm256_add_ps(accm, sum256)));
}
}
#else
// ===================================== Vanilla AVX2 =====================================
struct Q4Bits {
inline void prepare(const uint8_t * q4, int j) {
auto q4bits = _mm256_loadu_si256((const __m256i*)q4 + 2*j+0);
values[0] = _mm256_and_si256(q4bits, ml);
values[1] = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), ml);
q4bits = _mm256_loadu_si256((const __m256i*)q4 + 2*j+1);
values[2] = _mm256_and_si256(q4bits, ml);
values[3] = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), ml);
}
inline void prepare64(const uint8_t * q4, int j) {
auto q4bits = _mm256_loadu_si256((const __m256i*)q4 + 2*j+0);
values[0] = _mm256_and_si256(q4bits, ml);
values[2] = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), ml);
q4bits = _mm256_loadu_si256((const __m256i*)q4 + 2*j+1);
values[1] = _mm256_and_si256(q4bits, ml);
values[3] = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), ml);
}
inline void prepare16(const uint8_t * q4, int j) {
values[0] = dequant16(q4 + 64*j + 0);
values[1] = dequant16(q4 + 64*j + 16);
values[2] = dequant16(q4 + 64*j + 32);
values[3] = dequant16(q4 + 64*j + 48);
}
inline __m256i dequant16(const uint8_t * qs) const {
const __m128i aux128 = _mm_loadu_si128((const __m128i *)qs);
const __m256i aux256 = MM256_SET_M128I(_mm_srli_epi16(aux128, 4), aux128);
return _mm256_and_si256(ml, aux256);
}
__m256i values[4];
const __m256i ml = _mm256_set1_epi8(0xf);
};
struct Q2Bits {
inline void prepare(const uint8_t * q2, int j) {
auto q2bits = _mm256_loadu_si256((const __m256i *)q2 + j);
values[0] = _mm256_and_si256(q2bits, ml);
values[1] = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), ml);
values[2] = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), ml);
values[3] = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), ml);
}
__m256i values[4];
const __m256i ml = _mm256_set1_epi8(0x03);
};
struct HighBit5 {
inline void load(const uint8_t * h) { hbits = _mm256_loadu_si256((const __m256i *)h); }
inline void apply(Q4Bits& bits, bool do_shift) {
bits.values[0] = _mm256_or_si256(bits.values[0], _mm256_and_si256(_mm256_slli_epi16(hbits, 4), mh));
bits.values[1] = _mm256_or_si256(bits.values[1], _mm256_and_si256(_mm256_slli_epi16(hbits, 3), mh));
bits.values[2] = _mm256_or_si256(bits.values[2], _mm256_and_si256(_mm256_slli_epi16(hbits, 2), mh));
bits.values[3] = _mm256_or_si256(bits.values[3], _mm256_and_si256(_mm256_slli_epi16(hbits, 1), mh));
if (do_shift) {
hbits = _mm256_srli_epi16(hbits, 4);
}
}
const __m256i mh = _mm256_set1_epi8(0x10);
__m256i hbits;
};
struct HighBit3 {
inline void load(const uint8_t * h) { hbits = _mm256_loadu_si256((const __m256i *)h); }
inline void apply(Q2Bits& bits, bool do_shift) {
bits.values[0] = _mm256_or_si256(bits.values[0], _mm256_and_si256(_mm256_slli_epi16(hbits, 2), mh));
bits.values[1] = _mm256_or_si256(bits.values[1], _mm256_and_si256(_mm256_slli_epi16(hbits, 1), mh));
bits.values[2] = _mm256_or_si256(bits.values[2], _mm256_and_si256(hbits, mh));
bits.values[3] = _mm256_or_si256(bits.values[3], _mm256_and_si256(_mm256_srli_epi16(hbits, 1), mh));
if (do_shift) {
hbits = _mm256_srli_epi16(hbits, 4);
}
}
const __m256i mh = _mm256_set1_epi8(0x04);
__m256i hbits;
};
struct DequantizerQ4K final : public BaseDequantizer<block_q4_K> {
DequantizerQ4K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {}
template <typename Q8>
inline __m256i new_block(int i, const Q8& q8, __m256 * accd) {
d = GGML_FP16_TO_FP32(x[i].d);
return s8k.process_mins_and_scales(x[i].scales, -GGML_FP16_TO_FP32(x[i].dmin), i, q8, accd);
}
inline void prepare(int i, int j) {
bits.prepare(x[i].qs, j);
}
Q4Bits bits;
Scales8K s8k;
};
struct DequantizerIQ4XS final : public BaseDequantizer<block_iq4_xs> {
DequantizerIQ4XS(const void * vx, size_t bx) : BaseDequantizer(vx, bx), values(load_values()) {}
template <typename Q8>
inline __m256i new_block(int i, const Q8& q8, __m256 * accd) {
d = GGML_FP16_TO_FP32(x[i].d);
auto scales128 = siq4.make_scales(*(const uint32_t *)x[i].scales_l, x[i].scales_h);
s8k.accum_mins(scales128, q8, i, -128.f*d, accd);
return MM256_SET_M128I(scales128, scales128);
}
inline void prepare(int i, int j) {
bits.prepare16(x[i].qs, j);
bits.values[0] = _mm256_shuffle_epi8(values, bits.values[0]);
bits.values[1] = _mm256_shuffle_epi8(values, bits.values[1]);
bits.values[2] = _mm256_shuffle_epi8(values, bits.values[2]);
bits.values[3] = _mm256_shuffle_epi8(values, bits.values[3]);
}
static __m256i load_values() {
static const uint8_t kvalues_iq4nl[16] = {1, 24, 45, 63, 79, 93, 106, 118, 129, 141, 153, 166, 181, 197, 217, 241};
auto val128 = _mm_loadu_si128((const __m128i *)kvalues_iq4nl);
return MM256_SET_M128I(val128, val128);
}
Q4Bits bits;
Scales8K s8k;
ScaleIQ4XS siq4;
const __m256i values;
};
struct DequantizerQ5K final : public BaseDequantizer<block_q5_K> {
DequantizerQ5K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {}
template <typename Q8>
inline __m256i new_block(int i, const Q8& q8, __m256 * accd) {
d = GGML_FP16_TO_FP32(x[i].d);
hbits.load(x[i].qh);
return s8k.process_mins_and_scales(x[i].scales, -GGML_FP16_TO_FP32(x[i].dmin), i, q8, accd);
}
inline void prepare(int i, int j) {
bits.prepare(x[i].qs, j);
hbits.apply(bits, j == 0);
}
Q4Bits bits;
HighBit5 hbits;
Scales8K s8k;
};
template <typename Q8>
inline void process_mins_and_scales_16(const __m128i& scales128, const Q8& q8, int i, float d,
__m256 * accm, __m256i * scales) {
const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
process_mins_16(all_scales, q8, i, d, accm);
prepare_scales_16(all_scales, scales);
}
struct DequantizerQ3K final : public BaseDequantizer<block_q3_K> {
DequantizerQ3K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {}
template <typename Q8>
inline void new_block(int i, const Q8& q8, __m256 * accm, __m256i * scales) {
d = GGML_FP16_TO_FP32(x[i].d);
hbits.load(x[i].hmask);
process_mins_and_scales_16(sc3.make_scales((const uint16_t *)x[i].scales), q8, i, -4.f*d, accm, scales);
}
inline void prepare(int i, int j) {
bits.prepare(x[i].qs, j);
hbits.apply(bits, j == 0);
}
Q2Bits bits;
HighBit3 hbits;
ScaleQ3 sc3;
const __m128i m32 = _mm_set1_epi8(-32);
};
struct DequantizerQ2K final : public BaseDequantizer<block_q2_K> {
DequantizerQ2K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {}
template <typename Q8>
inline void new_block(int i, const Q8& q8, __m256 * accm, __m256i * scales) {
d = GGML_FP16_TO_FP32(x[i].d);
const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
process_mins_16(_mm256_cvtepi8_epi16(mins8), q8, i, -GGML_FP16_TO_FP32(x[i].dmin), accm);
prepare_scales_16(_mm256_cvtepi8_epi16(scales8), scales);
}
inline void prepare(int i, int j) {
bits.prepare(x[i].qs, j);
}
Q2Bits bits;
const __m128i m4 = _mm_set1_epi8(0xf);
};
struct DequantizerQ6K final : public BaseDequantizer<block_q6_K> {
DequantizerQ6K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {}
template <typename Q8>
inline void new_block(int i, const Q8& q8, __m256 * accm, __m256i * scales) {
d = GGML_FP16_TO_FP32(x[i].d);
process_mins_and_scales_16(_mm_loadu_si128((const __m128i *)x[i].scales), q8, i, -32.f*d, accm, scales);
}
inline void prepare(int i, int j) {
bits.prepare64(x[i].ql, j);
auto hbits = _mm256_loadu_si256((const __m256i *)x[i].qh + j);
bits.values[0] = _mm256_or_si256(bits.values[0], _mm256_and_si256(_mm256_slli_epi16(hbits, 4), mh));
bits.values[1] = _mm256_or_si256(bits.values[1], _mm256_and_si256(_mm256_slli_epi16(hbits, 2), mh));
bits.values[2] = _mm256_or_si256(bits.values[2], _mm256_and_si256(hbits, mh));
bits.values[3] = _mm256_or_si256(bits.values[3], _mm256_and_si256(_mm256_srli_epi16(hbits, 2), mh));
}
Q4Bits bits;
const __m256i mh = _mm256_set1_epi8(0x30);
};
template <typename Dequantizer, int nrc_y>
static void mul_mat_qY_K_q8_K_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
assert(n%QK_K == 0);
const int nb = n/QK_K;
Q8<nrc_y> q8(info);
__m256i all_scales[2];
__m256i scales[4];
__m256 accd[nrc_y];
Dequantizer deq(vx, bx);
for (int ix = 0; ix < nrc_x; ++ix) {
deq.new_row(ix);
for (int iy = 0; iy < nrc_y; ++iy) accd[iy] = _mm256_setzero_ps();
for (int i = 0; i < nb; ++i) {
deq.new_block(i, q8, accd, all_scales);
__m256i sumi[nrc_y];
for (int j = 0; j < QK_K/128; ++j) {
deq.prepare(i, j);
set_scales_16(all_scales[j], scales);
multiply_add(deq.bits, scales, j, i, q8, sumi);
}
for (int iy = 0; iy < nrc_y; ++iy) {
accd[iy] = _mm256_fmadd_ps(_mm256_set1_ps(deq.d*q8.scale(iy, i)), _mm256_cvtepi32_ps(sumi[iy]), accd[iy]);
}
}
for (int iy = 0; iy < nrc_y; ++iy) {
info.store(ix, iy, hsum_float_8(accd[iy]));
}
}
}
template <typename Dequantizer, int nrc_y>
static void mul_mat_qX_K_q8_K_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
assert(n % QK_K == 0);
const int nb = n / QK_K;
Q8<nrc_y> q8(info);
Dequantizer deq(vx, bx);
__m256 accd[nrc_y];
__m256i scales[4];
for (int ix = 0; ix < nrc_x; ++ix) {
for (int iy = 0; iy < nrc_y; ++iy) accd[iy] = _mm256_setzero_ps();
deq.new_row(ix);
for (int i = 0; i < nb; ++i) {
auto all_scales = deq.new_block(i, q8, accd);
__m256i sumi[nrc_y];
for (int j = 0; j < QK_K/128; ++j) {
deq.prepare(i, j);
set_scales_8(all_scales, j, scales);
multiply_add(deq.bits, scales, j, i, q8, sumi);
}
for (int iy = 0; iy < nrc_y; ++iy) {
const __m256 vd = _mm256_set1_ps(deq.d*q8.scale(iy, i));
accd[iy] = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi[iy]), accd[iy]);
}
}
for (int iy = 0; iy < nrc_y; ++iy) {
info.store(ix, iy, hsum_float_8(accd[iy]));
}
}
}
#endif // Zen4 or vanilla AVX2
template <typename Bits>
inline void multiply_add_1(int j, const Bits& bits, const __m256i * scales, const __m256i * q8, __m256i * sumi) {
if (j == 0) {
#if defined(__AVX512VNNI__) && defined(__AVX512VL__)
auto p1 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[0], q8[0]);
auto p2 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[1], q8[1]);
auto p3 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[2], q8[2]);
auto p4 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[3], q8[3]);
sumi[0] = _mm256_dpwssd_epi32(_mm256_setzero_si256(), scales[0], _mm256_packs_epi32(p1, p2));
sumi[1] = _mm256_dpwssd_epi32(_mm256_setzero_si256(), scales[1], _mm256_packs_epi32(p3, p4));
#else
const __m256i p1 = _mm256_madd_epi16(scales[0], _mm256_maddubs_epi16(bits.values[0], q8[0]));
const __m256i p2 = _mm256_madd_epi16(scales[1], _mm256_maddubs_epi16(bits.values[1], q8[1]));
const __m256i p3 = _mm256_madd_epi16(scales[2], _mm256_maddubs_epi16(bits.values[2], q8[2]));
const __m256i p4 = _mm256_madd_epi16(scales[3], _mm256_maddubs_epi16(bits.values[3], q8[3]));
sumi[0] = _mm256_add_epi32(p1, p3);
sumi[1] = _mm256_add_epi32(p2, p4);
#endif
} else {
#if defined(__AVX512VNNI__) && defined(__AVX512VL__)
auto p1 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[0], q8[0]);
auto p2 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[1], q8[1]);
auto p3 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[2], q8[2]);
auto p4 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[3], q8[3]);
sumi[0] = _mm256_dpwssd_epi32(sumi[0], scales[0], _mm256_packs_epi32(p1, p2));
sumi[1] = _mm256_dpwssd_epi32(sumi[1], scales[1], _mm256_packs_epi32(p3, p4));
#else
const __m256i p1 = _mm256_madd_epi16(scales[0], _mm256_maddubs_epi16(bits.values[0], q8[0]));
const __m256i p2 = _mm256_madd_epi16(scales[1], _mm256_maddubs_epi16(bits.values[1], q8[1]));
const __m256i p3 = _mm256_madd_epi16(scales[2], _mm256_maddubs_epi16(bits.values[2], q8[2]));
const __m256i p4 = _mm256_madd_epi16(scales[3], _mm256_maddubs_epi16(bits.values[3], q8[3]));
sumi[0] = _mm256_add_epi32(sumi[0], _mm256_add_epi32(p1, p3));
sumi[1] = _mm256_add_epi32(sumi[1], _mm256_add_epi32(p2, p4));
#endif
}
}
inline void set_scales_8_iq(int j, const __m256i& all_scales, __m256i * scales) {
#ifdef HAVE_FANCY_SIMD
auto shuffle = j == 0 ? _mm256_set_epi64x(0x0302030203020302, 0x0100010001000100, 0x0302030203020302, 0x0100010001000100)
: _mm256_set_epi64x(0x0b0a0b0a0b0a0b0a, 0x0908090809080908, 0x0b0a0b0a0b0a0b0a, 0x0908090809080908);
scales[0] = _mm256_shuffle_epi8(all_scales, shuffle);
scales[1] = _mm256_shuffle_epi8(all_scales, _mm256_add_epi8(shuffle, _mm256_set1_epi8(4)));
#else
set_scales_8(all_scales, j, scales);
#endif
}
inline void set_scales_16_iq(const __m256i& all_scales, __m256i * scales) {
#ifdef HAVE_FANCY_SIMD
auto shuffle = _mm256_set_epi64x(0x0706070607060706, 0x0302030203020302, 0x0504050405040504, 0x0100010001000100);
scales[0] = _mm256_shuffle_epi8(all_scales, shuffle);
scales[1] = _mm256_shuffle_epi8(all_scales, _mm256_add_epi8(shuffle, _mm256_set1_epi8(8)));
#else
set_scales_16(all_scales, scales);
#endif
}
template <typename Dequantizer>
static void mul_mat_qX_K_q8_K_IQ_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
const int nb = n / QK_K;
Q8<1> q8(info);
Dequantizer deq(vx, bx);
__m256i scales[2];
__m256i q8_quants[4];
for (int ix = 0; ix < nrc_x; ++ix) {
__m256 accd = _mm256_setzero_ps();
deq.new_row(ix);
for (int i = 0; i < nb; ++i) {
__m256i sumi[2], all_scales[Dequantizer::num_blocks/8];
deq.new_block(i, all_scales);
for (int j = 0; j < QK_K/128; ++j) {
deq.prepare(i, j, q8, q8_quants);
if constexpr (Dequantizer::num_blocks == 8) {
set_scales_8_iq(j, all_scales[0], scales);
} else {
set_scales_16_iq(all_scales[j], scales);
}
multiply_add_1(j, deq.bits, scales, q8_quants, sumi);
}
accd = _mm256_fmadd_ps(_mm256_set1_ps(deq.d*q8.scale(0, i)), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi[0], sumi[1])), accd);
}
info.store(ix, 0, hsum_float_8(accd));
}
}
// So, if I uncomment this function and the call to it in mul_mat_qX_K_q8_K_IQ_N() below,
// PP performance improves by ~2-3% (when we have __AVX512VNNI__ and __AVX512VL__).
// But TG performance for iq3_xs drops by 35%. Seriously? I mean, c'mon,
// what does the compilation of mul_mat_qX_K_q8_K_IQ_1 (which gets invoked during TG)
// have to do with the compilation of mul_mat_qX_K_q8_K_IQ_N (invoked during PP)?
//template <typename Q8, typename Bits>
//inline void multiply_add_iq(const Bits& bits, const __m256i * scales, int j, int i, const Q8& q8, __m256i * sumi) {
//#if defined(__AVX512VNNI__) && defined(__AVX512VL__)
// for (int iy = 0; iy < Q8::nrc_y; ++iy) {
// sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[0], _mm256_maddubs_epi16(bits.values[0], q8.load_quants(iy, i, 4*j+0)));
// sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[1], _mm256_maddubs_epi16(bits.values[1], q8.load_quants(iy, i, 4*j+1)));
// sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[2], _mm256_maddubs_epi16(bits.values[2], q8.load_quants(iy, i, 4*j+2)));
// sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[3], _mm256_maddubs_epi16(bits.values[3], q8.load_quants(iy, i, 4*j+3)));
// }
//#else
// for (int iy = 0; iy < Q8::nrc_y; ++iy) {
// const __m256i p1 = _mm256_madd_epi16(scales[0], _mm256_maddubs_epi16(bits.values[0], q8.load_quants(iy, i, 4*j+0)));
// const __m256i p2 = _mm256_madd_epi16(scales[1], _mm256_maddubs_epi16(bits.values[1], q8.load_quants(iy, i, 4*j+1)));
// const __m256i p3 = _mm256_madd_epi16(scales[2], _mm256_maddubs_epi16(bits.values[2], q8.load_quants(iy, i, 4*j+2)));
// const __m256i p4 = _mm256_madd_epi16(scales[3], _mm256_maddubs_epi16(bits.values[3], q8.load_quants(iy, i, 4*j+3)));
// sumi[iy] = _mm256_add_epi32(sumi[iy], _mm256_add_epi32(p1, p3));
// sumi[iy] = _mm256_add_epi32(sumi[iy], _mm256_add_epi32(p2, p4));
// }
//#endif
//}
template <typename Dequantizer, int nrc_y>
static void mul_mat_qX_K_q8_K_IQ_N(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
const int nb = n / QK_K;
Q8<nrc_y> q8(info);
Dequantizer deq(vx, bx);
__m256i scales[4];
__m256 accd[nrc_y];
for (int ix = 0; ix < nrc_x; ++ix) {
for (int iy = 0; iy < nrc_y; ++iy) accd[iy] = _mm256_setzero_ps();
deq.new_row(ix);
for (int i = 0; i < nb; ++i) {
__m256i sumi[nrc_y], all_scales[Dequantizer::num_blocks/8];
//for (int iy = 0; iy < nrc_y; ++iy) sumi[iy] = _mm256_setzero_si256();
__m256i mins;
float dmin = deq.new_block(i, all_scales, mins);
for (int iy = 0; iy < nrc_y; ++iy) {
auto bsums = q8.load_bsums(iy, i);
auto prod = _mm256_madd_epi16(mins, bsums);
accd[iy] = _mm256_fmadd_ps(_mm256_set1_ps(dmin*q8.scale(iy, i)), _mm256_cvtepi32_ps(prod), accd[iy]);
}
for (int j = 0; j < QK_K/128; ++j) {
deq.prepare(i, j);
if constexpr (Dequantizer::num_blocks == 8) {
set_scales_8(all_scales[0], j, scales);
} else {
set_scales_16(all_scales[j], scales);
}
//multiply_add_iq(deq.bits, scales, j, i, q8, sumi);
multiply_add(deq.bits, scales, j, i, q8, sumi);
}
for (int iy = 0; iy < nrc_y; ++iy) {
const __m256 vd = _mm256_set1_ps(deq.d*q8.scale(iy, i));
accd[iy] = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi[iy]), accd[iy]);
}
}
for (int iy = 0; iy < nrc_y; ++iy) {
info.store(ix, iy, hsum_float_8(accd[iy]));
}
}
}
template <int nrc> struct Q8_K64 {
constexpr static int nrc_y = nrc;
Q8_K64(const DataInfo& info) {
for (int iy = 0; iy < nrc_y; ++iy) {
const float * dptr = (const float *)info.src1_row(iy);
std::memcpy(d + 4*iy, dptr, 4*sizeof(float));
y[iy] = (const int8_t *)(dptr + 4);
}
}
inline __m256i load_quants(int iy, int i, int j) const { return _mm256_loadu_si256((const __m256i*)y[iy] + 4*i + j); }
inline __m128 scale(int iy) const { return _mm_loadu_ps(d + 4*iy); }
float d[4*nrc_y];
const int8_t * y[nrc_y];
};
struct DequantizerIQ1BN {
const __m256i m1_8 = _mm256_set1_epi8(1);
const __m256i shuff1 = _mm256_set_epi64x(0x0908090809080908, 0x0100010001000100, 0x0908090809080908, 0x0100010001000100);
#if defined __AVX512F__ && defined __AVX512VL__
const __m256i minus1 = _mm256_set1_epi64x(0xaaaa);
const __m256i shifts = _mm256_set1_epi64x(0x0006000400020000);
#else
const __m256i shuff3 = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000);
const __m256i shuff4 = _mm256_set_epi64x(0x0707070707070707, 0x0606060606060606, 0x0505050505050505, 0x0404040404040404);
const __m256i mask1 = _mm256_set1_epi64x(0x8040201008040201);
#endif
const __m256i qmask = _mm256_set1_epi8(0x03);
IQK_ALWAYS_INLINE void prepare_iq1bn_quants(uint8_t extra, const uint8_t * ql, const uint8_t * qh, __m256i& v1, __m256i& v2) {
auto aux1 = _mm256_set_epi64x(iq1bn_grid_u16[ql[3] | ((qh[1] << 4) & 0x0f00)], iq1bn_grid_u16[ql[2] | ((qh[1] << 8) & 0x0f00)],
iq1bn_grid_u16[ql[1] | ((qh[0] << 4) & 0x0f00)], iq1bn_grid_u16[ql[0] | ((qh[0] << 8) & 0x0f00)]);
auto aux2 = _mm256_set_epi64x(iq1bn_grid_u16[ql[7] | ((qh[3] << 4) & 0x0f00)], iq1bn_grid_u16[ql[6] | ((qh[3] << 8) & 0x0f00)],
iq1bn_grid_u16[ql[5] | ((qh[2] << 4) & 0x0f00)], iq1bn_grid_u16[ql[4] | ((qh[2] << 8) & 0x0f00)]);
#if defined __AVX512F__ && defined __AVX512VL__
aux1 = _mm256_mask_sub_epi64(aux1, extra & 0xf, minus1, aux1);
aux2 = _mm256_mask_sub_epi64(aux2, extra >> 4, minus1, aux2);
v1 = _mm256_sub_epi8(_mm256_and_si256(_mm256_srlv_epi16(_mm256_shuffle_epi8(aux1, shuff1), shifts), qmask), m1_8);
v2 = _mm256_sub_epi8(_mm256_and_si256(_mm256_srlv_epi16(_mm256_shuffle_epi8(aux2, shuff1), shifts), qmask), m1_8);
#else
aux1 = _mm256_or_si256(aux1, _mm256_slli_epi64(aux1, 14));
aux2 = _mm256_or_si256(aux2, _mm256_slli_epi64(aux2, 14));
aux1 = _mm256_or_si256(aux1, _mm256_slli_epi64(aux1, 28));
aux2 = _mm256_or_si256(aux2, _mm256_slli_epi64(aux2, 28));
v1 = _mm256_sub_epi8(_mm256_and_si256(aux1, qmask), m1_8);
v2 = _mm256_sub_epi8(_mm256_and_si256(aux2, qmask), m1_8);
auto all_signs = _mm256_set1_epi8(extra);
all_signs = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(all_signs, mask1), mask1), m1_8);
v1 = _mm256_sign_epi8(v1, _mm256_shuffle_epi8(all_signs, shuff3));
v2 = _mm256_sign_epi8(v2, _mm256_shuffle_epi8(all_signs, shuff4));
#endif
}
};
template <int nrc_y>
IQK_NOINLINE void mul_mat_iq1bn_q8_K64(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
const int nb = n / QK_IQ1BN;
Q8_K64<nrc_y> q8(info);
DequantizerIQ1BN deq;
__m256i accd[nrc_y];
__m256i val[4];
#if !(defined __AVX512VNNI__ && defined __AVX512VL__)
const auto m1_16 = _mm256_set1_epi16(1);
#endif
const block_iq1_bn * x = (const block_iq1_bn *)((const char *)vx);
for (int ix = 0; ix < nrc_x; ++ix) {
x = (const block_iq1_bn *)((const char *)vx + ix*bx);
if constexpr (nrc_y == 1) {
__m256i acc1 = _mm256_setzero_si256(), acc2 = _mm256_setzero_si256();
for (int i = 0; i < nb/2; ++i) {
deq.prepare_iq1bn_quants(x[2*i+0].extra, x[2*i+0].ql, x[2*i+0].qh, val[0], val[1]);
deq.prepare_iq1bn_quants(x[2*i+1].extra, x[2*i+1].ql, x[2*i+1].qh, val[2], val[3]);
#if defined __AVX512VNNI__ && defined __AVX512VL__
auto dot1 = _mm256_sign_epi8(q8.load_quants(0, i, 0), val[0]);
auto dot2 = _mm256_sign_epi8(q8.load_quants(0, i, 1), val[1]);
auto dot3 = _mm256_sign_epi8(q8.load_quants(0, i, 2), val[2]);
auto dot4 = _mm256_sign_epi8(q8.load_quants(0, i, 3), val[3]);
acc1 = _mm256_dpbusd_epi32(_mm256_dpbusd_epi32(acc1, deq.m1_8, dot1), deq.m1_8, dot2);
acc2 = _mm256_dpbusd_epi32(_mm256_dpbusd_epi32(acc2, deq.m1_8, dot3), deq.m1_8, dot4);
#else
auto dot1 = _mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 0), val[0])),
_mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 1), val[1])));
auto dot2 = _mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 2), val[2])),
_mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 3), val[3])));
acc1 = _mm256_add_epi32(acc1, _mm256_madd_epi16(m1_16, dot1));
acc2 = _mm256_add_epi32(acc2, _mm256_madd_epi16(m1_16, dot2));
#endif
}
accd[0] = _mm256_add_epi32(acc1, acc2);
}
else {
for (int iy = 0; iy < nrc_y; ++iy) accd[iy] = _mm256_setzero_si256();
for (int i = 0; i < nb/2; ++i) {
deq.prepare_iq1bn_quants(x[2*i+0].extra, x[2*i+0].ql, x[2*i+0].qh, val[0], val[1]);
deq.prepare_iq1bn_quants(x[2*i+1].extra, x[2*i+1].ql, x[2*i+1].qh, val[2], val[3]);
for (int iy = 0; iy < nrc_y; ++iy) {
#if defined __AVX512VNNI__ && defined __AVX512VL__
auto dot1 = _mm256_sign_epi8(q8.load_quants(iy, i, 0), val[0]);
auto dot2 = _mm256_sign_epi8(q8.load_quants(iy, i, 1), val[1]);
auto dot3 = _mm256_sign_epi8(q8.load_quants(iy, i, 2), val[2]);
auto dot4 = _mm256_sign_epi8(q8.load_quants(iy, i, 3), val[3]);
accd[iy] = _mm256_dpbusd_epi32(_mm256_dpbusd_epi32(_mm256_dpbusd_epi32(_mm256_dpbusd_epi32(
accd[iy], deq.m1_8, dot1), deq.m1_8, dot2), deq.m1_8, dot3), deq.m1_8, dot4);
#else
auto dot1 = _mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(iy, i, 0), val[0])),
_mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(iy, i, 1), val[1])));
auto dot2 = _mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(iy, i, 2), val[2])),
_mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(iy, i, 3), val[3])));
dot1 = _mm256_madd_epi16(m1_16, _mm256_add_epi16(dot1, dot2));
accd[iy] = _mm256_add_epi32(dot1, accd[iy]);
#endif
}
}
}
int i = 2*(nb/2);
if (i < nb) {
deq.prepare_iq1bn_quants(x[i].extra, x[i].ql, x[i].qh, val[0], val[1]);
for (int iy = 0; iy < nrc_y; ++iy) {
auto dot1 = _mm256_sign_epi8(q8.load_quants(iy, i/2, 0), val[0]);
auto dot2 = _mm256_sign_epi8(q8.load_quants(iy, i/2, 1), val[1]);
#if defined __AVX512VNNI__ && defined __AVX512VL__
accd[iy] = _mm256_dpbusd_epi32(_mm256_dpbusd_epi32(accd[iy], deq.m1_8, dot1), deq.m1_8, dot2);
#else
auto dot = _mm256_madd_epi16(m1_16,
_mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, dot1), _mm256_maddubs_epi16(deq.m1_8, dot2)));
accd[iy] = _mm256_add_epi32(dot, accd[iy]);
#endif
}
}
for (int iy = 0; iy < nrc_y; ++iy) {
auto vd = q8.scale(iy);
auto sumi = _mm_add_epi32(_mm256_castsi256_si128(accd[iy]), _mm256_extractf128_si256(accd[iy], 1));
auto sumf = _mm_mul_ps(vd, _mm_cvtepi32_ps(sumi));
info.store(ix, iy, hsum_float_4(sumf));
}
}
}
struct DequantizeIQ2BN final : public BaseDequantizer<block_iq2_bn> {
DequantizeIQ2BN(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {}
IQK_ALWAYS_INLINE void prepare4(int i, __m256i * val) const {
auto q2bits_1 = _mm256_loadu_si256((const __m256i *)x[2*i].qs);
auto q2bits_2 = _mm256_srli_epi16(q2bits_1, 2);
make2(_mm256_permute2x128_si256(q2bits_1, q2bits_2, 0x20), val+0);
make2(_mm256_permute2x128_si256(q2bits_1, q2bits_2, 0x31), val+2);
}
IQK_ALWAYS_INLINE void make2(__m256i q2_1, __m256i * val) const {
val[0] = _mm256_sub_epi8(_mm256_and_si256(q2_1, mask2), m1_8);
val[1] = _mm256_sub_epi8(_mm256_and_si256(q2_1, mask3), mf_8);
}
IQK_ALWAYS_INLINE void prepare2(int i, __m256i * val) const {
auto q2bits_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
make2(MM256_SET_M128I(_mm_srli_epi16(q2bits_1, 2), q2bits_1), val);
}
const __m256i m1_8 = _mm256_set1_epi8(1);
const __m256i mf_8 = _mm256_set1_epi8(16);
const __m256i mask2 = _mm256_set1_epi8(0x03);
const __m256i mask3 = _mm256_set1_epi8(0x30);
};
template <int nrc_y>
IQK_NOINLINE void mul_mat_iq2bn_q8_K64(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
const int nb = n / QK_IQ1BN;
Q8_K64<nrc_y> q8(info);
DequantizeIQ2BN deq(vx, bx);
__m256i accd[nrc_y];
__m256i val[4];
#if !(defined __AVX512VNNI__ && defined __AVX512VL__)
const auto m1_16 = _mm256_set1_epi16(1);
#endif
for (int ix = 0; ix < nrc_x; ++ix) {
deq.new_row(ix);
if constexpr (nrc_y == 1) {
__m256i acc[2] = {};
for (int i = 0; i < nb/2; ++i) {
deq.prepare4(i, val);
#if defined __AVX512VNNI__ && defined __AVX512VL__
acc[0] = _mm256_dpbusd_epi32(_mm256_dpbusd_epi32(acc[0], deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 0), val[0])),
deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 1), val[1]));
acc[1] = _mm256_dpbusd_epi32(_mm256_dpbusd_epi32(acc[1], deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 2), val[2])),
deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 3), val[3]));
#else
auto dot1 = _mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 0), val[0])),
_mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 1), val[1])));
auto dot2 = _mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 2), val[2])),
_mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 3), val[3])));
acc[0] = _mm256_add_epi32(acc[0], _mm256_madd_epi16(m1_16, dot1));
acc[1] = _mm256_add_epi32(acc[1], _mm256_madd_epi16(m1_16, dot2));
#endif
}
accd[0] = _mm256_add_epi32(acc[0], acc[1]);
}
else {
for (int iy = 0; iy < nrc_y; ++iy) accd[iy] = _mm256_setzero_si256();
for (int i = 0; i < nb/2; ++i) {
deq.prepare4(i, val);
for (int iy = 0; iy < nrc_y; ++iy) {
auto dot1 = _mm256_sign_epi8(q8.load_quants(iy, i, 0), val[0]);
auto dot2 = _mm256_sign_epi8(q8.load_quants(iy, i, 1), val[1]);
auto dot3 = _mm256_sign_epi8(q8.load_quants(iy, i, 2), val[2]);
auto dot4 = _mm256_sign_epi8(q8.load_quants(iy, i, 3), val[3]);
#if defined __AVX512VNNI__ && defined __AVX512VL__
accd[iy] = _mm256_dpbusd_epi32(_mm256_dpbusd_epi32(_mm256_dpbusd_epi32(_mm256_dpbusd_epi32(
accd[iy], deq.m1_8, dot1), deq.m1_8, dot2), deq.m1_8, dot3), deq.m1_8, dot4);
#else
auto dot = _mm256_madd_epi16(m1_16, _mm256_add_epi16(
_mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, dot1), _mm256_maddubs_epi16(deq.m1_8, dot2)),
_mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, dot3), _mm256_maddubs_epi16(deq.m1_8, dot4))));
accd[iy] = _mm256_add_epi32(dot, accd[iy]);
#endif
}
}
}
int i = 2*(nb/2);
if (i < nb) {
deq.prepare2(i, val);
for (int iy = 0; iy < nrc_y; ++iy) {
auto dot1 = _mm256_sign_epi8(q8.load_quants(iy, i/2, 0), val[0]);
auto dot2 = _mm256_sign_epi8(q8.load_quants(iy, i/2, 1), val[1]);
#if defined __AVX512VNNI__ && defined __AVX512VL__
accd[iy] = _mm256_dpbusd_epi32(_mm256_dpbusd_epi32(accd[iy], deq.m1_8, dot1), deq.m1_8, dot2);
#else
dot1 = _mm256_madd_epi16(m1_16, _mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, dot1), _mm256_maddubs_epi16(deq.m1_8, dot2)));
accd[iy] = _mm256_add_epi32(dot1, accd[iy]);
#endif
}
}
for (int iy = 0; iy < nrc_y; ++iy) {
auto vd = q8.scale(iy);
auto sumi = _mm_add_epi32(_mm256_castsi256_si128(accd[iy]), _mm256_extractf128_si256(accd[iy], 1));
auto sumf = _mm_mul_ps(vd, _mm_cvtepi32_ps(sumi));
info.store(ix, iy, hsum_float_4(sumf));
}
}
}
template <typename Dequantizer, int nrc_y>
static void mul_mat_qX_K_q8_K_IQ(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
assert(n % QK_K == 0);
if constexpr (nrc_y == 1) {
mul_mat_qX_K_q8_K_IQ_1<Dequantizer>(n, vx, bx, info, nrc_x);
} else {
mul_mat_qX_K_q8_K_IQ_N<Dequantizer, nrc_y>(n, vx, bx, info, nrc_x);
}
}
//#ifdef HAVE_FANCY_SIMD
// Strangely enough, the following implementation makes PP ~6% slower and TG ~6% faster
// compared to the vanilla AVX2 version below.
//struct IndexHelperIQ3S {
// union index_t {
// __m256i vec;
// uint16_t val[16];
// };
// inline void make2(const uint8_t * qs, const uint8_t * qh, __m256i * values) const {
// auto idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs));
// const __mmask16 * m16 = (const __mmask16 *)qh;
// index_t idx;
// idx.vec = _mm256_mask_add_epi16(idx_l, m16[0], idx_l, offset);
// values[0] = _mm256_set_epi32(iq3s_grid[idx.val[ 7]], iq3s_grid[idx.val[ 6]], iq3s_grid[idx.val[ 5]], iq3s_grid[idx.val[ 4]],
// iq3s_grid[idx.val[ 3]], iq3s_grid[idx.val[ 2]], iq3s_grid[idx.val[ 1]], iq3s_grid[idx.val[ 0]]);
// values[1] = _mm256_set_epi32(iq3s_grid[idx.val[15]], iq3s_grid[idx.val[14]], iq3s_grid[idx.val[13]], iq3s_grid[idx.val[12]],
// iq3s_grid[idx.val[11]], iq3s_grid[idx.val[10]], iq3s_grid[idx.val[ 9]], iq3s_grid[idx.val[ 8]]);
// }
// const __m256i offset = _mm256_set1_epi16(256);
//};
//#else
struct IndexHelperIQ3S {
union index_t {
__m256i vec;
uint32_t val[8];
};
inline void make2(const uint8_t * qs, const uint8_t * qh, __m256i * values) const {
index_t idx;
auto idx_l = _mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i *)qs));
auto idx_h = _mm256_and_si256(_mm256_sllv_epi32(_mm256_set1_epi32(qh[0]), idx_shift), idx_mask);
idx.vec = _mm256_or_si256(idx_h, idx_l);
values[0] = _mm256_set_epi32(iq3s_grid[idx.val[7]], iq3s_grid[idx.val[6]], iq3s_grid[idx.val[5]], iq3s_grid[idx.val[4]],
iq3s_grid[idx.val[3]], iq3s_grid[idx.val[2]], iq3s_grid[idx.val[1]], iq3s_grid[idx.val[0]]);
idx_l = _mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i *)(qs+8)));
idx_h = _mm256_and_si256(_mm256_sllv_epi32(_mm256_set1_epi32(qh[1]), idx_shift), idx_mask);
idx.vec = _mm256_or_si256(idx_h, idx_l);
values[1] = _mm256_set_epi32(iq3s_grid[idx.val[7]], iq3s_grid[idx.val[6]], iq3s_grid[idx.val[5]], iq3s_grid[idx.val[4]],
iq3s_grid[idx.val[3]], iq3s_grid[idx.val[2]], iq3s_grid[idx.val[1]], iq3s_grid[idx.val[0]]);
}
const __m256i idx_mask = _mm256_set1_epi32(256);
const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8);
};
//#endif
struct DequantizerIQ3S final : public BaseDequantizer<block_iq3_s> {
DequantizerIQ3S(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {}
constexpr static int num_blocks = 8;
inline __m128i make_scales(int i, float& dd) const {
dd = GGML_FP16_TO_FP32(x[i].d);
uint32_t aux32[2];
std::memcpy(aux32, x[i].scales, 4);
aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f;
aux32[0] &= 0x0f0f0f0f;
auto scales8 = _mm_shuffle_epi8(_mm_loadl_epi64((const __m128i *)aux32), _mm_set1_epi64x(0x0703060205010400));
auto scales16 = _mm256_castsi256_si128(_mm256_cvtepi8_epi16(scales8));
return _mm_or_si128(_mm_slli_epi16(scales16, 1), _mm_set1_epi16(1));
}
inline void new_block(int i, __m256i * scales) {
auto scales16 = make_scales(i, d);
scales[0] = MM256_SET_M128I(scales16, scales16);
}
inline float new_block(int i, __m256i * scales, __m256i& mins) {
auto scales16 = make_scales(i, d);
mins = scb.shuffle(scales16);
scales[0] = MM256_SET_M128I(scales16, scales16);
return -minv*d;
}
inline void prepare(int i, int j) {
prepare_unsigned(i, j);
sh.sign_4_values((const uint16_t *)x[i].signs + 8*j, bits.values);
for (int k = 0; k < 4; ++k) bits.values[k] = _mm256_add_epi8(bits.values[k], min_value);
}
inline void prepare(int i, int j, const Q8<1>& q8, __m256i * q8_quants) {
prepare_unsigned(i, j);
for (int k = 0; k < 4; ++k) q8_quants[k] = q8.load_quants(0, i, 4*j+k);
sh.sign_4_values((const uint16_t *)x[i].signs + 8*j, q8_quants);
}
inline void prepare_unsigned(int i, int j) {
auto qs = x[i].qs + 32*j;
auto qh = x[i].qh + 4*j;
helper.make2(qs+ 0, qh+0, bits.values+0);
helper.make2(qs+16, qh+2, bits.values+2);
}
constexpr static int minv = 16;
SimpleBits bits;
SignHelper sh;
Scales8KBase scb;
IndexHelperIQ3S helper;
const __m256i min_value = _mm256_set1_epi8(minv);
};
struct EvenSignHelper {
#ifdef HAVE_FANCY_SIMD
union sbits_t {
__m128i vec;
__mmask32 mask[4];
};
IQK_ALWAYS_INLINE void sign_2_values(__m256i aux, __m256i * values) const {
aux = _mm256_and_si256(_mm256_srlv_epi32(aux, shifts), mask);
auto pcnt = _mm256_popcnt_epi32(aux);
sbits_t sbits;
sbits.vec = _mm256_cvtepi32_epi8(_mm256_or_si256(aux, _mm256_slli_epi32(_mm256_and_si256(pcnt, mone), 7)));
values[0] = _mm256_mask_sub_epi8(values[0], sbits.mask[0], _mm256_setzero_si256(), values[0]);
values[1] = _mm256_mask_sub_epi8(values[1], sbits.mask[1], _mm256_setzero_si256(), values[1]);
//auto sign_bits = _mm256_cvtepi32_epi8(_mm256_or_si256(aux, _mm256_slli_epi32(_mm256_and_si256(pcnt, mone), 7)));
//const __mmask32 * m32 = (const __mmask32 *)&sign_bits;
//values[0] = _mm256_mask_sub_epi8(values[0], m32[0], _mm256_setzero_si256(), values[0]);
//values[1] = _mm256_mask_sub_epi8(values[1], m32[1], _mm256_setzero_si256(), values[1]);
}
const __m256i shifts = _mm256_set_epi32(21, 14, 7, 0, 21, 14, 7, 0);
const __m256i mask = _mm256_set1_epi32(127);
const __m256i mone = _mm256_set1_epi32(1);
#else
inline void sign_value(uint32_t aux32, __m256i& value) const {
auto signs = _mm256_set_epi64x(keven_signs[(aux32 >> 21) & 127], keven_signs[(aux32 >> 14) & 127],
keven_signs[(aux32 >> 7) & 127], keven_signs[(aux32 >> 0) & 127]);
value = _mm256_sign_epi8(value, signs);
}
#endif
};
struct DequantizerIQ3XXS final : public BaseDequantizer<block_iq3_xxs> {
DequantizerIQ3XXS(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {}
constexpr static int num_blocks = 8;
inline __m128i prepare_scales(int i) {
d = 0.25f * GGML_FP16_TO_FP32(x[i].d);
auto tmp = _mm256_loadu_si256((const __m256i *)(x[i].qs + QK_K/4));
auto scales32 = _mm256_srli_epi32(tmp, 28);
scales32 = _mm256_or_si256(_mm256_slli_epi32(scales32, 1), _mm256_set1_epi32(1));
return _mm_packs_epi32(_mm256_castsi256_si128(scales32), _mm256_extractf128_si256(scales32, 1));
}
inline void new_block(int i, __m256i * scales) {
auto scales16 = prepare_scales(i);
scales[0] = MM256_SET_M128I(scales16, scales16);
}
inline float new_block(int i, __m256i * scales, __m256i& mins) {
auto scales16 = prepare_scales(i);
mins = scb.shuffle(scales16);
scales[0] = MM256_SET_M128I(scales16, scales16);
return -d*minv;
}
inline static __m256i make_quants(const uint8_t * qs) {
return _mm256_set_epi32(iq3xxs_grid[qs[7]], iq3xxs_grid[qs[6]], iq3xxs_grid[qs[5]], iq3xxs_grid[qs[4]],
iq3xxs_grid[qs[3]], iq3xxs_grid[qs[2]], iq3xxs_grid[qs[1]], iq3xxs_grid[qs[0]]);
}
inline static void make4_unsigned(const uint8_t * qs, __m256i * values) {
values[0] = make_quants(qs+ 0);
values[1] = make_quants(qs+ 8);
values[2] = make_quants(qs+16);
values[3] = make_quants(qs+24);
}
IQK_ALWAYS_INLINE void sign_2_values(const uint16_t * signs, __m256i * values) const {
#ifdef HAVE_FANCY_SIMD
esh.sign_2_values(MM256_SET_M128I(_mm_set1_epi32(signs[2] | (signs[3] << 16)), _mm_set1_epi32(signs[0] | (signs[1] << 16))), values);
#else
esh.sign_value(signs[0] | (signs[1] << 16), values[0]);
esh.sign_value(signs[2] | (signs[3] << 16), values[1]);
#endif
}
inline void prepare(int i, int j) {
auto qs = x[i].qs + 32*j;
const uint16_t * signs = (const uint16_t *)(x[i].qs + QK_K/4) + 8*j;
make4_unsigned(qs, bits.values);
sign_2_values(signs+0, bits.values+0);
sign_2_values(signs+4, bits.values+2);
for (int k = 0; k < 4; ++k) bits.values[k] = _mm256_add_epi32(bits.values[k], min_value);
}
inline void prepare(int i, int j, const Q8<1>& q8, __m256i * q8_quants) {
for (int k = 0; k < 4; ++k) q8_quants[k] = q8.load_quants(0, i, 4*j+k);
auto qs = x[i].qs + 32*j;
const uint16_t * signs = (const uint16_t *)(x[i].qs + QK_K/4) + 8*j;
make4_unsigned(qs, bits.values);
sign_2_values(signs+0, q8_quants+0);
sign_2_values(signs+4, q8_quants+2);
}
constexpr static int minv = 64;
SimpleBits bits;
Scales8KBase scb;
EvenSignHelper esh;
const __m256i min_value = _mm256_set1_epi8(minv);
};
struct DequantizerIQ2S final : public BaseDequantizer<block_iq2_s> {
DequantizerIQ2S(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {}
constexpr static int num_blocks = 16;
inline __m256i load_scales(int i) {
d = 0.125f * GGML_FP16_TO_FP32(x[i].d);
auto tmp = _mm_loadl_epi64((const __m128i *)x[i].scales);
auto all = _mm_and_si128(_mm_unpacklo_epi8(tmp, _mm_srli_epi16(tmp, 4)), _mm_set1_epi8(0xf));
auto scales8 = _mm_or_si128(_mm_slli_epi16(all, 1), _mm_set1_epi8(1));
return _mm256_cvtepi8_epi16(scales8);
}
inline static void prepare_scales(const __m256i& all, __m256i * scales) {
auto scales_l = _mm256_castsi256_si128(all);
auto scales_h = _mm256_extractf128_si256(all, 1);
scales[0] = MM256_SET_M128I(scales_l, scales_l);
scales[1] = MM256_SET_M128I(scales_h, scales_h);
}
inline void new_block(int i, __m256i * scales) {
prepare_scales(load_scales(i), scales);
}
inline float new_block(int i, __m256i * scales, __m256i& mins) {
mins = load_scales(i);
prepare_scales(mins, scales);
return -d*minv;
}
union index_t {
__m256i vec;
uint32_t val[8];
};
inline static void make2(const uint8_t * qs, const uint8_t * qh, const __m256i& idx_shift, const __m256i& idx_mask, __m256i * values) {
auto idx_l = _mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i *)qs));
auto idx_h = MM256_SET_M128I(_mm_set1_epi32(qh[1]), _mm_set1_epi32(qh[0]));
index_t idx;
idx.vec = _mm256_or_si256(idx_l, _mm256_and_si256(_mm256_sllv_epi32(idx_h, idx_shift), idx_mask));
values[0] = _mm256_set_epi64x(iq2s_grid[idx.val[3]], iq2s_grid[idx.val[2]], iq2s_grid[idx.val[1]], iq2s_grid[idx.val[0]]);
values[1] = _mm256_set_epi64x(iq2s_grid[idx.val[7]], iq2s_grid[idx.val[6]], iq2s_grid[idx.val[5]], iq2s_grid[idx.val[4]]);
}
inline static void make2_signed(const SignHelper& sh, const uint8_t * qs, const uint8_t * qh, const uint16_t * sidx,
const __m256i& idx_shift, const __m256i& idx_mask, const __m256i& min_value, __m256i * values) {
make2(qs, qh, idx_shift, idx_mask, values);
values[0] = _mm256_add_epi8(sh.sign_value(sidx+0, values[0]), min_value);
values[1] = _mm256_add_epi8(sh.sign_value(sidx+2, values[1]), min_value);
}
inline void prepare(int i, int j) {
auto qs = x[i].qs + 16*j;
auto qh = x[i].qh + 4*j;
const uint16_t * signs = (const uint16_t *)(x[i].qs + QK_K/8) + 8*j;
make2_signed(sh, qs+0, qh+0, signs+0, idx_shift, idx_mask, min_value, bits.values+0);
make2_signed(sh, qs+8, qh+2, signs+4, idx_shift, idx_mask, min_value, bits.values+2);
}
inline void prepare(int i, int j, const Q8<1>& q8, __m256i * q8_quants) {
auto qs = x[i].qs + 16*j;
auto qh = x[i].qh + 4*j;
const uint16_t * signs = (const uint16_t *)(x[i].qs + QK_K/8) + 8*j;
make2(qs+0, qh+0, idx_shift, idx_mask, bits.values+0);
make2(qs+8, qh+2, idx_shift, idx_mask, bits.values+2);
q8_quants[0] = _mm256_sign_epi8(q8.load_quants(0, i, 4*j+0), sh.make_signs(signs[0] | (signs[1] << 16)));
q8_quants[1] = _mm256_sign_epi8(q8.load_quants(0, i, 4*j+1), sh.make_signs(signs[2] | (signs[3] << 16)));
q8_quants[2] = _mm256_sign_epi8(q8.load_quants(0, i, 4*j+2), sh.make_signs(signs[4] | (signs[5] << 16)));
q8_quants[3] = _mm256_sign_epi8(q8.load_quants(0, i, 4*j+3), sh.make_signs(signs[6] | (signs[7] << 16)));
}
constexpr static int minv = 43;
SimpleBits bits;
SignHelper sh;
const __m256i idx_shift = _mm256_set_epi32(2, 4, 6, 8, 2, 4, 6, 8);
const __m256i idx_mask = _mm256_set1_epi32(0x300);
const __m256i min_value = _mm256_set1_epi8(minv);
};
struct DequantizerIQ2XS final : public BaseDequantizer<block_iq2_xs> {
DequantizerIQ2XS(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {}
constexpr static int num_blocks = 16;
inline __m256i load_scales(int i) {
d = 0.125f * GGML_FP16_TO_FP32(x[i].d);
auto tmp = _mm_loadl_epi64((const __m128i *)x[i].scales);
auto all = _mm_and_si128(_mm_unpacklo_epi8(tmp, _mm_srli_epi16(tmp, 4)), _mm_set1_epi8(0xf));
auto scales8 = _mm_or_si128(_mm_slli_epi16(all, 1), _mm_set1_epi8(1));
return _mm256_cvtepi8_epi16(scales8);
}
inline static void prepare_scales(const __m256i& all, __m256i * scales) {
auto scales_l = _mm256_castsi256_si128(all);
auto scales_h = _mm256_extractf128_si256(all, 1);
scales[0] = MM256_SET_M128I(scales_l, scales_l);
scales[1] = MM256_SET_M128I(scales_h, scales_h);
}
inline void new_block(int i, __m256i * scales) {
prepare_scales(load_scales(i), scales);
}
inline float new_block(int i, __m256i * scales, __m256i& mins) {
mins = load_scales(i);
prepare_scales(mins, scales);
return -d*minv;
}
struct Helper {
const __m256i mone = _mm256_set1_epi8(1);
const __m256i mask = _mm256_set1_epi64x(0x8040201008040201);
//const __m256i bhelper = _mm256_set_epi64x(0x8000008000808000, 0x0080800080000080, 0x8000008000808000, 0x0080800080000080);
const __m256i bhelper = load_bhelper();
const __m256i shuff1 = _mm256_set_epi64x(0x0606060606060606, 0x0404040404040404, 0x0202020202020202, 0x0000000000000000);
const __m256i shuff2 = _mm256_set_epi64x(0x0e0e0e0e0e0e0e0e, 0x0c0c0c0c0c0c0c0c, 0x0a0a0a0a0a0a0a0a, 0x0808080808080808);
static __m256i load_bhelper() {
static const uint8_t k_bit_helper[32] = {
0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
};
return _mm256_loadu_si256((const __m256i*)k_bit_helper);
}
};
union index_t {
__m256i vec;
uint16_t val[8];
};
inline static void make4(const __m256i& data, const __m256i& mask, __m256i * values) {
index_t idx;
idx.vec = _mm256_and_si256(data, mask);
values[0] = _mm256_set_epi64x(iq2xs_grid[idx.val[ 3]], iq2xs_grid[idx.val[ 2]], iq2xs_grid[idx.val[ 1]], iq2xs_grid[idx.val[ 0]]);
values[1] = _mm256_set_epi64x(iq2xs_grid[idx.val[ 7]], iq2xs_grid[idx.val[ 6]], iq2xs_grid[idx.val[ 5]], iq2xs_grid[idx.val[ 4]]);
values[2] = _mm256_set_epi64x(iq2xs_grid[idx.val[11]], iq2xs_grid[idx.val[10]], iq2xs_grid[idx.val[ 9]], iq2xs_grid[idx.val[ 8]]);
values[3] = _mm256_set_epi64x(iq2xs_grid[idx.val[15]], iq2xs_grid[idx.val[14]], iq2xs_grid[idx.val[13]], iq2xs_grid[idx.val[12]]);
}
inline static void sign_value(const __m256i& sign_bits, const __m256i& shuffle, const __m256i& mask,
const __m256i& mone, __m256i& value) {
auto signs = _mm256_shuffle_epi8(sign_bits, shuffle);
signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, mask), mask);
value = _mm256_sign_epi8(value, _mm256_or_si256(signs, mone));
}
inline void sign_values(const __m256i& data, __m256i * values) const {
#ifdef HAVE_FANCY_SIMD
auto partial_bits = _mm256_cvtepi16_epi8(_mm256_srli_epi16(data, 9));
auto pcnt = _mm_popcnt_epi8(partial_bits);
auto full_bits = _mm_or_si128(partial_bits, _mm_slli_epi16(_mm_and_si128(pcnt, _mm_set1_epi8(1)), 7));
const __mmask32 * m32 = (const __mmask32 *)&full_bits;
auto zero = _mm256_setzero_si256();
values[0] = _mm256_mask_sub_epi8(values[0], m32[0], zero, values[0]);
values[1] = _mm256_mask_sub_epi8(values[1], m32[1], zero, values[1]);
values[2] = _mm256_mask_sub_epi8(values[2], m32[2], zero, values[2]);
values[3] = _mm256_mask_sub_epi8(values[3], m32[3], zero, values[3]);
#else
auto psb1 = _mm256_srli_epi16(data, 9);
auto psb2 = _mm256_srli_epi16(data, 13);
auto psbc = _mm256_xor_si256(psb1, psb2);
auto oddb = _mm256_shuffle_epi8(helper.bhelper, psbc);
auto full = _mm256_or_si256(psb1, oddb);
auto full_l = _mm256_castsi256_si128(full);
auto full_h = _mm256_extractf128_si256(full, 1);
auto full_1 = MM256_SET_M128I(full_l, full_l);
auto full_2 = MM256_SET_M128I(full_h, full_h);
sign_value(full_1, helper.shuff1, helper.mask, helper.mone, values[0]);
sign_value(full_1, helper.shuff2, helper.mask, helper.mone, values[1]);
sign_value(full_2, helper.shuff1, helper.mask, helper.mone, values[2]);
sign_value(full_2, helper.shuff2, helper.mask, helper.mone, values[3]);
#endif
}
inline void make4_signed(const uint16_t * qs, const __m256i& m511,
const __m256i& min_value, __m256i * values) const {
auto q2 = _mm256_loadu_si256((const __m256i *)qs);
make4(q2, m511, values);
sign_values(q2, values);
for (int k = 0; k < 4; ++k) values[k] = _mm256_add_epi8(values[k], min_value);
}
inline void make4(const uint16_t * qs, const __m256i& m511, __m256i * values, __m256i * q8) const {
auto q2 = _mm256_loadu_si256((const __m256i *)qs);
make4(q2, m511, values);
sign_values(q2, q8);
}
inline void prepare(int i, int j) {
make4_signed(x[i].qs + 16*j, idx_mask, min_value, bits.values);
}
inline void prepare(int i, int j, const Q8<1>& q8, __m256i * q8_quants) {
for (int k = 0; k < 4; ++k) q8_quants[k] = q8.load_quants(0, i, 4*j+k);
make4(x[i].qs + 16*j, idx_mask, bits.values, q8_quants);
}
constexpr static int minv = 43;
SimpleBits bits;
#ifndef HAVE_FANCY_SIMD
Helper helper;
#endif
const __m256i idx_mask = _mm256_set1_epi16(511);
const __m256i min_value = _mm256_set1_epi8(minv);
};
struct DequantizerIQ2XXS final : public BaseDequantizer<block_iq2_xxs> {
DequantizerIQ2XXS(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {}
constexpr static int num_blocks = 8;
union Data {
__m256i vec;
uint32_t val[8];
};
inline __m128i load_scales(int i) {
d = 0.125f * GGML_FP16_TO_FP32(x[i].d);
const uint16_t * a16 = (const uint16_t *)x[i].qs;
auto scales = _mm_srli_epi16(_mm_set_epi16(a16[31], a16[27], a16[23], a16[19], a16[15], a16[11], a16[7], a16[3]), 12);
return _mm_or_si128(_mm_slli_epi16(scales, 1), _mm_set1_epi16(1));
}
inline void new_block(int i, __m256i * scales) {
auto sc16 = load_scales(i);
scales[0] = MM256_SET_M128I(sc16, sc16);
}
inline float new_block(int i, __m256i * scales, __m256i& mins) {
auto sc16 = load_scales(i);
mins = scb.shuffle(sc16);
scales[0] = MM256_SET_M128I(sc16, sc16);
return -d*minv;
}
inline static void make4(const uint32_t * aux32, __m256i * values) {
const uint8_t * aux8 = (const uint8_t *)aux32;
values[0] = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[ 1]], iq2xxs_grid[aux8[ 0]]);
values[1] = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[ 9]], iq2xxs_grid[aux8[ 8]]);
values[2] = _mm256_set_epi64x(iq2xxs_grid[aux8[19]], iq2xxs_grid[aux8[18]], iq2xxs_grid[aux8[17]], iq2xxs_grid[aux8[16]]);
values[3] = _mm256_set_epi64x(iq2xxs_grid[aux8[27]], iq2xxs_grid[aux8[26]], iq2xxs_grid[aux8[25]], iq2xxs_grid[aux8[24]]);
}
IQK_ALWAYS_INLINE void sign_values(const uint32_t * aux32, __m256i * values) const {
#ifdef HAVE_FANCY_SIMD
esh.sign_2_values(MM256_SET_M128I(_mm_set1_epi32(aux32[3]), _mm_set1_epi32(aux32[1])), values+0);
esh.sign_2_values(MM256_SET_M128I(_mm_set1_epi32(aux32[7]), _mm_set1_epi32(aux32[5])), values+2);
#else
esh.sign_value(aux32[1], values[0]);
esh.sign_value(aux32[3], values[1]);
esh.sign_value(aux32[5], values[2]);
esh.sign_value(aux32[7], values[3]);
#endif
}
inline void make4_signed(const uint32_t * aux32, const __m256i& min_value, __m256i * values) const {
make4(aux32, values);
sign_values(aux32, values);
for (int k = 0; k < 4; ++k) values[k] = _mm256_add_epi8(values[k], min_value);
}
inline void make4(const uint32_t * aux32, __m256i * values, __m256i * q8) const {
make4(aux32, values);
sign_values(aux32, q8);
}
inline void prepare(int i, int j) {
Data data; data.vec = _mm256_loadu_si256((const __m256i *)x[i].qs + j);
make4_signed(data.val, min_value, bits.values);
}
inline void prepare(int i, int j, const Q8<1>& q8, __m256i * q8_quants) {
for (int k = 0; k < 4; ++k) q8_quants[k] = q8.load_quants(0, i, 4*j+k);
Data data; data.vec = _mm256_loadu_si256((const __m256i *)x[i].qs + j);
make4(data.val, bits.values, q8_quants);
}
constexpr static int minv = 43;
SimpleBits bits;
Scales8KBase scb;
EvenSignHelper esh;
const __m256i min_value = _mm256_set1_epi8(minv);
const __m256i shuffle = _mm256_set_epi32(7, 5, 3, 1, 7, 5, 3, 1);
};
//
// ============================== Legacy quants
//
struct DotHelper {
const __m256i m1 = _mm256_set1_epi16(1);
#if defined(__AVX512VNNI__) && defined(__AVX512VL__)
inline __m256i dot(__m256i x, __m256i y) const {
return _mm256_dpbusd_epi32(_mm256_setzero_si256(), x, y);
}
#else
inline __m256i dot(__m256i x, __m256i y) const {
return _mm256_madd_epi16(m1, _mm256_maddubs_epi16(x, y));
}
#endif
};
struct SignedDot {
DotHelper helper;
inline __m256i compute(__m256i x, __m256i y) const {
return helper.dot(_mm256_sign_epi8(x, x), _mm256_sign_epi8(y, x));
}
};
struct UnsignedDot {
DotHelper helper;
inline __m256i compute(__m256i x, __m256i y) const {
return helper.dot(x, y);
}
};
template <typename Q8, typename Q8x4, typename Dot, bool can_pack = true> struct Sum4 {
Dot dot;
inline __m256i compute(const __m256i * qx, const Q8 * y) const {
const Q8x4 * y4 = (const Q8x4 *)y;
const __m256i p0 = dot.compute(qx[0], _mm256_loadu_si256((const __m256i *)y4->qs+0)); // 8x block 0
const __m256i p1 = dot.compute(qx[1], _mm256_loadu_si256((const __m256i *)y4->qs+1)); // 8x block 1
const __m256i p2 = dot.compute(qx[2], _mm256_loadu_si256((const __m256i *)y4->qs+2)); // 8x block 2
const __m256i p3 = dot.compute(qx[3], _mm256_loadu_si256((const __m256i *)y4->qs+3)); // 8x block 3
if constexpr (can_pack) {
const __m256i p01 = _mm256_madd_epi16(dot.helper.m1, _mm256_packs_epi32(p0, p1)); // 0,0, 1,1, 0,0, 1,1
const __m256i p23 = _mm256_madd_epi16(dot.helper.m1, _mm256_packs_epi32(p2, p3)); // 2,2, 3,3, 2,2, 3,3
return _mm256_madd_epi16(dot.helper.m1, _mm256_packs_epi32(p01, p23)); // 0,1,2,3, 0,1,2,3
} else {
// Note to myself: this is much faster than using _mm256_hadd_epi32()
auto p01 = _mm256_add_epi32(_mm256_unpacklo_epi32(p0, p1), _mm256_unpackhi_epi32(p0, p1)); // 0,1, 0,1, 0,1, 0,1
auto p23 = _mm256_add_epi32(_mm256_unpacklo_epi32(p2, p3), _mm256_unpackhi_epi32(p2, p3)); // 2,3, 2,3, 2,3, 2,3
return _mm256_add_epi32(_mm256_unpacklo_epi64(p01, p23), _mm256_unpackhi_epi64(p01, p23)); // 0,1,2,3, 0,1,2,3
}
}
};
// If I use this, it negatively impacts q4_1/q5_1 performance.
//template <typename Q8, typename Q8x4, typename Dot> struct Sum4 {
// Dot dot;
// inline __m256i compute(const __m256i * qx, const Q8 * y) const {
// const Q8x4 * y4 = (const Q8x4 *)y;
// const __m256i p0 = dot.compute(qx[0], _mm256_loadu_si256((const __m256i *)y4->qs+0)); // 8x block 0
// const __m256i p1 = dot.compute(qx[1], _mm256_loadu_si256((const __m256i *)y4->qs+1)); // 8x block 1
// const __m256i p2 = dot.compute(qx[2], _mm256_loadu_si256((const __m256i *)y4->qs+2)); // 8x block 2
// const __m256i p3 = dot.compute(qx[3], _mm256_loadu_si256((const __m256i *)y4->qs+3)); // 8x block 3
// auto p01 = _mm256_add_epi32(_mm256_unpacklo_epi32(p0, p1), _mm256_unpackhi_epi32(p0, p1)); // 0,1, 0,1, 0,1, 0,1
// auto p23 = _mm256_add_epi32(_mm256_unpacklo_epi32(p2, p3), _mm256_unpackhi_epi32(p2, p3)); // 2,3, 2,3, 2,3, 2,3
// return _mm256_add_epi32(_mm256_unpacklo_epi64(p01, p23), _mm256_unpackhi_epi64(p01, p23)); // 0,1,2,3, 0,1,2,3
// }
//};
struct ScaleHelperQ8_0 {
inline __m128 prepare4(const block_q8_0 * y) {
const block_q8_0_x4 * y4 = (const block_q8_0_x4 *)y;
return _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)y4->d));
}
inline __m128 prepare4(__m128 other_scales, const block_q8_0 * y) {
return _mm_mul_ps(other_scales, prepare4(y));
}
template <typename Q> inline float prepare1(const Q * y) const { return GGML_FP16_TO_FP32(y->d); }
template <typename Q> inline float prepare1(float d, const Q * y) const { return d*prepare1(y); }
};
struct ScaleHelperQ_0 {
ggml_half scales8[4];
template <typename Q>
inline __m128 prepare4(const Q * y) {
for (int j = 0; j < 4; ++j) scales8[j] = y[j].d;
return _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)scales8));
}
template <typename Q>
inline __m128 prepare4(__m128 other_scales, const Q * y) {
return _mm_mul_ps(other_scales, prepare4<Q>(y));
}
template <typename Q> inline float prepare1(const Q * y) const { return GGML_FP16_TO_FP32(y->d); }
template <typename Q> inline float prepare1(float d, const Q * y) const { return d*prepare1(y); }
};
struct ScaleHelperQ8_1 {
template <typename Q>
inline __m256 prepare4(const Q * y) {
const block_q8_1_x4 * y4 = (const block_q8_1_x4 *)y;
return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)y4->d));
}
template <typename Q>
inline __m256 prepare4(__m256 other_scales, const Q * y) {
return _mm256_mul_ps(other_scales, prepare4<Q>(y));
}
template <typename Q> inline std::pair<float, float> prepare1(const Q * y) const {
return std::make_pair(GGML_FP16_TO_FP32(y->d), GGML_FP16_TO_FP32(y->m));
}
template <typename Q> inline std::pair<float, float> prepare1(const std::pair<float, float>& dm, const Q * y) const {
return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->m));
}
std::pair<float, float> inline prepare1(const std::pair<float, float>& dm, const block_q8_1 * y) const {
return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->s));
}
};
struct ScaleHelperQ_1 {
uint32_t scales8[4];
const __m128i shuffle = _mm_set_epi16(0x0f0e, 0x0b0a, 0x0706, 0x0302, 0x0d0c, 0x0908, 0x0504, 0x0100);
template <typename Q>
inline __m256 prepare4(const Q * y) {
for (int j = 0; j < 4; ++j) {
// it is slightly faster to directly dereference (const uint32 *)&y[j].d, but some compilers
// complain that this breaks strict-aliasing rules.
memcpy(scales8 + j, &y[j].d, sizeof(uint32_t));
}
return _mm256_cvtph_ps(_mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)scales8), shuffle));
}
template <typename Q>
inline __m256 prepare4(__m256 other_scales, const Q * y) {
return _mm256_mul_ps(other_scales, prepare4<Q>(y));
}
template <typename Q> inline std::pair<float, float> prepare1(const Q * y) const {
return std::make_pair(GGML_FP16_TO_FP32(y->d), GGML_FP16_TO_FP32(y->m));
}
template <typename Q> inline std::pair<float, float> prepare1(const std::pair<float, float>& dm, const Q * y) const {
return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->m));
}
std::pair<float, float> inline prepare1(const std::pair<float, float>& dm, const block_q8_1 * y) const {
return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->s));
}
};
struct MinusType0 {
inline __m256 compute(__m128 d, int) const { return _mm256_set_m128(d, d); }
inline float compute(float d, int) const { return d; }
inline float result(__m256 acc, int) const { return hsum_float_8(acc); }
};
template <int nrc_y> struct MinusType1 {
__m128 accm[nrc_y];
MinusType1() { for (int iy = 0; iy < nrc_y; ++iy) accm[iy] = _mm_setzero_ps(); }
inline __m256 compute(__m256 dm, int iy) {
const __m128 d = _mm256_castps256_ps128(dm);
const __m128 m = _mm256_extractf128_ps(dm, 1);
accm[iy] = _mm_add_ps(accm[iy], m);
return _mm256_set_m128(d, d);
}
inline float compute(const std::pair<float, float>& dm, int iy) {
accm[iy] = _mm_add_ps(accm[iy], _mm_set1_ps(dm.second*0.25f));
return dm.first;
}
inline float result(__m256 acc, int iy) const {
const __m128 sum = _mm_add_ps(_mm256_castps256_ps128(acc), _mm256_extractf128_ps(acc, 1));
return hsum_float_4(_mm_add_ps(sum, accm[iy]));
}
};
template <typename Minus, int nrc_y, bool is_multiple_of_4> struct AccumT {
__m256 acc[nrc_y];
Minus accm;
AccumT() { for (int iy = 0; iy < nrc_y; ++iy) acc[iy] = _mm256_setzero_ps(); }
template <typename Unpacker, typename Scales, typename Sum, typename Q8>
inline void compute(int nb, Unpacker& unp, Scales& scales, Sum& sum, const Q8 ** y, const DataInfo& info, int ix) {
auto qx = unp.quants();
__m256 dall[nrc_y];
for (int i = 0; i < nb/4; ++i) {
auto other_scales = unp.set_block_4(i);
for (int iy = 0; iy < nrc_y; ++iy) {
auto s12 = scales.prepare4(other_scales, y[iy] + 4*i);
dall[iy] = accm.compute(s12, iy);
}
for (int iy = 0; iy < nrc_y; ++iy) {
auto pall = sum.compute(qx, y[iy] + 4*i);
acc[iy] = _mm256_fmadd_ps(dall[iy], _mm256_cvtepi32_ps(pall), acc[iy]);
}
}
if (!is_multiple_of_4) {
for (int i = 4*(nb/4); i < nb; ++i) {
auto other_scales = unp.set_block(i);
for (int iy = 0; iy < nrc_y; ++iy) {
auto s12 = scales.prepare1(other_scales, y[iy] + i);
auto d = accm.compute(s12, iy);
const __m256i p0 = sum.dot.compute(qx[0], _mm256_loadu_si256((const __m256i *)y[iy][i].qs));
acc[iy] = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(p0), acc[iy]);
}
}
}
for (int iy = 0; iy < nrc_y; ++iy) {
info.store(ix, iy, accm.result(acc[iy], iy));
//s[iy*bs] = accm.result(acc[iy], iy);
}
}
};
template <int nrc_y, bool is_multiple_of_4>
using AccumType0 = AccumT<MinusType0, nrc_y, is_multiple_of_4>;
template <int nrc_y, bool is_multiple_of_4>
using AccumType1 = AccumT<MinusType1<nrc_y>, nrc_y, is_multiple_of_4>;
using Sum4Type0 = Sum4<block_q8_0, block_q8_0_x4, SignedDot>;
using Sum4Type1 = Sum4<block_q8_1, block_q8_1_x4, UnsignedDot>;
using Sum4TypeQ80 = Sum4<block_q8_0, block_q8_0_x4, SignedDot, false>;
template <typename Unpacker, typename AccumType, typename Scales, typename Q8, int nrc_y>
void mul_mat_qX_q8_Helper(int nb, const void * vx, size_t bx, const DataInfo& info, const Q8 ** y, int nrc_x) {
Unpacker unp(vx, bx);
typename Unpacker::Sum4T sum4;
Scales scales;
for (int ix = 0; ix < nrc_x; ++ix) {
unp.set_row(ix);
AccumType accum;
accum.compute(nb, unp, scales, sum4, y, info, ix);
}
}
template <typename Unpacker, int nrc_y>
void mul_mat_qX_0_q8_0_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
assert(n%Unpacker::block_size() == 0);
Q8<nrc_y, block_q8_0> q8(info);
int nb = n/Unpacker::block_size();
if (nb%4 == 0) {
mul_mat_qX_q8_Helper<Unpacker, AccumType0<nrc_y, true>, ScaleHelperQ8_0, block_q8_0, nrc_y>(
nb, vx, bx, info, q8.y, nrc_x
);
} else {
mul_mat_qX_q8_Helper<Unpacker, AccumType0<nrc_y, false>, ScaleHelperQ8_0, block_q8_0, nrc_y>(
nb, vx, bx, info, q8.y, nrc_x
);
}
}
template <typename Unpacker, int nrc_y>
void mul_mat_qX_1_q8_1_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
assert(n%Unpacker::block_size() == 0);
Q8<nrc_y, block_q8_1> q8(info);
int nb = n/Unpacker::block_size();
if (nb%4 == 0) {
mul_mat_qX_q8_Helper<Unpacker, AccumType1<nrc_y, true>, ScaleHelperQ8_1, block_q8_1, nrc_y>(
nb, vx, bx, info, q8.y, nrc_x
);
} else {
mul_mat_qX_q8_Helper<Unpacker, AccumType1<nrc_y, false>, ScaleHelperQ8_1, block_q8_1, nrc_y>(
nb, vx, bx, info, q8.y, nrc_x
);
}
}
struct Dequantizer4bit {
const __m256i m4 = _mm256_set1_epi8(0xf);
inline __m256i dequant(const uint8_t * qs) const {
const __m128i aux128 = _mm_loadu_si128((const __m128i *)qs);
return _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(aux128, 4), aux128), m4);
}
};
struct Q8_0_Dequantizer {
inline __m256i dequant(const block_q8_0 * x) const {
return _mm256_loadu_si256((const __m256i *)x->qs);
}
};
struct Q4_0_Dequantizer {
Dequantizer4bit b4;
const __m256i m8 = _mm256_set1_epi8(-8);
inline __m256i dequant(const block_q4_0 * x) const {
return _mm256_add_epi8(b4.dequant(x->qs), m8);
}
};
struct IQ4_NL_Dequantizer {
Dequantizer4bit b4;
const __m256i values = load_values();
inline __m256i dequant(const block_iq4_nl * x) const {
return _mm256_shuffle_epi8(values, b4.dequant(x->qs));
}
static __m256i load_values() {
static const int8_t iq4nl_values[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
auto aux = _mm_loadu_si128((const __m128i *)iq4nl_values);
return MM256_SET_M128I(aux, aux);
}
};
struct Q4_1_Dequantizer {
Dequantizer4bit b4;
inline __m256i dequant(const block_q4_1 * x) const {
return b4.dequant(x->qs);
}
};
struct HBitDequantizer {
const __m256i shuffle = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000);
const __m256i mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
const __m256i minus1 = _mm256_set1_epi64x(-1);
inline __m256i to_bytes(const uint8_t * bits) const {
// Note: Data in all ggml quants is at least 2-byte aligned.
// => we can cast to uint16_t and use or on two consecutive entries
// which is faster than memcpy
const uint16_t * aux16 = (const uint16_t *)bits;
const uint32_t aux32 = aux16[0] | (aux16[1] << 16);
//uint32_t aux32; memcpy(&aux32, bits, sizeof(uint32_t));
__m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(aux32), shuffle);
bytes = _mm256_or_si256(bytes, mask);
return _mm256_cmpeq_epi8(bytes, minus1);
}
};
struct Q5_0_Dequantizer {
Dequantizer4bit b4;
HBitDequantizer hbit;
const __m256i mh = _mm256_set1_epi8((char)0xF0);
inline __m256i dequant(const block_q5_0 * x) const {
const __m256i vqh = _mm256_andnot_si256(hbit.to_bytes(x->qh), mh);
return _mm256_or_si256(b4.dequant(x->qs), vqh);
}
};
struct Q5_1_Dequantizer {
Dequantizer4bit b4;
HBitDequantizer hbit;
const __m256i mh = _mm256_set1_epi8(0x10);
inline __m256i dequant(const block_q5_1 * x) const {
const __m256i vqh = _mm256_and_si256(hbit.to_bytes(x->qh), mh);
return _mm256_or_si256(b4.dequant(x->qs), vqh);
}
};
template <typename Q, typename Scales, typename Dequantizer>
struct Q_Unpacker {
Q_Unpacker(const void * vx, size_t bx) : cx_0((const char *)vx), x((const Q*)cx_0), bx(bx) {}
const char * cx_0;
const Q * x;
size_t bx;
Scales scales;
Dequantizer deq;
__m256i qx[4];
inline const __m256i* quants() const { return qx; }
inline void set_row(int ix) { x = (const Q*)(cx_0 + ix*bx); }
inline auto set_block_4(int i) {
for (int j = 0; j < 4; ++j) {
qx[j] = deq.dequant(x + 4*i + j);
}
return scales.prepare4(x + 4*i);
}
inline auto set_block(int i) {
qx[0] = deq.dequant(x + i);
return scales.prepare1(x + i);
}
};
struct Q8_0_Unpacker final : public Q_Unpacker<block_q8_0, ScaleHelperQ_0, Q8_0_Dequantizer> {
Q8_0_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {}
using Sum4T = Sum4TypeQ80;
inline static int block_size() { return QK8_0; }
};
struct Q4_0_Unpacker final : public Q_Unpacker<block_q4_0, ScaleHelperQ_0, Q4_0_Dequantizer> {
Q4_0_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {}
using Sum4T = Sum4TypeQ80;
inline static int block_size() { return QK4_0; }
};
struct IQ4_NL_Unpacker final : public Q_Unpacker<block_iq4_nl, ScaleHelperQ_0, IQ4_NL_Dequantizer> {
IQ4_NL_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {}
using Sum4T = Sum4TypeQ80;
inline static int block_size() { return QK4_NL; }
};
struct Q5_0_Unpacker final : public Q_Unpacker<block_q5_0, ScaleHelperQ_0, Q5_0_Dequantizer> {
Q5_0_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {}
using Sum4T = Sum4TypeQ80;
inline static int block_size() { return QK5_0; }
};
struct Q4_1_Unpacker final : public Q_Unpacker<block_q4_1, ScaleHelperQ_1, Q4_1_Dequantizer> {
Q4_1_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {}
using Sum4T = Sum4Type1;
inline static int block_size() { return QK4_1; }
};
struct Q5_1_Unpacker final : public Q_Unpacker<block_q5_1, ScaleHelperQ_1, Q5_1_Dequantizer> {
Q5_1_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {}
using Sum4T = Sum4Type1;
inline static int block_size() { return QK4_1; }
};
// float matrices - we handle f16 and f32, but only to f32 result
struct QFBase {
#ifdef __AVX512F__
constexpr static int k_step = 16;
using Data = __m512;
using Acc = __m512;
static inline Data load(const ggml_half * x) { return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)x)); }
static inline Data load(const float * x) { return _mm512_loadu_ps(x); }
static inline Acc acc(Acc prev, const Data& y, const Data& x) {
return _mm512_fmadd_ps(y, x, prev);
}
static inline Acc acc_first(const Data& y, const Data& x) {
return _mm512_mul_ps(y, x);
}
static inline float hsum(Acc acc) {
return _mm512_reduce_add_ps(acc);
}
#else
constexpr static int k_step = 8;
using Data = __m256;
using Acc = __m256;
static inline Data load(const ggml_half * x) { return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)x)); }
static inline Data load(const float * x) { return _mm256_loadu_ps(x); }
static inline Acc acc(Acc prev, const Data& y, const Data& x) {
return _mm256_fmadd_ps(y, x, prev);
}
static inline Acc acc_first(const Data& y, const Data& x) {
return _mm256_mul_ps(y, x);
}
static inline float hsum(Acc acc) {
return hsum_float_8(acc);
}
#endif
};
template <typename Float, int nrc_in> struct QFT final : public QFBase {
constexpr static int nrc = nrc_in;
QFT(const DataInfo& info) {
for (int iy = 0; iy < nrc; ++iy) y[iy] = (const Float *)info.src1_row(iy);
}
QFT(const char * cx, size_t bx) {
for (int iy = 0; iy < nrc; ++iy) y[iy] = (const Float *)(cx + iy*bx);
}
IQK_ALWAYS_INLINE Data load1(int iy, int i) const { return load(y[iy] + k_step*i); }
const Float * y[nrc];
};
template <typename Qy, typename Qx>
IQK_NOINLINE void mul_mat_Qx_Qy_MxN(int n, const char * cx, size_t bx, int ix0, const DataInfo& info) {
assert(n%QFBase::k_step == 0);
int nb = n/QFBase::k_step;
Qy y(info);
Qx x(cx + ix0*bx, bx);
QFBase::Data xv[Qx::nrc];
QFBase::Acc acc[Qx::nrc*Qy::nrc];
auto yv = y.load1(0, 0);
for (int ix = 0; ix < Qx::nrc; ++ix) {
xv[ix] = x.load1(ix, 0);
acc[ix] = QFBase::acc_first(yv, xv[ix]);
}
for (int iy = 1; iy < Qy::nrc; ++iy) {
yv = y.load1(iy, 0);
for (int ix = 0; ix < Qx::nrc; ++ix) acc[Qx::nrc*iy + ix] = QFBase::acc_first(yv, xv[ix]);
}
for (int i = 1; i < nb; ++i) {
yv = y.load1(0, i);
for (int ix = 0; ix < Qx::nrc; ++ix) {
xv[ix] = x.load1(ix, i);
acc[ix] = QFBase::acc(acc[ix], yv, xv[ix]);
}
for (int iy = 1; iy < Qy::nrc; ++iy) {
yv = y.load1(iy, i);
for (int ix = 0; ix < Qx::nrc; ++ix) acc[Qx::nrc*iy + ix] = QFBase::acc(acc[Qx::nrc*iy + ix], yv, xv[ix]);
}
}
for (int iy = 0; iy < Qy::nrc; ++iy) for (int ix = 0; ix < Qx::nrc; ++ix) info.store(ix0+ix, iy, QFBase::hsum(acc[Qx::nrc*iy+ix]));
}
// This will handle any of f16 x f32, f32 x f16, f16 x f16, f32 x f32, with computations done
// in f32 (i.e., f16 is first converted to f32). It is easy to extend to computations done in
// f16, but I don't have a CPU capable of f16 vector arithmetic, so not doing it for now.
template <int nrc_y, typename FloatX, typename FloatY>
void mul_mat_fX_fY_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
assert(n%QFBase::k_step == 0);
#ifdef __AVX512F__
constexpr int k_nx = 5;
#else
constexpr int k_nx = 2;
#endif
const char * cx = (const char *)vx;
for (int ix = 0; ix < nrc_x/k_nx; ++ix) {
mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, k_nx>>(n, cx, bx, ix*k_nx, info);
}
int last_x = k_nx*(nrc_x/k_nx);
if (last_x == nrc_x) return;
int nx = nrc_x - last_x;
switch (nx) {
case 1: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 1>>(n, cx, bx, last_x, info); break;
#ifdef __AVX512F__
case 2: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 2>>(n, cx, bx, last_x, info); break;
case 3: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 3>>(n, cx, bx, last_x, info); break;
case 4: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 4>>(n, cx, bx, last_x, info); break;
#endif
}
}
//
// Tiled Q8_0 x Q8_0 implementation. Not used as the templated legacy quant implementation
// above is faster. Left behind so we remember we tried.
//
template <int nrc> struct Q80 {
constexpr static int nrc_y = nrc;
Q80(const DataInfo& info) {
for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const block_q8_0 *)info.src1_row(iy);
}
IQK_ALWAYS_INLINE __m256i load1(int iy, int i) const { return _mm256_loadu_si256((const __m256i *)y[iy][i].qs); }
IQK_ALWAYS_INLINE float scale(int iy, int i) const { return GGML_FP16_TO_FP32(y[iy][i].d); }
const block_q8_0 * y[nrc_y];
};
inline __m256i mul_q80(__m256i x, __m256i y) {
auto ux = _mm256_sign_epi8(x, x);
#ifdef HAVE_FANCY_SIMD
return _mm256_dpbusd_epi32(_mm256_setzero_si256(), ux, _mm256_sign_epi8(y, x));
#else
return _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_maddubs_epi16(ux, _mm256_sign_epi8(y, x)));
#endif
}
template <int nrc_y>
void mul_mat_q80_q80_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
assert(n%QK8_0 == 0);
constexpr int k_nx = 4;
int nb = n/QK8_0;
Q80<nrc_y> q8(info);
const block_q8_0 * x[k_nx];
float ds[k_nx];
__m256 acc[k_nx*nrc_y];
__m256i xv[k_nx];
for (int ix = 0; ix < nrc_x/k_nx; ++ix) {
int ix0 = k_nx*ix;
for (int kx = 0; kx < k_nx; ++kx) {
x[kx] = (const block_q8_0 *)((const char *)vx + (ix0 + kx)*bx);
ds[kx] = GGML_FP16_TO_FP32(x[kx][0].d);
xv[kx] = _mm256_loadu_si256((const __m256i *)x[kx][0].qs);
}
for (int iy = 0; iy < nrc_y; ++iy) {
auto yv = q8.load1(iy, 0);
float d = q8.scale(iy, 0);
for (int kx = 0; kx < k_nx; ++kx) {
auto dot = mul_q80(yv, xv[kx]);
acc[k_nx*iy + kx] = _mm256_mul_ps(_mm256_set1_ps(ds[kx]*d), _mm256_cvtepi32_ps(dot));
}
}
for (int i = 1; i < nb; ++i) {
for (int kx = 0; kx < k_nx; ++kx) {
ds[kx] = GGML_FP16_TO_FP32(x[kx][i].d);
xv[kx] = _mm256_loadu_si256((const __m256i *)x[kx][i].qs);
}
for (int iy = 0; iy < nrc_y; ++iy) {
auto yv = q8.load1(iy, i);
float d = q8.scale(iy, i);
for (int kx = 0; kx < k_nx; ++kx) {
auto dot = mul_q80(yv, xv[kx]);
acc[k_nx*iy + kx] = _mm256_fmadd_ps(_mm256_set1_ps(ds[kx]*d), _mm256_cvtepi32_ps(dot), acc[k_nx*iy + kx]);
}
}
}
for (int iy = 0; iy < nrc_y; ++iy) {
for (int kx = 0; kx < k_nx; ++kx) info.store(ix0+kx, iy, hsum_float_8(acc[k_nx*iy+kx]));
}
}
int last_x = k_nx*(nrc_x/k_nx);
if (last_x == nrc_x) return;
// TODO: handle remaining rows
}
template <typename Dequantizer> void MulMat::set_functions(MulMat& m) {
if constexpr (std::is_same_v<Dequantizer, Q4_0_Unpacker> || std::is_same_v<Dequantizer, Q5_0_Unpacker> ||
std::is_same_v<Dequantizer, Q8_0_Unpacker> || std::is_same_v<Dequantizer, IQ4_NL_Unpacker>) {
m.funcs[0] = mul_mat_qX_0_q8_0_T<Dequantizer, 1>;
m.funcs[1] = mul_mat_qX_0_q8_0_T<Dequantizer, 2>;
m.funcs[2] = mul_mat_qX_0_q8_0_T<Dequantizer, 3>;
m.funcs[3] = mul_mat_qX_0_q8_0_T<Dequantizer, 4>;
m.funcs[4] = mul_mat_qX_0_q8_0_T<Dequantizer, 5>;
m.funcs[5] = mul_mat_qX_0_q8_0_T<Dequantizer, 6>;
m.funcs[6] = mul_mat_qX_0_q8_0_T<Dequantizer, 7>;
m.funcs[7] = mul_mat_qX_0_q8_0_T<Dequantizer, 8>;
}
else if constexpr (std::is_same_v<Dequantizer, Q4_1_Unpacker> || std::is_same_v<Dequantizer, Q5_1_Unpacker>) {
m.funcs[0] = mul_mat_qX_1_q8_1_T<Dequantizer, 1>;
m.funcs[1] = mul_mat_qX_1_q8_1_T<Dequantizer, 2>;
m.funcs[2] = mul_mat_qX_1_q8_1_T<Dequantizer, 3>;
m.funcs[3] = mul_mat_qX_1_q8_1_T<Dequantizer, 4>;
m.funcs[4] = mul_mat_qX_1_q8_1_T<Dequantizer, 5>;
m.funcs[5] = mul_mat_qX_1_q8_1_T<Dequantizer, 6>;
m.funcs[6] = mul_mat_qX_1_q8_1_T<Dequantizer, 7>;
m.funcs[7] = mul_mat_qX_1_q8_1_T<Dequantizer, 8>;
}
else if constexpr (std::is_same_v<Dequantizer, DequantizerIQ3S> || std::is_same_v<Dequantizer, DequantizerIQ3XXS> ||
std::is_same_v<Dequantizer, DequantizerIQ2S> || std::is_same_v<Dequantizer, DequantizerIQ2XS> ||
std::is_same_v<Dequantizer, DequantizerIQ2XXS>) {
m.funcs[0] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 1>;
m.funcs[1] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 2>;
m.funcs[2] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 3>;
m.funcs[3] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 4>;
m.funcs[4] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 5>;
m.funcs[5] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 6>;
m.funcs[6] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 7>;
m.funcs[7] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 8>;
}
else {
#ifdef HAVE_FANCY_SIMD
m.funcs[0] = mul_mat_qX_K_q8_K_AVX512_1<Dequantizer>;
m.funcs[1] = mul_mat_qX_K_q8_K_AVX512<Dequantizer, 2>;
m.funcs[2] = mul_mat_qX_K_q8_K_AVX512<Dequantizer, 3>;
m.funcs[3] = mul_mat_qX_K_q8_K_AVX512<Dequantizer, 4>;
m.funcs[4] = mul_mat_qX_K_q8_K_AVX512<Dequantizer, 5>;
m.funcs[5] = mul_mat_qX_K_q8_K_AVX512<Dequantizer, 6>;
m.funcs[6] = mul_mat_qX_K_q8_K_AVX512<Dequantizer, 7>;
m.funcs[7] = mul_mat_qX_K_q8_K_AVX512<Dequantizer, 8>;
#else
if constexpr (std::is_same_v<Dequantizer, DequantizerQ2K> ||
std::is_same_v<Dequantizer, DequantizerQ3K> ||
std::is_same_v<Dequantizer, DequantizerQ6K>) {
m.funcs[0] = mul_mat_qY_K_q8_K_T<Dequantizer, 1>;
m.funcs[1] = mul_mat_qY_K_q8_K_T<Dequantizer, 2>;
m.funcs[2] = mul_mat_qY_K_q8_K_T<Dequantizer, 3>;
m.funcs[3] = mul_mat_qY_K_q8_K_T<Dequantizer, 4>;
m.funcs[4] = mul_mat_qY_K_q8_K_T<Dequantizer, 5>;
m.funcs[5] = mul_mat_qY_K_q8_K_T<Dequantizer, 6>;
m.funcs[6] = mul_mat_qY_K_q8_K_T<Dequantizer, 7>;
m.funcs[7] = mul_mat_qY_K_q8_K_T<Dequantizer, 8>;
} else {
m.funcs[0] = mul_mat_qX_K_q8_K_T<Dequantizer, 1>;
m.funcs[1] = mul_mat_qX_K_q8_K_T<Dequantizer, 2>;
m.funcs[2] = mul_mat_qX_K_q8_K_T<Dequantizer, 3>;
m.funcs[3] = mul_mat_qX_K_q8_K_T<Dequantizer, 4>;
m.funcs[4] = mul_mat_qX_K_q8_K_T<Dequantizer, 5>;
m.funcs[5] = mul_mat_qX_K_q8_K_T<Dequantizer, 6>;
m.funcs[6] = mul_mat_qX_K_q8_K_T<Dequantizer, 7>;
m.funcs[7] = mul_mat_qX_K_q8_K_T<Dequantizer, 8>;
}
#endif
}
}
template <typename FloatX, typename FloatY>
void set_mul_mat_f(MulMat& mm) {
for (auto& f : mm.funcs) f = nullptr;
mm.funcs[0] = mul_mat_fX_fY_T<1, FloatX, FloatY>;
mm.funcs[1] = mul_mat_fX_fY_T<2, FloatX, FloatY>;
mm.funcs[2] = mul_mat_fX_fY_T<3, FloatX, FloatY>;
mm.funcs[3] = mul_mat_fX_fY_T<4, FloatX, FloatY>;
mm.funcs[4] = mul_mat_fX_fY_T<5, FloatX, FloatY>;
#ifndef __AVX512F__
mm.funcs[5] = mul_mat_fX_fY_T<6, FloatX, FloatY>;
#endif
}
bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny) {
(void)Ny;
if (typeA == GGML_TYPE_F16 || typeA == GGML_TYPE_F32) {
if (ne00 % QFBase::k_step) return false;
}
if (typeA == GGML_TYPE_F16) {
switch (typeB) {
case GGML_TYPE_F16: set_mul_mat_f<ggml_half, ggml_half>(mm); break;
case GGML_TYPE_F32: set_mul_mat_f<ggml_half, float>(mm); break;
default: return false;
}
return true;
}
if (typeA == GGML_TYPE_F32) {
switch (typeB) {
case GGML_TYPE_F16: set_mul_mat_f<float, ggml_half>(mm); break;
case GGML_TYPE_F32: set_mul_mat_f<float, float>(mm); break;
default: return false;
}
return true;
}
auto expected_typeB = GGML_TYPE_Q8_K;
switch (typeA) {
case GGML_TYPE_Q2_K:
assert (ne00 % QK_K == 0);
MulMat::set_functions<DequantizerQ2K>(mm);
break;
case GGML_TYPE_Q3_K:
assert (ne00 % QK_K == 0);
MulMat::set_functions<DequantizerQ3K>(mm);
break;
case GGML_TYPE_Q4_K:
assert (ne00 % QK_K == 0);
MulMat::set_functions<DequantizerQ4K>(mm);
break;
case GGML_TYPE_Q5_K:
assert (ne00 % QK_K == 0);
MulMat::set_functions<DequantizerQ5K>(mm);
break;
case GGML_TYPE_Q6_K:
assert (ne00 % QK_K == 0);
MulMat::set_functions<DequantizerQ6K>(mm);
break;
case GGML_TYPE_IQ4_XS:
assert (ne00 % QK_K == 0);
MulMat::set_functions<DequantizerIQ4XS>(mm);
break;
case GGML_TYPE_IQ3_S:
assert (ne00 % QK_K == 0);
MulMat::set_functions<DequantizerIQ3S>(mm);
break;
case GGML_TYPE_IQ3_XXS:
assert (ne00 % QK_K == 0);
MulMat::set_functions<DequantizerIQ3XXS>(mm);
break;
case GGML_TYPE_IQ2_S:
assert (ne00 % QK_K == 0);
MulMat::set_functions<DequantizerIQ2S>(mm);
break;
case GGML_TYPE_IQ2_XS:
assert (ne00 % QK_K == 0);
MulMat::set_functions<DequantizerIQ2XS>(mm);
break;
case GGML_TYPE_IQ2_XXS:
assert (ne00 % QK_K == 0);
MulMat::set_functions<DequantizerIQ2XXS>(mm);
break;
case GGML_TYPE_IQ1_BN:
assert (ne00 % QK_IQ1BN == 0);
mm.funcs[0] = mul_mat_iq1bn_q8_K64<1>;
mm.funcs[1] = mul_mat_iq1bn_q8_K64<2>;
mm.funcs[2] = mul_mat_iq1bn_q8_K64<3>;
mm.funcs[3] = mul_mat_iq1bn_q8_K64<4>;
mm.funcs[4] = mul_mat_iq1bn_q8_K64<5>;
mm.funcs[5] = mul_mat_iq1bn_q8_K64<6>;
mm.funcs[6] = mul_mat_iq1bn_q8_K64<7>;
mm.funcs[7] = mul_mat_iq1bn_q8_K64<8>;
expected_typeB = GGML_TYPE_Q8_K64;
break;
case GGML_TYPE_IQ2_BN:
assert (ne00 % QK_IQ1BN == 0);
mm.funcs[0] = mul_mat_iq2bn_q8_K64<1>;
mm.funcs[1] = mul_mat_iq2bn_q8_K64<2>;
mm.funcs[2] = mul_mat_iq2bn_q8_K64<3>;
mm.funcs[3] = mul_mat_iq2bn_q8_K64<4>;
mm.funcs[4] = mul_mat_iq2bn_q8_K64<5>;
mm.funcs[5] = mul_mat_iq2bn_q8_K64<6>;
mm.funcs[6] = mul_mat_iq2bn_q8_K64<7>;
mm.funcs[7] = mul_mat_iq2bn_q8_K64<8>;
expected_typeB = GGML_TYPE_Q8_K64;
break;
case GGML_TYPE_Q4_0:
assert (ne00 % QK4_0 == 0);
MulMat::set_functions<Q4_0_Unpacker>(mm);
expected_typeB = GGML_TYPE_Q8_0;
break;
case GGML_TYPE_Q4_1:
assert (ne00 % QK4_1 == 0);
MulMat::set_functions<Q4_1_Unpacker>(mm);
expected_typeB = GGML_TYPE_Q8_1;
break;
case GGML_TYPE_Q5_0:
assert (ne00 % QK5_0 == 0);
MulMat::set_functions<Q5_0_Unpacker>(mm);
expected_typeB = GGML_TYPE_Q8_0;
break;
case GGML_TYPE_Q5_1:
assert (ne00 % QK5_1 == 0);
MulMat::set_functions<Q5_1_Unpacker>(mm);
expected_typeB = GGML_TYPE_Q8_1;
break;
case GGML_TYPE_Q8_0:
assert (ne00 % QK8_0 == 0);
MulMat::set_functions<Q8_0_Unpacker>(mm);
expected_typeB = GGML_TYPE_Q8_0;
break;
case GGML_TYPE_IQ4_NL:
assert (ne00 % QK4_NL == 0);
MulMat::set_functions<IQ4_NL_Unpacker>(mm);
expected_typeB = GGML_TYPE_Q8_0;
break;
default:
return false;
}
return ggml_type(typeB) == expected_typeB;
}
} // namespace
#else // __aarch64__
namespace {
template <int nrc, typename block_q8 = block_q8_K> struct Q8 {
constexpr static int nrc_y = nrc;
Q8(const DataInfo& info) {
for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const block_q8 *)info.src1_row(iy);
}
inline int8x16x2_t load_quants(int iy, int i, int j) const { return vld1q_s8_x2(y[iy][i].qs + 32*j); }
inline int8x16x4_t load_quants_64(int iy, int i, int j) const { return vld1q_s8_x4(y[iy][i].qs + 64*j); }
inline int16x8x2_t load_bsums(int iy, int i) const { return vld1q_s16_x2(y[iy][i].bsums); }
inline int16x8_t load_bsums8(int iy, int i) const {
auto q8s = vld1q_s16_x2(y[iy][i].bsums);
return vpaddq_s16(q8s.val[0], q8s.val[1]);
}
inline float scale(int iy, int i) const { return y[iy][i].d; }
const block_q8 * y[nrc_y];
};
template <typename Q8>
inline void compute_8_blocks(const uint8x16x4_t& qx_1, const uint8x16x4_t& qx_2, const Q8& q8,
const int32x4x2_t& scales, int iy, int i, int j, int32x4_t& sumi) {
auto mzero = vdupq_n_s32(0);
auto q8b_1 = q8.load_quants(iy, i, 4*j+0);
auto p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_1.val[0]), q8b_1.val[0]),
vreinterpretq_s8_u8(qx_1.val[1]), q8b_1.val[1]); // block 1
auto q8b_2 = q8.load_quants(iy, i, 4*j+1);
auto p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_1.val[2]), q8b_2.val[0]),
vreinterpretq_s8_u8(qx_1.val[3]), q8b_2.val[1]); // block 2
auto p12 = vpaddq_s32(p1, p2);
auto q8b_3 = q8.load_quants(iy, i, 4*j+2);
auto p3 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_2.val[0]), q8b_3.val[0]),
vreinterpretq_s8_u8(qx_2.val[1]), q8b_3.val[1]); // block 1
auto q8b_4 = q8.load_quants(iy, i, 4*j+3);
auto p4 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_2.val[2]), q8b_4.val[0]),
vreinterpretq_s8_u8(qx_2.val[3]), q8b_4.val[1]); // block 2
auto p34 = vpaddq_s32(p3, p4);
auto pall = vpaddq_s32(p12, p34);
sumi = vmlaq_s32(sumi, scales.val[j], pall);
}
template <typename Q8>
inline void compute_16_blocks(const uint8x16x4_t& qx_1, const uint8x16x4_t& qx_2, const Q8& q8,
const int32x4x4_t& scales, int iy, int i, int j, int32x4_t& sumi) {
auto mzero = vdupq_n_s32(0);
auto q8b_1 = q8.load_quants(iy, i, 4*j+0);
auto p1 = vpaddq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_1.val[0]), q8b_1.val[0]),
ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_1.val[1]), q8b_1.val[1])); // blocks 0, 0, 1, 1,
auto q8b_2 = q8.load_quants(iy, i, 4*j+1);
auto p2 = vpaddq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_1.val[2]), q8b_2.val[0]),
ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_1.val[3]), q8b_2.val[1])); // blocks 3, 3, 4, 4,
auto p12 = vpaddq_s32(p1, p2); // blocks 0, 1, 2, 3
sumi = vmlaq_s32(sumi, scales.val[2*j+0], p12);
auto q8b_3 = q8.load_quants(iy, i, 4*j+2);
auto p3 = vpaddq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_2.val[0]), q8b_3.val[0]),
ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_2.val[1]), q8b_3.val[1])); // block 4, 4, 5, 5,
auto q8b_4 = q8.load_quants(iy, i, 4*j+3);
auto p4 = vpaddq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_2.val[2]), q8b_4.val[0]),
ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_2.val[3]), q8b_4.val[1])); // block 6, 6, 7, 7,
auto p34 = vpaddq_s32(p3, p4); // blocks 4, 5, 6, 7
sumi = vmlaq_s32(sumi, scales.val[2*j+1], p34);
}
template <typename Q8>
inline void accum_mins_8(const int16x8_t& mins, const Q8& q8, float32x4_t * acc, int i, float c) {
for (int iy = 0; iy < Q8::nrc_y; ++iy) {
auto q8s = q8.load_bsums8(iy, i);
int32x4_t b1 = vmull_s16(vget_low_s16(mins), vget_low_s16(q8s));
int32x4_t b2 = vmull_s16(vget_high_s16(mins), vget_high_s16(q8s));
float32x4_t prod = vcvtq_f32_s32(vaddq_s32(b1, b2));
acc[iy] = vmlaq_f32(acc[iy], prod, vdupq_n_f32(c*q8.scale(iy, i)));
}
}
template <typename Q8>
inline void accum_mins_16(const int16x8x2_t& mins, const Q8& q8, float32x4_t * acc, int i, float c) {
for (int iy = 0; iy < Q8::nrc_y; ++iy) {
auto q8s = q8.load_bsums(iy, i);
int32x4_t b1 = vmull_s16(vget_low_s16 (mins.val[0]), vget_low_s16 (q8s.val[0]));
int32x4_t b2 = vmull_s16(vget_high_s16(mins.val[0]), vget_high_s16(q8s.val[0]));
int32x4_t b3 = vmull_s16(vget_low_s16 (mins.val[1]), vget_low_s16 (q8s.val[1]));
int32x4_t b4 = vmull_s16(vget_high_s16(mins.val[1]), vget_high_s16(q8s.val[1]));
float32x4_t prod = vcvtq_f32_s32(vaddq_s32(vaddq_s32(b1, b2), vaddq_s32(b3, b4)));
acc[iy] = vmlaq_f32(acc[iy], prod, vdupq_n_f32(c*q8.scale(iy, i)));
}
}
struct Scales8 {
uint32_t utmp[4];
const uint8_t * sc8 = (const uint8_t *)utmp;
template <typename Q8, typename Qx>
inline int32x4x2_t process_scales_mins(const Qx& x, const Q8& q8, int i, float32x4_t * acc) {
make_q4_scales(x.scales, utmp);
int16x8_t mins = vmovl_s8(vld1_s8((const int8_t *)sc8 + 8));
accum_mins_8(mins, q8, acc, i, -GGML_FP16_TO_FP32(x.dmin));
uint8x8_t scales8 = vld1_u8(sc8);
uint16x8_t scales16 = vmovl_u8(scales8);
int32x4x2_t scales = {vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales16))),
vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales16)))};
return scales;
}
};
struct Q4bits {
const uint8x16_t m4b = vdupq_n_u8(0xf);
uint8x16x4_t b1, b2;
inline void prepare4(uint8x16x4_t& b, const uint8x16_t * val) const {
b.val[0] = vandq_u8(val[0], m4b);
b.val[2] = vshrq_n_u8(val[0], 4);
b.val[1] = vandq_u8(val[1], m4b);
b.val[3] = vshrq_n_u8(val[1], 4);
}
inline void prepare4_16(uint8x16x4_t& b, const uint8x16_t * val) const {
b.val[0] = vandq_u8(val[0], m4b);
b.val[1] = vshrq_n_u8(val[0], 4);
b.val[2] = vandq_u8(val[1], m4b);
b.val[3] = vshrq_n_u8(val[1], 4);
}
inline void prepare(const uint8_t * qs) {
auto q4bits = vld1q_u8_x2(qs);
prepare4(b1, q4bits.val);
q4bits = vld1q_u8_x2(qs+32);
prepare4(b2, q4bits.val);
}
inline void prepare_v2(const uint8_t * qs) {
auto q4bits = vld1q_u8_x4(qs);
prepare4(b1, q4bits.val+0);
prepare4(b2, q4bits.val+2);
}
inline void prepare64(const uint8_t * qs) {
auto q4bits = vld1q_u8_x4(qs);
b1.val[0] = vandq_u8(q4bits.val[0], m4b);
b1.val[1] = vandq_u8(q4bits.val[1], m4b);
b1.val[2] = vandq_u8(q4bits.val[2], m4b);
b1.val[3] = vandq_u8(q4bits.val[3], m4b);
b2.val[0] = vshrq_n_u8(q4bits.val[0], 4);
b2.val[1] = vshrq_n_u8(q4bits.val[1], 4);
b2.val[2] = vshrq_n_u8(q4bits.val[2], 4);
b2.val[3] = vshrq_n_u8(q4bits.val[3], 4);
}
inline void prepare16(const uint8_t * qs) {
auto q4bits = vld1q_u8_x2(qs);
prepare4_16(b1, q4bits.val);
q4bits = vld1q_u8_x2(qs+32);
prepare4_16(b2, q4bits.val);
}
inline void prepare16_v2(const uint8_t * qs) {
auto q4bits = vld1q_u8_x4(qs);
prepare4_16(b1, q4bits.val+0);
prepare4_16(b2, q4bits.val+2);
}
};
struct Q2bits {
const uint8x16_t m4b = vdupq_n_u8(0x03);
uint8x16x4_t b1, b2;
inline void prepare(const uint8_t * qs) {
auto q2bits = vld1q_u8_x2(qs);
b1.val[0] = vandq_u8(q2bits.val[0], m4b);
b1.val[1] = vandq_u8(q2bits.val[1], m4b);
q2bits.val[0] = vshrq_n_u8(q2bits.val[0], 2);
q2bits.val[1] = vshrq_n_u8(q2bits.val[1], 2);
b1.val[2] = vandq_u8(q2bits.val[0], m4b);
b1.val[3] = vandq_u8(q2bits.val[1], m4b);
q2bits.val[0] = vshrq_n_u8(q2bits.val[0], 2);
q2bits.val[1] = vshrq_n_u8(q2bits.val[1], 2);
b2.val[0] = vandq_u8(q2bits.val[0], m4b);
b2.val[1] = vandq_u8(q2bits.val[1], m4b);
q2bits.val[0] = vshrq_n_u8(q2bits.val[0], 2);
q2bits.val[1] = vshrq_n_u8(q2bits.val[1], 2);
b2.val[2] = vandq_u8(q2bits.val[0], m4b);
b2.val[3] = vandq_u8(q2bits.val[1], m4b);
}
};
template <typename block_q>
struct BaseDequantizer {
BaseDequantizer(const void * vx, size_t bx, int nrc) : vx(vx), x(nullptr), bx(bx), nrc(nrc) {}
inline void new_row(int ix) { x = (const block_q *)((const char *)vx + ix*bx); }
const void * vx;
const block_q * x;
const size_t bx;
const int nrc;
};
struct DequantizerQ4K final : public BaseDequantizer<block_q4_K> {
DequantizerQ4K(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {}
constexpr static int num_blocks() { return 8; }
constexpr static bool should_scale_quants() { return false; }
template <typename Q8>
inline int32x4x2_t new_block(int i, const Q8& q8, float32x4_t * acc) {
d = GGML_FP16_TO_FP32(x[i].d);
return s8.process_scales_mins(x[i], q8, i, acc);
}
inline void prepare(int i, int j) {
if (nrc == 1) bits.prepare_v2(x[i].qs+64*j);
else bits.prepare(x[i].qs+64*j);
}
Q4bits bits;
Scales8 s8;
float d;
};
struct HighBit5 {
const uint8x16_t mhb = vdupq_n_u8(0x10);
uint8x16x2_t bits;
inline void apply(uint8x16x4_t& b1, uint8x16x4_t& b2, bool do_shift) {
b1.val[0] = vorrq_u8(b1.val[0], vandq_u8(vshlq_n_u8(bits.val[0], 4), mhb));
b1.val[1] = vorrq_u8(b1.val[1], vandq_u8(vshlq_n_u8(bits.val[1], 4), mhb));
b1.val[2] = vorrq_u8(b1.val[2], vandq_u8(vshlq_n_u8(bits.val[0], 3), mhb));
b1.val[3] = vorrq_u8(b1.val[3], vandq_u8(vshlq_n_u8(bits.val[1], 3), mhb));
b2.val[0] = vorrq_u8(b2.val[0], vandq_u8(vshlq_n_u8(bits.val[0], 2), mhb));
b2.val[1] = vorrq_u8(b2.val[1], vandq_u8(vshlq_n_u8(bits.val[1], 2), mhb));
b2.val[2] = vorrq_u8(b2.val[2], vandq_u8(vshlq_n_u8(bits.val[0], 1), mhb));
b2.val[3] = vorrq_u8(b2.val[3], vandq_u8(vshlq_n_u8(bits.val[1], 1), mhb));
if (do_shift) {
bits.val[0] = vshrq_n_u8(bits.val[0], 4);
bits.val[1] = vshrq_n_u8(bits.val[1], 4);
}
}
};
struct HighBit3 {
const uint8x16_t mhb = vdupq_n_u8(0x04);
uint8x16x2_t bits;
inline void apply(uint8x16x4_t& b1, uint8x16x4_t& b2, bool do_shift) {
b1.val[0] = vorrq_u8(b1.val[0], vandq_u8(vshlq_n_u8(bits.val[0], 2), mhb));
b1.val[1] = vorrq_u8(b1.val[1], vandq_u8(vshlq_n_u8(bits.val[1], 2), mhb));
b1.val[2] = vorrq_u8(b1.val[2], vandq_u8(vshlq_n_u8(bits.val[0], 1), mhb));
b1.val[3] = vorrq_u8(b1.val[3], vandq_u8(vshlq_n_u8(bits.val[1], 1), mhb));
b2.val[0] = vorrq_u8(b2.val[0], vandq_u8(bits.val[0], mhb));
b2.val[1] = vorrq_u8(b2.val[1], vandq_u8(bits.val[1], mhb));
b2.val[2] = vorrq_u8(b2.val[2], vandq_u8(vshrq_n_u8(bits.val[0], 1), mhb));
b2.val[3] = vorrq_u8(b2.val[3], vandq_u8(vshrq_n_u8(bits.val[1], 1), mhb));
if (do_shift) {
bits.val[0] = vshrq_n_u8(bits.val[0], 4);
bits.val[1] = vshrq_n_u8(bits.val[1], 4);
}
}
};
struct DequantizerQ5K final : public BaseDequantizer<block_q5_K> {
DequantizerQ5K(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {}
constexpr static int num_blocks() { return 8; }
constexpr static bool should_scale_quants() { return false; }
template <typename Q8>
inline int32x4x2_t new_block(int i, const Q8& q8, float32x4_t * acc) {
d = GGML_FP16_TO_FP32(x[i].d);
h.bits = vld1q_u8_x2(x[i].qh);
return s8.process_scales_mins(x[i], q8, i, acc);
}
inline void prepare(int i, int j) {
if (nrc == 1) bits.prepare_v2(x[i].qs+64*j);
else bits.prepare(x[i].qs+64*j);
h.apply(bits.b1, bits.b2, j == 0);
}
Q4bits bits;
HighBit5 h;
Scales8 s8;
uint8x16x2_t hbits;
float d;
};
inline int32x4x4_t make_wider(const int16x8x2_t& scales16) {
int32x4x4_t scales = {
vmovl_s16(vget_low_s16 (scales16.val[0])),
vmovl_s16(vget_high_s16(scales16.val[0])),
vmovl_s16(vget_low_s16 (scales16.val[1])),
vmovl_s16(vget_high_s16(scales16.val[1])),
};
return scales;
}
template <typename Q8>
inline int32x4x4_t process_scales_mins_16(const int8x16_t& scales8, const Q8& q8, float32x4_t * acc, int i, float c) {
int16x8x2_t scales16;
scales16.val[0] = vmovl_s8(vget_low_s8(scales8));
scales16.val[1] = vmovl_s8(vget_high_s8(scales8));
accum_mins_16(scales16, q8, acc, i, c);
return make_wider(scales16);
}
struct DequantizerQ6K final : public BaseDequantizer<block_q6_K> {
DequantizerQ6K(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {}
constexpr static int num_blocks() { return 16; }
constexpr static bool should_scale_quants() { return false; }
template <typename Q8>
inline int32x4x4_t new_block(int i, const Q8& q8, float32x4_t * acc) {
d = GGML_FP16_TO_FP32(x[i].d);
return process_scales_mins_16(vld1q_s8(x[i].scales), q8, acc, i, -32.f*d);
}
inline void prepare(int i, int j) {
auto hbits = vld1q_u8_x2(x[i].qh + 32*j);
bits.prepare64(x[i].ql+64*j);
bits.b1.val[0] = vorrq_u8(bits.b1.val[0], vandq_u8(vshlq_n_u8(hbits.val[0], 4), mhb));
bits.b1.val[1] = vorrq_u8(bits.b1.val[1], vandq_u8(vshlq_n_u8(hbits.val[1], 4), mhb));
bits.b1.val[2] = vorrq_u8(bits.b1.val[2], vandq_u8(vshlq_n_u8(hbits.val[0], 2), mhb));
bits.b1.val[3] = vorrq_u8(bits.b1.val[3], vandq_u8(vshlq_n_u8(hbits.val[1], 2), mhb));
bits.b2.val[0] = vorrq_u8(bits.b2.val[0], vandq_u8(hbits.val[0], mhb));
bits.b2.val[1] = vorrq_u8(bits.b2.val[1], vandq_u8(hbits.val[1], mhb));
bits.b2.val[2] = vorrq_u8(bits.b2.val[2], vandq_u8(vshrq_n_u8(hbits.val[0], 2), mhb));
bits.b2.val[3] = vorrq_u8(bits.b2.val[3], vandq_u8(vshrq_n_u8(hbits.val[1], 2), mhb));
}
Q4bits bits;
const uint8x16_t mhb = vdupq_n_u8(0x30);
float d;
};
struct DequantizerQ3K final : public BaseDequantizer<block_q3_K> {
DequantizerQ3K(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {}
constexpr static int num_blocks() { return 16; }
constexpr static bool should_scale_quants() { return false; }
template <typename Q8>
inline int32x4x4_t new_block(int i, const Q8& q8, float32x4_t * acc) {
d = GGML_FP16_TO_FP32(x[i].d);
h.bits = vld1q_u8_x2(x[i].hmask);
mask = vdupq_n_u8(0x01);
const uint16_t * sc16 = (const uint16_t *)x[i].scales;
uint32_t aux0 = sc16[0] | (sc16[1] << 16);
uint32_t aux1 = sc16[2] | (sc16[3] << 16);
uint32_t aux2 = sc16[4] | (sc16[5] << 16);
aux32[0] = (aux0 & 0x0f0f0f0f) | ((aux2 << 4) & 0x30303030);
aux32[1] = (aux1 & 0x0f0f0f0f) | ((aux2 << 2) & 0x30303030);
aux32[2] = ((aux0 >> 4) & 0x0f0f0f0f) | ((aux2 >> 0) & 0x30303030);
aux32[3] = ((aux1 >> 4) & 0x0f0f0f0f) | ((aux2 >> 2) & 0x30303030);
auto scales8 = vaddq_s8(vld1q_s8((const int8_t *)aux32), vdupq_n_s8(-32));
if (nrc > 1) {
return process_scales_mins_16(scales8, q8, acc, i, -4.f*d);
}
int16x8x2_t scales16;
scales16.val[0] = vmovl_s8(vget_low_s8(scales8));
scales16.val[1] = vmovl_s8(vget_high_s8(scales8));
return make_wider(scales16);
}
inline void prepare(int i, int j) {
bits.prepare(x[i].qs+32*j);
if (nrc > 1) {
h.apply(bits.b1, bits.b2, j == 0);
} else {
auto minus4 = vdupq_n_u8(0xfc);
auto zero = vdupq_n_u8(0);
bits.b1.val[0] = vorrq_u8(bits.b1.val[0], vandq_u8(minus4, vceqq_u8(vandq_u8(h.bits.val[0], mask), zero)));
bits.b1.val[1] = vorrq_u8(bits.b1.val[1], vandq_u8(minus4, vceqq_u8(vandq_u8(h.bits.val[1], mask), zero)));
mask = vshlq_n_u8(mask, 1);
bits.b1.val[2] = vorrq_u8(bits.b1.val[2], vandq_u8(minus4, vceqq_u8(vandq_u8(h.bits.val[0], mask), zero)));
bits.b1.val[3] = vorrq_u8(bits.b1.val[3], vandq_u8(minus4, vceqq_u8(vandq_u8(h.bits.val[1], mask), zero)));
mask = vshlq_n_u8(mask, 1);
bits.b2.val[0] = vorrq_u8(bits.b2.val[0], vandq_u8(minus4, vceqq_u8(vandq_u8(h.bits.val[0], mask), zero)));
bits.b2.val[1] = vorrq_u8(bits.b2.val[1], vandq_u8(minus4, vceqq_u8(vandq_u8(h.bits.val[1], mask), zero)));
mask = vshlq_n_u8(mask, 1);
bits.b2.val[2] = vorrq_u8(bits.b2.val[2], vandq_u8(minus4, vceqq_u8(vandq_u8(h.bits.val[0], mask), zero)));
bits.b2.val[3] = vorrq_u8(bits.b2.val[3], vandq_u8(minus4, vceqq_u8(vandq_u8(h.bits.val[1], mask), zero)));
mask = vshlq_n_u8(mask, 1);
}
}
uint32_t aux32[4];
Q2bits bits;
uint8x16_t mask;
HighBit3 h;
float d;
};
struct DequantizerQ2K final : public BaseDequantizer<block_q2_K> {
DequantizerQ2K(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {}
constexpr static int num_blocks() { return 16; }
constexpr static bool should_scale_quants() { return true; }
template <typename Q8>
inline void process_scales(int i, const Q8& q8, float32x4_t * acc) {
d = GGML_FP16_TO_FP32(x[i].d);
auto scales_and_mins = vld1q_u8(x[i].scales);
auto mins8 = vreinterpretq_s8_u8(vshrq_n_u8(scales_and_mins, 4));
int16x8x2_t scales16;
scales16.val[0] = vmovl_s8(vget_low_s8(mins8));
scales16.val[1] = vmovl_s8(vget_high_s8(mins8));
accum_mins_16(scales16, q8, acc, i, -GGML_FP16_TO_FP32(x[i].dmin));
scales8 = vandq_u8(scales_and_mins, vdupq_n_u8(0xf));
}
template <typename Q8>
inline int32x4x4_t new_block(int i, const Q8& q8, float32x4_t * acc) {
process_scales(i, q8, acc);
int16x8x2_t scales16;
scales16.val[0] = vmovl_s8(vget_low_s8(vreinterpretq_s8_u8(scales8)));
scales16.val[1] = vmovl_s8(vget_high_s8(vreinterpretq_s8_u8(scales8)));
return make_wider(scales16);
}
template <typename Q8>
inline void compute(const Q8& q8, int i, int j, int32x4_t * sumi) {
auto m1 = vdupq_n_u8(1);
auto shuffle = vdupq_n_u8(8*j);
bits.b1.val[0] = vmulq_u8(bits.b1.val[0], vqtbl1q_u8(scales8, shuffle)); shuffle = vaddq_u8(shuffle, m1);
bits.b1.val[1] = vmulq_u8(bits.b1.val[1], vqtbl1q_u8(scales8, shuffle)); shuffle = vaddq_u8(shuffle, m1);
bits.b1.val[2] = vmulq_u8(bits.b1.val[2], vqtbl1q_u8(scales8, shuffle)); shuffle = vaddq_u8(shuffle, m1);
bits.b1.val[3] = vmulq_u8(bits.b1.val[3], vqtbl1q_u8(scales8, shuffle)); shuffle = vaddq_u8(shuffle, m1);
bits.b2.val[0] = vmulq_u8(bits.b2.val[0], vqtbl1q_u8(scales8, shuffle)); shuffle = vaddq_u8(shuffle, m1);
bits.b2.val[1] = vmulq_u8(bits.b2.val[1], vqtbl1q_u8(scales8, shuffle)); shuffle = vaddq_u8(shuffle, m1);
bits.b2.val[2] = vmulq_u8(bits.b2.val[2], vqtbl1q_u8(scales8, shuffle)); shuffle = vaddq_u8(shuffle, m1);
bits.b2.val[3] = vmulq_u8(bits.b2.val[3], vqtbl1q_u8(scales8, shuffle)); shuffle = vaddq_u8(shuffle, m1);
for (int iy = 0; iy < Q8::nrc_y; ++iy) {
auto q8b_1 = q8.load_quants(iy, i, 4*j+0);
sumi[iy] = ggml_vdotq_s32(ggml_vdotq_s32(sumi[iy], vreinterpretq_s8_u8(bits.b1.val[0]), q8b_1.val[0]),
vreinterpretq_s8_u8(bits.b1.val[1]), q8b_1.val[1]);
auto q8b_2 = q8.load_quants(iy, i, 4*j+1);
sumi[iy] = ggml_vdotq_s32(ggml_vdotq_s32(sumi[iy], vreinterpretq_s8_u8(bits.b1.val[2]), q8b_2.val[0]),
vreinterpretq_s8_u8(bits.b1.val[3]), q8b_2.val[1]);
auto q8b_3 = q8.load_quants(iy, i, 4*j+2);
sumi[iy] = ggml_vdotq_s32(ggml_vdotq_s32(sumi[iy], vreinterpretq_s8_u8(bits.b2.val[0]), q8b_3.val[0]),
vreinterpretq_s8_u8(bits.b2.val[1]), q8b_3.val[1]);
auto q8b_4 = q8.load_quants(iy, i, 4*j+3);
sumi[iy] = ggml_vdotq_s32(ggml_vdotq_s32(sumi[iy], vreinterpretq_s8_u8(bits.b2.val[2]), q8b_4.val[0]),
vreinterpretq_s8_u8(bits.b2.val[3]), q8b_4.val[1]);
}
}
inline void prepare(int i, int j) {
bits.prepare(x[i].qs+32*j);
}
uint32_t aux32[4];
uint8x16_t scales8;
Q2bits bits;
float d;
};
// ============================= i-quants
struct DequantizerIQ4XS final : public BaseDequantizer<block_iq4_xs> {
static int8x16_t load_values() {
static const int8_t iq4nl_values[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
return vld1q_s8(iq4nl_values);
}
DequantizerIQ4XS(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc), values(load_values()) {}
constexpr static int num_blocks() { return 8; }
constexpr static bool should_scale_quants() { return false; }
inline void new_row(int ix) { x = (const block_iq4_xs *)((const char *)vx + bx*ix); }
template <typename Q8>
inline int32x4x2_t new_block(int i, const Q8& q8, float32x4_t * acc) {
(void)q8;
(void)acc;
d = GGML_FP16_TO_FP32(x[i].d);
const uint16_t scales_h = x[i].scales_h;
const uint16_t * scales_l = (const uint16_t *)x[i].scales_l;
aux32[0] = scales_l[0] | (scales_l[1] << 16);
aux32[1] = aux32[0] >> 4;
// scl is ordered as 0, 2, 4, 6, 1, 3, 5, 7
uint8x8_t scl8 = vand_u8(vld1_u8((const uint8_t *)aux32), vdup_n_u8(0xf));
uint16_t * aux16 = (uint16_t *)aux32;
aux16[0] = scales_h << 4; aux16[1] = scales_h << 2; aux16[2] = scales_h; aux16[3] = scales_h >> 2;
// sch is ordered as 0, 4, 1, 5, 2, 6, 3, 7
uint8x8_t sch8 = vand_u8(vld1_u8((const uint8_t *)aux16), vdup_n_u8(0x30));
int8x8_t scales8 = vadd_s8(vreinterpret_s8_u8(vorr_u8(scl8, vtbl1_u8(sch8, vreinterpret_u8_u32(hshuff)))), vdup_n_s8(-32));
// shuffle 0, 2, 4, 6, 1, 3, 5, 7 -> 0, 1, 2, 3, 4, 5, 6, 7
scales8 = vtbl1_s8(scales8, vreinterpret_s8_u32(hshuff));
int16x8_t scales16 = vmovl_s8(scales8);
int32x4x2_t scales = {vmovl_s16(vget_low_s16(scales16)), vmovl_s16(vget_high_s16(scales16))};
return scales;
}
inline void prepare(int i, int j) {
bits.prepare16(x[i].qs+64*j);
//if (nrc == 1) {
// bits.prepare16_v2(x[i].qs+64*j);
//} else {
// bits.prepare16(x[i].qs+64*j);
//}
for (int k = 0; k < 4; ++k) {
bits.b1.val[k] = vreinterpretq_u8_s8(vqtbl1q_s8(values, bits.b1.val[k]));
bits.b2.val[k] = vreinterpretq_u8_s8(vqtbl1q_s8(values, bits.b2.val[k]));
}
}
Q4bits bits;
const int8x16_t values;
uint32_t aux32[2];
constexpr static uint32x2_t hshuff = {0x05010400, 0x07030602};
float d;
};
struct SimpleBits {
uint8x16x4_t b1;
uint8x16x4_t b2;
};
inline int32x4x2_t prepare_scales_8(const uint32x4_t& v1, const uint32x4_t& v2) {
int32x4x2_t scales;
scales.val[0] = vreinterpretq_s32_u32(vorrq_u32(vshlq_n_u32(vshrq_n_u32(v1, 28), 1), vdupq_n_u32(1)));
scales.val[1] = vreinterpretq_s32_u32(vorrq_u32(vshlq_n_u32(vshrq_n_u32(v2, 28), 1), vdupq_n_u32(1)));
return scales;
}
inline void apply_signs_2(uint8x16_t * b, const uint64_t * signs, uint32_t sidx) {
auto s1 = vcombine_s8(vld1_s8((const int8_t *)(signs + ((sidx >> 0) & 127))), vld1_s8((const int8_t *)(signs + ((sidx >> 7) & 127))));
auto s2 = vcombine_s8(vld1_s8((const int8_t *)(signs + ((sidx >>14) & 127))), vld1_s8((const int8_t *)(signs + ((sidx >>21) & 127))));
b[0] = vreinterpretq_u8_s8(vmulq_s8(vreinterpretq_s8_u8(b[0]), s1));
b[1] = vreinterpretq_u8_s8(vmulq_s8(vreinterpretq_s8_u8(b[1]), s2));
}
struct DequantizerIQ2XXS final : public BaseDequantizer<block_iq2_xxs> {
DequantizerIQ2XXS(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {}
constexpr static int num_blocks() { return 8; }
constexpr static bool should_scale_quants() { return false; }
template <typename Q8>
inline int32x4x2_t new_block(int i, const Q8& /*q8*/, float32x4_t * /*acc*/) {
d = 0.125f * GGML_FP16_TO_FP32(x[i].d);
auto tmp = vld1q_u32_x4((const uint32_t *)x[i].qs);
data.val[0] = vuzp1q_u32(tmp.val[0], tmp.val[1]); // codebook indices for blocks 0...3
data.val[1] = vuzp2q_u32(tmp.val[0], tmp.val[1]); // scales and signs for blocks 0...3
data.val[2] = vuzp1q_u32(tmp.val[2], tmp.val[3]); // codebook indices for blocks 4...7
data.val[3] = vuzp2q_u32(tmp.val[2], tmp.val[3]); // scales and signs for blocks 4...7
return prepare_scales_8(data.val[1], data.val[3]);
}
static inline void prepare2(uint8x16_t * b, const uint8_t * idx, const uint64_t * signs, uint32_t sidx) {
b[0] = vreinterpretq_u8_u64(uint64x2_t{iq2xxs_grid[idx[0]], iq2xxs_grid[idx[1]]});
b[1] = vreinterpretq_u8_u64(uint64x2_t{iq2xxs_grid[idx[2]], iq2xxs_grid[idx[3]]});
apply_signs_2(b, signs, sidx);
}
inline void prepare(int /*i*/, int j) {
const uint8_t * idx = (const uint8_t *)(data.val + 2*j);
const uint32_t * sidx = (const uint32_t *)(data.val + 2*j+1);
prepare2(bits.b1.val + 0, idx, keven_signs, sidx[0]); idx += 4;
prepare2(bits.b1.val + 2, idx, keven_signs, sidx[1]); idx += 4;
prepare2(bits.b2.val + 0, idx, keven_signs, sidx[2]); idx += 4;
prepare2(bits.b2.val + 2, idx, keven_signs, sidx[3]);
}
uint32x4x4_t data;
SimpleBits bits;
float d;
};
inline int32x4x4_t prepare_4bit_scales16(const uint8_t * sc) {
auto aux = vld1_u8(sc);
auto scales_l = vand_u8(aux, vdup_n_u8(0xf));
auto scales_h = vshr_n_u8(aux, 4);
auto aux1 = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h));
auto scales8 = vreinterpretq_s8_u8(vorrq_u8(vshlq_n_u8(aux1, 1), vdupq_n_u8(1)));
int16x8x2_t scales16 = { vmovl_s8(vget_low_s8(scales8)), vmovl_s8(vget_high_s8(scales8)) };
return make_wider(scales16);
}
struct DequantizerIQ2XS final : public BaseDequantizer<block_iq2_xs> {
DequantizerIQ2XS(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {}
constexpr static int num_blocks() { return 16; }
constexpr static bool should_scale_quants() { return false; }
template <typename Q8>
inline int32x4x4_t new_block(int i, const Q8& /*q8*/, float32x4_t * /*acc*/) {
d = 0.125f * GGML_FP16_TO_FP32(x[i].d);
return prepare_4bit_scales16(x[i].scales);
}
inline static uint8x16_t make1(const uint16_t * qs) {
auto b = vcombine_u8(vld1_u8((const uint8_t *)(iq2xs_grid + (qs[0] & 511))), vld1_u8((const uint8_t *)(iq2xs_grid + (qs[1] & 511))));
auto s = vcombine_s8(vld1_s8((const int8_t *)(keven_signs + (qs[0] >> 9))), vld1_s8((const int8_t *)(keven_signs + (qs[1] >> 9))));
return vreinterpretq_u8_s8(vmulq_s8(vreinterpretq_s8_u8(b), s));
}
inline static void make4(const uint16_t * qs, uint8x16_t * b) {
b[0] = make1(qs + 0);
b[1] = make1(qs + 2);
b[2] = make1(qs + 4);
b[3] = make1(qs + 6);
}
inline void prepare(int i, int j) {
make4(x[i].qs + 16*j + 0, bits.b1.val);
make4(x[i].qs + 16*j + 8, bits.b2.val);
}
SimpleBits bits;
float d;
};
struct SignHelper {
inline void init() { shuffle = vcombine_u8(vdup_n_u8(0), vdup_n_u8(1)); }
inline void apply_signs_1(uint8x16_t * b, const uint8x16_t& signs16) {
auto aux = vqtbl1q_u8(signs16, shuffle);
auto s = vreinterpretq_s8_u8(vorrq_u8(vceqq_u8(vandq_u8(aux, smask), smask), m1));
b[0] = vreinterpretq_u8_s8(vmulq_s8(vreinterpretq_s8_u8(b[0]), s));
shuffle = vaddq_u8(shuffle, step);
}
const uint8x16_t smask = vreinterpretq_u8_u64(vdupq_n_u64(0x8040201008040201));
const uint8x16_t m1 = vdupq_n_u8(1);
const uint8x16_t step = vdupq_n_u8(2);
uint8x16_t shuffle;
};
struct DequantizerIQ2S final : public BaseDequantizer<block_iq2_s> {
DequantizerIQ2S(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {}
constexpr static int num_blocks() { return 16; }
constexpr static bool should_scale_quants() { return false; }
template <typename Q8>
inline int32x4x4_t new_block(int i, const Q8& /*q8*/, float32x4_t * /*acc*/) {
d = 0.125f * GGML_FP16_TO_FP32(x[i].d);
return prepare_4bit_scales16(x[i].scales);
}
static inline void make4(SignHelper& sh, const uint8x16_t& signs16, const uint8_t * qs, const uint8_t * qh, uint8x16_t * b) {
uint32_t aux32[2];
const uint16_t * aux16 = (const uint16_t *)aux32;
for (int k = 0; k < 2; ++k) {
aux32[1] = (qh[k] << 4) | (qh[k] << 18);
aux32[0] = (aux32[1] << 4) & 0x03000300;
aux32[1] &= 0x03000300;
b[2*k+0] = vcombine_u8(vld1_u8((const uint8_t *)(iq2s_grid + (qs[4*k+0] | aux16[0]))),
vld1_u8((const uint8_t *)(iq2s_grid + (qs[4*k+1] | aux16[1]))));
sh.apply_signs_1(b+2*k+0, signs16);
b[2*k+1] = vcombine_u8(vld1_u8((const uint8_t *)(iq2s_grid + (qs[4*k+2] | aux16[2]))),
vld1_u8((const uint8_t *)(iq2s_grid + (qs[4*k+3] | aux16[3]))));
sh.apply_signs_1(b+2*k+1, signs16);
}
}
inline void prepare(int i, int j) {
const auto * qs = x[i].qs + 16*j;
const auto * qh = x[i].qh + 4*j;
const auto signs16 = vld1q_u8(qs + QK_K/8);
sh.init();
make4(sh, signs16, qs+0, qh+0, bits.b1.val);
make4(sh, signs16, qs+8, qh+2, bits.b2.val);
}
SimpleBits bits;
SignHelper sh;
float d;
};
struct DequantizerIQ3XXS final : public BaseDequantizer<block_iq3_xxs> {
DequantizerIQ3XXS(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {}
constexpr static int num_blocks() { return 8; }
constexpr static bool should_scale_quants() { return false; }
template <typename Q8>
inline int32x4x2_t new_block(int i, const Q8& /*q8*/, float32x4_t * /*acc*/) {
d = 0.25f * GGML_FP16_TO_FP32(x[i].d);
gas = vld1q_u32_x2((const uint32_t *)(x[i].qs + QK_K/4));
return prepare_scales_8(gas.val[0], gas.val[1]);
}
inline static void make2(const uint8_t * q3, uint32_t sidx, uint8x16_t * b) {
b[0] = vreinterpretq_u8_u32(uint32x4_t{iq3xxs_grid[q3[0]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[3]]});
b[1] = vreinterpretq_u8_u32(uint32x4_t{iq3xxs_grid[q3[4]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[7]]});
apply_signs_2(b, keven_signs, sidx);
}
inline void prepare(int i, int j) {
const auto * q3 = x[i].qs + 32*j;
const auto * signs = (const uint32_t *)(gas.val + j);
make2(q3, signs[0], bits.b1.val + 0); q3 += 8;
make2(q3, signs[1], bits.b1.val + 2); q3 += 8;
make2(q3, signs[2], bits.b2.val + 0); q3 += 8;
make2(q3, signs[3], bits.b2.val + 2);
}
SimpleBits bits;
uint32x4x2_t gas;
float d;
};
struct DequantizerIQ3S final : public BaseDequantizer<block_iq3_s> {
DequantizerIQ3S(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {}
constexpr static int num_blocks() { return 8; }
constexpr static bool should_scale_quants() { return false; }
template <typename Q8>
inline int32x4x2_t new_block(int i, const Q8& /*q8*/, float32x4_t * /*acc*/) {
d = GGML_FP16_TO_FP32(x[i].d);
uint32_t scales32[2];
std::memcpy(scales32, x[i].scales, 4);
scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101;
scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101;
auto scales8 = vld1_u8((const uint8_t *)scales32); // 0, 2, 4, 6, 1, 3, 5, 7
scales8 = vtbl1_u8(scales8, vreinterpret_u8_u64(vdup_n_u64(0x0703060205010400)));
auto scales16 = vreinterpretq_s16_u16(vmovl_u8(scales8));
int32x4x2_t scales;
scales.val[0] = vmovl_s16(vget_low_s16(scales16));
scales.val[1] = vmovl_s16(vget_high_s16(scales16));
return scales;
}
static inline void make2(SignHelper& sh, const uint8x16_t& signs16, const uint16x8_t& idx_l, uint8_t qh,
const int8x16_t& hshift, uint8x16_t * b) {
auto vindex = vorrq_u16(idx_l, vandq_u16(vshlq_u16(vdupq_n_u16(qh), hshift), vdupq_n_u16(256)));
const uint16_t * idx = (const uint16_t *)&vindex;
b[0] = vreinterpretq_u8_u32(uint32x4_t{iq3s_grid[idx[0]], iq3s_grid[idx[1]], iq3s_grid[idx[2]], iq3s_grid[idx[3]]});
b[1] = vreinterpretq_u8_u32(uint32x4_t{iq3s_grid[idx[4]], iq3s_grid[idx[5]], iq3s_grid[idx[6]], iq3s_grid[idx[7]]});
sh.apply_signs_1(b+0, signs16);
sh.apply_signs_1(b+1, signs16);
}
static inline void make4(SignHelper& sh, const uint8x16_t& signs16, const uint8_t * qs, const uint8_t * qh,
const int8x16_t& hshift, uint8x16_t * b) {
auto idx_l = vld1q_u8(qs);
make2(sh, signs16, vmovl_u8(vget_low_u8 (idx_l)), qh[0], hshift, b+0);
make2(sh, signs16, vmovl_u8(vget_high_u8(idx_l)), qh[1], hshift, b+2);
}
inline void prepare(int i, int j) {
static const int16_t k_shift[8] = {8, 7, 6, 5, 4, 3, 2, 1};
const auto hshift = vld1q_s16(k_shift);
const auto * qs = x[i].qs + 32*j;
const auto * qh = x[i].qh + 4*j;
const auto signs16 = vld1q_u8(x[i].signs + 16*j);
sh.init();
make4(sh, signs16, qs+ 0, qh+0, hshift, bits.b1.val);
make4(sh, signs16, qs+16, qh+2, hshift, bits.b2.val);
}
SimpleBits bits;
SignHelper sh;
uint32x4x2_t gas;
float d;
};
template <int nrc_y, typename Dequantizer>
void mul_mat_qX_K_q8_K_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
assert(n % QK_K == 0);
const int nb = n / QK_K;
Q8<nrc_y, block_q8_K> q8(info);
Dequantizer deq(vx, bx, nrc_y);
for (int ix = 0; ix < nrc_x; ++ix) {
deq.new_row(ix);
float32x4_t acc[nrc_y];
for (int iy = 0; iy < nrc_y; ++iy) acc[iy] = vdupq_n_f32(0.f);
for (int i = 0; i < nb; ++i) {
int32x4_t sumi[nrc_y];
for (int iy = 0; iy < nrc_y; ++iy) sumi[iy] = vdupq_n_s32(0);
if constexpr (nrc_y > 1 && Dequantizer::should_scale_quants()) {
deq.process_scales(i, q8, acc);
deq.prepare(i, 0);
deq.compute(q8, i, 0, sumi);
deq.prepare(i, 1);
deq.compute(q8, i, 1, sumi);
} else {
if constexpr (Dequantizer::num_blocks() == 8) {
auto scales = deq.new_block(i, q8, acc);
deq.prepare(i, 0);
for (int iy = 0; iy < nrc_y; ++iy) compute_8_blocks(deq.bits.b1, deq.bits.b2, q8, scales, iy, i, 0, sumi[iy]);
deq.prepare(i, 1);
for (int iy = 0; iy < nrc_y; ++iy) compute_8_blocks(deq.bits.b1, deq.bits.b2, q8, scales, iy, i, 1, sumi[iy]);
}
else if constexpr (Dequantizer::num_blocks() == 16) {
auto scales = deq.new_block(i, q8, acc);
deq.prepare(i, 0);
for (int iy = 0; iy < nrc_y; ++iy) compute_16_blocks(deq.bits.b1, deq.bits.b2, q8, scales, iy, i, 0, sumi[iy]);
deq.prepare(i, 1);
for (int iy = 0; iy < nrc_y; ++iy) compute_16_blocks(deq.bits.b1, deq.bits.b2, q8, scales, iy, i, 1, sumi[iy]);
}
else {
GGML_ASSERT(false);
}
}
for (int iy = 0; iy < nrc_y; ++iy) {
acc[iy] = vmlaq_f32(acc[iy], vcvtq_f32_s32(sumi[iy]), vdupq_n_f32(deq.d*q8.scale(iy, i)));
}
}
for (int iy = 0; iy < nrc_y; ++iy) {
info.store(ix, iy, vaddvq_f32(acc[iy]));
}
}
}
// =========================================== Legacy quants
template <typename Block>
inline float16x4_t load_scales_q0(const Block * x, ggml_half * aux) {
for (int k = 0; k < 4; ++k) aux[k] = x[k].d;
return vld1_f16((const float16_t *)aux);
}
template <typename Block>
inline float16x8_t load_scales_q1(const Block * x, ggml_half * aux) {
if constexpr (std::is_same_v<Block, block_q8_1>) {
for (int k = 0; k < 4; ++k) { aux[k] = x[k].d; aux[k+4] = x[k].s; }
} else {
for (int k = 0; k < 4; ++k) { aux[k] = x[k].d; aux[k+4] = x[k].m; }
}
return vld1q_f16((const float16_t *)aux);
}
struct Q4LegacyBits {
template <typename Block>
inline void prepare(const Block * x) {
for (int i = 0; i < 4; ++i) {
auto q4bits = vld1q_u8(x[i].qs);
b[2*i+0] = vreinterpretq_s8_u8(vandq_u8(q4bits, m4b));
b[2*i+1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits, 4));
}
}
inline void prepare1(const uint8_t * qs, int8x16_t * q) const {
auto q4bits = vld1q_u8(qs);
q[0] = vreinterpretq_s8_u8(vandq_u8(q4bits, m4b));
q[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits, 4));
}
inline void prepare1(const uint8_t * qs) {
prepare1(qs, b);
}
const uint8x16_t m4b = vdupq_n_u8(0xf);
int8x16_t b[8];
};
// One would think this commented out version would do better than the one below
// because it offers more opportunities to execute instructions in parallel.
// Instead, it runs significantly slower. Why? If the compiler is running out of vector registers
// cannot it just do the sequential version below on its own?
//inline int32x4_t sum_4_blocks(const int8x16_t * b, const int8_t * qs) {
// const auto q8b_1 = vld1q_s8_x2(qs + 0);
// auto p12 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[0], q8b_1.val[0]), b[1], q8b_1.val[1]);
// const auto q8b_2 = vld1q_s8_x2(qs + 32);
// auto p34 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[2], q8b_2.val[0]), b[3], q8b_2.val[1]);
// auto p1234 = vpaddq_s32(p12, p34);
// const auto q8b_3 = vld1q_s8_x2(qs + 64);
// auto p56 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[4], q8b_3.val[0]), b[5], q8b_3.val[1]);
// const auto q8b_4 = vld1q_s8_x2(qs + 96);
// auto p78 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[6], q8b_4.val[0]), b[7], q8b_4.val[1]);
// return vpaddq_s32(p1234, vpaddq_s32(p56, p78));
//}
inline int32x4_t sum_4_blocks(const int8x16_t * b, const int8_t * qs) {
auto q8b = vld1q_s8_x2(qs + 0);
auto p12 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[0], q8b.val[0]), b[1], q8b.val[1]);
q8b = vld1q_s8_x2(qs + 32);
auto p34 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[2], q8b.val[0]), b[3], q8b.val[1]);
auto p1234 = vpaddq_s32(p12, p34);
q8b = vld1q_s8_x2(qs + 64);
auto p56 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[4], q8b.val[0]), b[5], q8b.val[1]);
q8b = vld1q_s8_x2(qs + 96);
auto p78 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[6], q8b.val[0]), b[7], q8b.val[1]);
return vpaddq_s32(p1234, vpaddq_s32(p56, p78));
}
template <int nrc> struct Q80 {
constexpr static int nrc_y = nrc;
Q80(const DataInfo& info) {
for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const block_q8_0 *)info.src1_row(iy);
}
inline const int8_t * quant_data(int iy, int i) const {
const block_q8_0_x4 * y4 = (const block_q8_0_x4 *)y[iy] + i;
return y4->qs;
}
inline float16x4_t load_scales(int iy, int i) const {
const block_q8_0_x4 * y4 = (const block_q8_0_x4 *)y[iy] + i;
return vld1_f16((const float16_t *)y4->d);
}
template <typename Dequantizer>
inline void process_scales(int i, Dequantizer& deq, float16x4_t * sc16, float32x4_t * /*acc*/) const {
auto qx_scales = deq.new_block(i);
for (int iy = 0; iy < nrc; ++iy) {
auto q8_scales = load_scales(iy, i);
sc16[iy] = vmul_f16(qx_scales, q8_scales);
}
}
template <typename Dequantizer>
inline void process_1_block(int i, Dequantizer& deq, float32x4_t * acc) const {
deq.prepare1(i);
float d = GGML_FP16_TO_FP32(deq.x[i].d);
for (int iy = 0; iy < nrc; ++iy) {
auto q8b = vld1q_s8_x2(y[iy][i].qs);
auto p = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), deq.bits.b[0], q8b.val[0]), deq.bits.b[1], q8b.val[1]);
acc[iy] = vmlaq_f32(acc[iy], vdupq_n_f32(d*GGML_FP16_TO_FP32(y[iy][i].d)), vcvtq_f32_s32(p));
}
}
const block_q8_0 * y[nrc_y];
};
template <int nrc> struct Q81 {
constexpr static int nrc_y = nrc;
Q81(const DataInfo& info) {
for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const block_q8_1 *)info.src1_row(iy);
}
inline const int8_t * quant_data(int iy, int i) const {
const block_q8_1_x4 * y4 = (const block_q8_1_x4 *)y[iy] + i;
return y4->qs;
}
inline float16x8_t load_scales(int iy, int i) const {
const block_q8_1_x4 * y4 = (const block_q8_1_x4 *)y[iy] + i;
return vld1q_f16((const float16_t *)y4->d);
}
template <typename Dequantizer>
inline void process_scales(int i, Dequantizer& deq, float16x4_t * sc16, float32x4_t * acc) const {
auto qx_scales = deq.new_block(i);
for (int iy = 0; iy < nrc; ++iy) {
auto q8_scales = load_scales(iy, i);
auto m = vmul_f16(vget_high_f16(qx_scales), vget_high_f16(q8_scales));
acc[iy] = vaddq_f32(acc[iy], vcvt_f32_f16(m));
sc16[iy] = vmul_f16(vget_low_f16(qx_scales), vget_low_f16(q8_scales));
}
}
template <typename Dequantizer>
inline void process_1_block(int i, Dequantizer& deq, float32x4_t * acc) const {
deq.prepare1(i);
float d = GGML_FP16_TO_FP32(deq.x[i].d), m = 0.25f*GGML_FP16_TO_FP32(deq.x[i].m);
for (int iy = 0; iy < nrc; ++iy) {
auto q8b = vld1q_s8_x2(y[iy][i].qs);
auto p = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), deq.bits.b[0], q8b.val[0]), deq.bits.b[1], q8b.val[1]);
acc[iy] = vmlaq_f32(acc[iy], vdupq_n_f32(d*GGML_FP16_TO_FP32(y[iy][i].d)), vcvtq_f32_s32(p));
acc[iy] = vaddq_f32(acc[iy], vdupq_n_f32(m*GGML_FP16_TO_FP32(y[iy][i].s)));
}
}
const block_q8_1 * y[nrc_y];
};
template <typename block_q>
struct BaseLegacyDequantizer {
BaseLegacyDequantizer(const void * vx, size_t bx) : vx(vx), x(nullptr), bx(bx) {}
inline void new_row(int ix) { x = (const block_q *)((const char *)vx + bx*ix); }
Q4LegacyBits bits;
const void * vx;
const block_q * x;
size_t bx;
};
struct DequantizerQ40 final : public BaseLegacyDequantizer<block_q4_0> {
DequantizerQ40(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {}
inline void prepare1(int i, int8x16_t * q) const {
bits.prepare1(x[i].qs, q);
q[0] = vaddq_s8(q[0], m8);
q[1] = vaddq_s8(q[1], m8);
}
inline void prepare1(int i) {
prepare1(i, bits.b);
}
inline float16x4_t new_block(int i) {
ggml_half aux[4];
for (int k = 0; k < 4; ++k) {
aux[k] = x[4*i+k].d;
prepare1(4*i+k, bits.b + 2*k);
}
return vld1_f16((const float16_t *)aux);
}
const int8x16_t m8 = vdupq_n_s8(-8);
//ggml_half aux[4];
};
struct DequantizerIQ4NL final : public BaseLegacyDequantizer<block_iq4_nl> {
DequantizerIQ4NL(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {}
inline void prepare1(int i, int8x16_t * q) const {
bits.prepare1(x[i].qs, q);
q[0] = vqtbl1q_s8(values, q[0]);
q[1] = vqtbl1q_s8(values, q[1]);
}
inline void prepare1(int i) {
prepare1(i, bits.b);
}
inline float16x4_t new_block(int i) {
ggml_half aux[4];
for (int k = 0; k < 4; ++k) {
aux[k] = x[4*i+k].d;
prepare1(4*i+k, bits.b + 2*k);
}
return vld1_f16((const float16_t *)aux);
}
static int8x16_t load_values() {
static const int8_t iq4nl_values[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
return vld1q_s8(iq4nl_values);
}
const int8x16_t values = load_values();
};
struct DequantizerQ41 : public BaseLegacyDequantizer<block_q4_1> {
DequantizerQ41(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {}
inline void prepare1(int i) {
bits.prepare1(x[i].qs);
}
inline float16x8_t new_block(int i) {
uint32_t aux32[4];
const uint32_t * s32 = (const uint32_t *)&x[4*i].d;
for (int k = 0; k < 4; ++k) {
aux32[k] = *s32; s32 += sizeof(block_q4_1)/4;
bits.prepare1(x[4*i+k].qs, bits.b + 2*k);
}
return vreinterpretq_f16_u8(vqtbl1q_u8(vld1q_u8((const uint8_t *)aux32), vreinterpretq_u8_u64(shuffle)));
}
// Leaving this commented out attempt to be reminded that I already tried this.
// It has basically the same performance as the version above.
//inline float16x8_t new_block(int i) {
// uint32x4_t scales = {};
// const block_q4_1 * xi = x + 4*i;
// const uint32_t * s32 = (const uint32_t *)&xi->d;
// scales = vsetq_lane_u32(*s32, scales, 0); s32 += sizeof(block_q4_1)/4;
// bits.prepare1(xi[0].qs, bits.b + 0);
// scales = vsetq_lane_u32(*s32, scales, 1); s32 += sizeof(block_q4_1)/4;
// bits.prepare1(xi[1].qs, bits.b + 2);
// scales = vsetq_lane_u32(*s32, scales, 2); s32 += sizeof(block_q4_1)/4;
// bits.prepare1(xi[2].qs, bits.b + 4);
// scales = vsetq_lane_u32(*s32, scales, 3);
// bits.prepare1(xi[3].qs, bits.b + 6);
// return vreinterpretq_f16_u8(vqtbl1q_u8(vreinterpretq_u8_u32(scales), vreinterpretq_u8_u64(shuffle)));
//}
const uint64x2_t shuffle = {0x0d0c090805040100, 0x0f0e0b0a07060302};
};
struct HighBit5Legacy {
inline uint8x16_t to_bytes(const uint8_t * qh) const {
uint8x16_t h = vqtbl1q_u8(vreinterpretq_u8_u16(vdupq_n_u16(*(const uint16_t *)qh)), shuffle);
return vceqq_u8(vandq_u8(h, vreinterpretq_u8_u64(mask)), vreinterpretq_u8_u64(mask));
}
inline uint8x16_t to_negated_bytes(const uint8_t * qh) const {
uint8x16_t h = vqtbl1q_u8(vreinterpretq_u8_u16(vdupq_n_u16(*(const uint16_t *)qh)), shuffle);
return vceqq_u8(vandq_u8(h, vreinterpretq_u8_u64(mask)), vdupq_n_u8(0));
}
const uint64x2_t mask = vdupq_n_u64(0x8040201008040201);
const uint8x16_t shuffle = vcombine_u8(vdup_n_u8(0), vdup_n_u8(1));
};
struct DequantizerQ50 final : public BaseLegacyDequantizer<block_q5_0> {
DequantizerQ50(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {}
inline void prepare1(int i, int8x16_t * q) const {
bits.prepare1(x[i].qs, q);
auto qh = x[i].qh;
q[0] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(q[0]), vandq_u8(mh, hbits.to_negated_bytes(qh+0))));
q[1] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(q[1]), vandq_u8(mh, hbits.to_negated_bytes(qh+2))));
}
inline void prepare1(int i) {
prepare1(i, bits.b);
}
inline float16x4_t new_block(int i) {
ggml_half aux[4];
for (int k = 0; k < 4; ++k) {
aux[k] = x[4*i+k].d;
prepare1(4*i+k, bits.b + 2*k);
}
return vld1_f16((const float16_t *)aux);
}
HighBit5Legacy hbits;
const uint8x16_t mh = vdupq_n_u8(0xf0);
};
struct DequantizerQ80 final : public BaseLegacyDequantizer<block_q8_0> {
DequantizerQ80(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {}
inline void prepare1(int i) {
bits.b[0] = vld1q_s8(x[i].qs);
bits.b[1] = vld1q_s8(x[i].qs+16);
}
inline float16x4_t new_block(int i) {
ggml_half aux[4];
for (int k = 0; k < 4; ++k) {
aux[k] = x[4*i+k].d;
bits.b[2*k+0] = vld1q_s8(x[4*i+k].qs);
bits.b[2*k+1] = vld1q_s8(x[4*i+k].qs+16);
}
return vld1_f16((const float16_t *)aux);
}
};
struct DequantizerQ51 final : public BaseLegacyDequantizer<block_q5_1> {
DequantizerQ51(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {}
inline void prepare1(int i, int8x16_t * q) const {
bits.prepare1(x[i].qs, q);
auto qh = x[i].qh;
q[0] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(q[0]), vandq_u8(mh, hbits.to_bytes(qh+0))));
q[1] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(q[1]), vandq_u8(mh, hbits.to_bytes(qh+2))));
}
inline void prepare1(int i) {
bits.prepare1(x[i].qs, bits.b);
}
inline float16x8_t new_block(int i) {
uint32_t aux32[4];
const uint32_t * s32 = (const uint32_t *)&x[4*i].d;
for (int k = 0; k < 4; ++k) {
aux32[k] = *s32; s32 += sizeof(block_q5_1)/4;
prepare1(4*i+k, bits.b + 2*k);
}
return vreinterpretq_f16_u8(vqtbl1q_u8(vld1q_u8((const uint8_t *)aux32), vreinterpretq_u8_u64(shuffle)));
}
HighBit5Legacy hbits;
const uint8x16_t mh = vdupq_n_u8(0x10);
const uint64x2_t shuffle = {0x0d0c090805040100, 0x0f0e0b0a07060302};
};
template <typename Dequantizer, typename Q8>
inline void sum_4(int i, Dequantizer& deq, const Q8& q8, const float16x4_t * sc16, float32x4_t * acc) {
for (int iy = 0; iy < Q8::nrc_y; ++iy) {
auto pall = sum_4_blocks(deq.bits.b, q8.quant_data(iy, i));
auto scale = vcvt_f32_f16(sc16[iy]);
acc[iy] = vmlaq_f32(acc[iy], scale, vcvtq_f32_s32(pall));
}
}
template <typename Dequantizer, typename Q8>
inline void mul_mat_qX_Y_q8_Y(int n, Dequantizer& deq, Q8& q8, const DataInfo& info, int nrc_x) {
const int nb = n / QK4_1;
float16x4_t sc16[Q8::nrc_y];
for (int ix = 0; ix < nrc_x; ++ix) {
deq.new_row(ix);
float32x4_t acc[Q8::nrc_y];
for (int iy = 0; iy < Q8::nrc_y; ++iy) acc[iy] = vdupq_n_f32(0.f);
for (int i = 0; i < nb/4; ++i) {
q8.process_scales(i, deq, sc16, acc);
sum_4(i, deq, q8, sc16, acc);
}
for (int i = 4*(nb/4); i < nb; ++i) {
q8.process_1_block(i, deq, acc);
}
for (int iy = 0; iy < Q8::nrc_y; ++iy) {
info.store(ix, iy, vaddvq_f32(acc[iy]));
}
}
}
template <typename Dequantizer, typename Q8>
inline void mul_mat_qX_Y_q8_Y_1(int n, Dequantizer& deq1, Dequantizer& deq2, Q8& q8, const DataInfo& info, int nrc_x) {
const int nb = n / QK4_1;
float16x4_t sc16[2];
for (int ix = 0; ix < nrc_x; ++ix) {
deq1.new_row(ix);
deq2.new_row(ix);
float32x4_t acc[2] = { vdupq_n_f32(0.f), vdupq_n_f32(0.f) };
for (int i = 0; i < nb/8; ++i) {
q8.process_scales(2*i+0, deq1, sc16+0, acc+0);
q8.process_scales(2*i+1, deq2, sc16+1, acc+1);
sum_4(2*i+0, deq1, q8, sc16+0, acc+0);
sum_4(2*i+1, deq2, q8, sc16+1, acc+1);
}
for (int i = 2*(nb/8); i < nb/4; ++i) {
q8.process_scales(i, deq1, sc16, acc);
sum_4(i, deq1, q8, sc16, acc);
}
for (int i = 4*(nb/4); i < nb; ++i) {
q8.process_1_block(i, deq1, acc);
}
info.store(ix, 0, vaddvq_f32(vaddq_f32(acc[0], acc[1])));
}
}
template <typename Dequantizer, int nrc_y>
static void mul_mat_qX_1_q8_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
Q81<nrc_y> q8(info);
if constexpr (nrc_y == 1) {
Dequantizer deq1(vx, bx), deq2(vx, bx);
mul_mat_qX_Y_q8_Y_1(n, deq1, deq2, q8, info, nrc_x);
} else {
Dequantizer deq(vx, bx);
mul_mat_qX_Y_q8_Y(n, deq, q8, info, nrc_x);
}
}
template <typename Dequantizer, int nrc_y>
static void mul_mat_qX_0_q8_0(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
Q80<nrc_y> q8(info);
if constexpr (nrc_y == 1) {
Dequantizer deq1(vx, bx), deq2(vx, bx);
mul_mat_qX_Y_q8_Y_1(n, deq1, deq2, q8, info, nrc_x);
} else {
Dequantizer deq(vx, bx);
mul_mat_qX_Y_q8_Y(n, deq, q8, info, nrc_x);
}
}
template <typename Dequantizer>
static void mul_mat_qX_1_q8_1_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
Dequantizer deq1(vx, bx), deq2(vx, bx);
Q81<1> q8(info);
mul_mat_qX_Y_q8_Y_1(n, deq1, deq2, q8, info, nrc_x);
}
template <typename Dequantizer>
static void mul_mat_qX_0_q8_0_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
Dequantizer deq1(vx, bx), deq2(vx, bx);
Q80<1> q8(info);
mul_mat_qX_Y_q8_Y(n, deq1, deq2, q8, info, nrc_x);
}
struct QF16Base {
constexpr static int k_step = 8;
using Data = float16x8_t;
using Acc = float16x8_t;
static inline Data load(const __fp16 * x) { return vld1q_f16(x); }
static inline Acc acc(Acc prev, const Data& y, const Data& x) {
return vfmaq_f16(prev, y, x);
}
static inline Acc acc_first(const Data& y, const Data& x) {
return vmulq_f16(y, x);
}
//constexpr static int k_step = 16;
//using Data = float16x8x2_t;
//static inline Data load(const __fp16 * x) { return vld1q_f16_x2(x); }
//static inline Acc acc(Acc prev, const Data& y, const Data& x) {
// return vfmaq_f16(vfmaq_f16(prev, y.val[0], x.val[0]), y.val[1], x.val[1]);
//}
//static inline Acc acc_first(const Data& y, const Data& x) {
// return vfmaq_f16(vmulq_f16(y.val[0], x.val[0]), y.val[1], x.val[1]);
//}
static inline float hsum(Acc acc) {
float32x4_t sum = vcvt_f32_f16(vadd_f16(vget_low_f16(acc), vget_high_f16(acc)));
return vaddvq_f32(sum);
}
};
template <int nrc> struct QF16 final : public QF16Base {
constexpr static int nrc_y = nrc;
QF16(const DataInfo& info) {
for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const __fp16 *)info.src1_row(iy);
}
QF16(const char * cx, size_t bx) {
for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const __fp16 *)(cx + iy*bx);
}
IQK_ALWAYS_INLINE Data load1(int iy, int i) const { return load(y[iy] + k_step*i); }
const __fp16 * y[nrc_y];
};
template <int nrc_y, int nrc_x>
IQK_NOINLINE void mul_mat_f16_f16_NxN(int n, const char * cx, size_t bx, int ix0, const DataInfo& info) {
assert(n%QF16Base::k_step == 0);
int nb = n/QF16Base::k_step;
QF16<nrc_y> y(info);
QF16<nrc_x> x(cx + ix0*bx, bx);
QF16Base::Data xv[nrc_x];
QF16Base::Acc acc[nrc_x*nrc_y];
auto yv = y.load1(0, 0);
for (int ix = 0; ix < nrc_x; ++ix) {
xv[ix] = x.load1(ix, 0);
acc[ix] = QF16Base::acc_first(yv, xv[ix]);
}
for (int iy = 1; iy < nrc_y; ++iy) {
yv = y.load1(iy, 0);
for (int ix = 0; ix < nrc_x; ++ix) acc[nrc_x*iy + ix] = QF16Base::acc_first(yv, xv[ix]);
}
for (int i = 1; i < nb; ++i) {
yv = y.load1(0, i);
for (int ix = 0; ix < nrc_x; ++ix) {
xv[ix] = x.load1(ix, i);
acc[ix] = QF16Base::acc(acc[ix], yv, xv[ix]);
}
for (int iy = 1; iy < nrc_y; ++iy) {
yv = y.load1(iy, i);
for (int ix = 0; ix < nrc_x; ++ix) acc[nrc_x*iy + ix] = QF16Base::acc(acc[nrc_x*iy + ix], yv, xv[ix]);
}
}
for (int iy = 0; iy < nrc_y; ++iy) for (int ix = 0; ix < nrc_x; ++ix) info.store(ix0+ix, iy, QF16Base::hsum(acc[nrc_x*iy+ix]));
}
template <int nrc_y>
void mul_mat_f16_f16_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
GGML_ASSERT(n%QF16Base::k_step == 0);
constexpr int k_nx = 5;
const char * cx = (const char *)vx;
for (int ix = 0; ix < nrc_x/k_nx; ++ix) {
mul_mat_f16_f16_NxN<nrc_y, k_nx>(n, cx, bx, ix*k_nx, info);
}
int last_x = k_nx*(nrc_x/k_nx);
if (last_x == nrc_x) return;
int nx = nrc_x - last_x;
switch (nx) {
case 1: mul_mat_f16_f16_NxN<nrc_y, 1>(n, cx, bx, last_x, info); break;
case 2: mul_mat_f16_f16_NxN<nrc_y, 2>(n, cx, bx, last_x, info); break;
case 3: mul_mat_f16_f16_NxN<nrc_y, 3>(n, cx, bx, last_x, info); break;
case 4: mul_mat_f16_f16_NxN<nrc_y, 4>(n, cx, bx, last_x, info); break;
}
}
template <int nrc> struct Q8_K64 {
constexpr static int nrc_y = nrc;
Q8_K64(const DataInfo& info) {
for (int iy = 0; iy < nrc_y; ++iy) {
auto dptr = (const float *)info.src1_row(iy);
std::memcpy(d + 4*iy, dptr, 4*sizeof(float));
y[iy] = (const int8_t *)(dptr + 4);
}
}
inline int8x16x4_t load_quants64(int iy, int i, int j) const { return vld1q_s8_x4(y[iy] + 128*i + 64*j); }
inline int8x16x2_t load_quants(int iy, int i, int j) const { return vld1q_s8_x2(y[iy] + 128*i + 32*j); }
inline float32x4_t scale(int iy) const { return vld1q_f32(d + 4*iy); }
float d[4*nrc_y];
const int8_t * y[nrc_y];
};
static const uint64_t kall_signs[257] = {
0x0101010101010101, 0x01010101010101ff, 0x010101010101ff01, 0x010101010101ffff,
0x0101010101ff0101, 0x0101010101ff01ff, 0x0101010101ffff01, 0x0101010101ffffff,
0x01010101ff010101, 0x01010101ff0101ff, 0x01010101ff01ff01, 0x01010101ff01ffff,
0x01010101ffff0101, 0x01010101ffff01ff, 0x01010101ffffff01, 0x01010101ffffffff,
0x010101ff01010101, 0x010101ff010101ff, 0x010101ff0101ff01, 0x010101ff0101ffff,
0x010101ff01ff0101, 0x010101ff01ff01ff, 0x010101ff01ffff01, 0x010101ff01ffffff,
0x010101ffff010101, 0x010101ffff0101ff, 0x010101ffff01ff01, 0x010101ffff01ffff,
0x010101ffffff0101, 0x010101ffffff01ff, 0x010101ffffffff01, 0x010101ffffffffff,
0x0101ff0101010101, 0x0101ff01010101ff, 0x0101ff010101ff01, 0x0101ff010101ffff,
0x0101ff0101ff0101, 0x0101ff0101ff01ff, 0x0101ff0101ffff01, 0x0101ff0101ffffff,
0x0101ff01ff010101, 0x0101ff01ff0101ff, 0x0101ff01ff01ff01, 0x0101ff01ff01ffff,
0x0101ff01ffff0101, 0x0101ff01ffff01ff, 0x0101ff01ffffff01, 0x0101ff01ffffffff,
0x0101ffff01010101, 0x0101ffff010101ff, 0x0101ffff0101ff01, 0x0101ffff0101ffff,
0x0101ffff01ff0101, 0x0101ffff01ff01ff, 0x0101ffff01ffff01, 0x0101ffff01ffffff,
0x0101ffffff010101, 0x0101ffffff0101ff, 0x0101ffffff01ff01, 0x0101ffffff01ffff,
0x0101ffffffff0101, 0x0101ffffffff01ff, 0x0101ffffffffff01, 0x0101ffffffffffff,
0x01ff010101010101, 0x01ff0101010101ff, 0x01ff01010101ff01, 0x01ff01010101ffff,
0x01ff010101ff0101, 0x01ff010101ff01ff, 0x01ff010101ffff01, 0x01ff010101ffffff,
0x01ff0101ff010101, 0x01ff0101ff0101ff, 0x01ff0101ff01ff01, 0x01ff0101ff01ffff,
0x01ff0101ffff0101, 0x01ff0101ffff01ff, 0x01ff0101ffffff01, 0x01ff0101ffffffff,
0x01ff01ff01010101, 0x01ff01ff010101ff, 0x01ff01ff0101ff01, 0x01ff01ff0101ffff,
0x01ff01ff01ff0101, 0x01ff01ff01ff01ff, 0x01ff01ff01ffff01, 0x01ff01ff01ffffff,
0x01ff01ffff010101, 0x01ff01ffff0101ff, 0x01ff01ffff01ff01, 0x01ff01ffff01ffff,
0x01ff01ffffff0101, 0x01ff01ffffff01ff, 0x01ff01ffffffff01, 0x01ff01ffffffffff,
0x01ffff0101010101, 0x01ffff01010101ff, 0x01ffff010101ff01, 0x01ffff010101ffff,
0x01ffff0101ff0101, 0x01ffff0101ff01ff, 0x01ffff0101ffff01, 0x01ffff0101ffffff,
0x01ffff01ff010101, 0x01ffff01ff0101ff, 0x01ffff01ff01ff01, 0x01ffff01ff01ffff,
0x01ffff01ffff0101, 0x01ffff01ffff01ff, 0x01ffff01ffffff01, 0x01ffff01ffffffff,
0x01ffffff01010101, 0x01ffffff010101ff, 0x01ffffff0101ff01, 0x01ffffff0101ffff,
0x01ffffff01ff0101, 0x01ffffff01ff01ff, 0x01ffffff01ffff01, 0x01ffffff01ffffff,
0x01ffffffff010101, 0x01ffffffff0101ff, 0x01ffffffff01ff01, 0x01ffffffff01ffff,
0x01ffffffffff0101, 0x01ffffffffff01ff, 0x01ffffffffffff01, 0x01ffffffffffffff,
0xff01010101010101, 0xff010101010101ff, 0xff0101010101ff01, 0xff0101010101ffff,
0xff01010101ff0101, 0xff01010101ff01ff, 0xff01010101ffff01, 0xff01010101ffffff,
0xff010101ff010101, 0xff010101ff0101ff, 0xff010101ff01ff01, 0xff010101ff01ffff,
0xff010101ffff0101, 0xff010101ffff01ff, 0xff010101ffffff01, 0xff010101ffffffff,
0xff0101ff01010101, 0xff0101ff010101ff, 0xff0101ff0101ff01, 0xff0101ff0101ffff,
0xff0101ff01ff0101, 0xff0101ff01ff01ff, 0xff0101ff01ffff01, 0xff0101ff01ffffff,
0xff0101ffff010101, 0xff0101ffff0101ff, 0xff0101ffff01ff01, 0xff0101ffff01ffff,
0xff0101ffffff0101, 0xff0101ffffff01ff, 0xff0101ffffffff01, 0xff0101ffffffffff,
0xff01ff0101010101, 0xff01ff01010101ff, 0xff01ff010101ff01, 0xff01ff010101ffff,
0xff01ff0101ff0101, 0xff01ff0101ff01ff, 0xff01ff0101ffff01, 0xff01ff0101ffffff,
0xff01ff01ff010101, 0xff01ff01ff0101ff, 0xff01ff01ff01ff01, 0xff01ff01ff01ffff,
0xff01ff01ffff0101, 0xff01ff01ffff01ff, 0xff01ff01ffffff01, 0xff01ff01ffffffff,
0xff01ffff01010101, 0xff01ffff010101ff, 0xff01ffff0101ff01, 0xff01ffff0101ffff,
0xff01ffff01ff0101, 0xff01ffff01ff01ff, 0xff01ffff01ffff01, 0xff01ffff01ffffff,
0xff01ffffff010101, 0xff01ffffff0101ff, 0xff01ffffff01ff01, 0xff01ffffff01ffff,
0xff01ffffffff0101, 0xff01ffffffff01ff, 0xff01ffffffffff01, 0xff01ffffffffffff,
0xffff010101010101, 0xffff0101010101ff, 0xffff01010101ff01, 0xffff01010101ffff,
0xffff010101ff0101, 0xffff010101ff01ff, 0xffff010101ffff01, 0xffff010101ffffff,
0xffff0101ff010101, 0xffff0101ff0101ff, 0xffff0101ff01ff01, 0xffff0101ff01ffff,
0xffff0101ffff0101, 0xffff0101ffff01ff, 0xffff0101ffffff01, 0xffff0101ffffffff,
0xffff01ff01010101, 0xffff01ff010101ff, 0xffff01ff0101ff01, 0xffff01ff0101ffff,
0xffff01ff01ff0101, 0xffff01ff01ff01ff, 0xffff01ff01ffff01, 0xffff01ff01ffffff,
0xffff01ffff010101, 0xffff01ffff0101ff, 0xffff01ffff01ff01, 0xffff01ffff01ffff,
0xffff01ffffff0101, 0xffff01ffffff01ff, 0xffff01ffffffff01, 0xffff01ffffffffff,
0xffffff0101010101, 0xffffff01010101ff, 0xffffff010101ff01, 0xffffff010101ffff,
0xffffff0101ff0101, 0xffffff0101ff01ff, 0xffffff0101ffff01, 0xffffff0101ffffff,
0xffffff01ff010101, 0xffffff01ff0101ff, 0xffffff01ff01ff01, 0xffffff01ff01ffff,
0xffffff01ffff0101, 0xffffff01ffff01ff, 0xffffff01ffffff01, 0xffffff01ffffffff,
0xffffffff01010101, 0xffffffff010101ff, 0xffffffff0101ff01, 0xffffffff0101ffff,
0xffffffff01ff0101, 0xffffffff01ff01ff, 0xffffffff01ffff01, 0xffffffff01ffffff,
0xffffffffff010101, 0xffffffffff0101ff, 0xffffffffff01ff01, 0xffffffffff01ffff,
0xffffffffffff0101, 0xffffffffffff01ff, 0xffffffffffffff01, 0xffffffffffffffff,
0xffffffffffffffff
};
struct DequantizerIQ1BN {
const uint8x16_t m1 = vdupq_n_u8(1);
const uint8x16x4_t sign_shuffles = {
vreinterpretq_u8_u64(uint64x2_t{0x0000000000000000, 0x0101010101010101}),
vreinterpretq_u8_u64(uint64x2_t{0x0202020202020202, 0x0303030303030303}),
vreinterpretq_u8_u64(uint64x2_t{0x0404040404040404, 0x0505050505050505}),
vreinterpretq_u8_u64(uint64x2_t{0x0606060606060606, 0x0707070707070707}),
};
const int8x16_t shift = vreinterpretq_s16_u64(vdupq_n_u64(0xfffafffcfffe0000));
const uint8x16_t qmask = vdupq_n_u8(3);
const uint8x16_t shuff1 = vreinterpretq_u8_u64(uint64x2_t{0x0100010001000100, 0x0908090809080908});
const uint8x16_t mask1 = vreinterpretq_u8_u64(vdupq_n_u64(0x8040201008040201));
int8x16x4_t signs;
uint64x2x4_t a;
inline void prepare_iq1bn_quants(uint8_t extra, const uint8_t * ql, const uint8_t * qh, int8x16x4_t& v) {
auto all_signs = vld1q_u8((const uint8_t *)(kall_signs + extra));
//auto all_signs = vdupq_n_u8(extra);
//all_signs = vorrq_u8(vceqq_u8(vandq_u8(all_signs, mask1), mask1), m1);
signs.val[0] = vqtbl1q_u8(all_signs, sign_shuffles.val[0]);
signs.val[1] = vqtbl1q_u8(all_signs, sign_shuffles.val[1]);
signs.val[2] = vqtbl1q_u8(all_signs, sign_shuffles.val[2]);
signs.val[3] = vqtbl1q_u8(all_signs, sign_shuffles.val[3]);
uint32_t aux32[2];
std::memcpy(aux32, qh, 4);
aux32[1] = aux32[0] & 0xf0f0f0f0;
aux32[0] &= 0x0f0f0f0f;
const uint8_t * h = (const uint8_t *)aux32;
a.val[0] = uint64x2_t{iq1bn_grid_u16[ql[0] | (h[0] << 8)], iq1bn_grid_u16[ql[1] | (h[4] << 4)]};
a.val[1] = uint64x2_t{iq1bn_grid_u16[ql[2] | (h[1] << 8)], iq1bn_grid_u16[ql[3] | (h[5] << 4)]};
a.val[2] = uint64x2_t{iq1bn_grid_u16[ql[4] | (h[2] << 8)], iq1bn_grid_u16[ql[5] | (h[6] << 4)]};
a.val[3] = uint64x2_t{iq1bn_grid_u16[ql[6] | (h[3] << 8)], iq1bn_grid_u16[ql[7] | (h[7] << 4)]};
v.val[0] = vsubq_s8(vandq_u8(vshlq_u16(vqtbl1q_u8(vreinterpretq_u8_u64(a.val[0]), shuff1), shift), qmask), m1);
v.val[1] = vsubq_s8(vandq_u8(vshlq_u16(vqtbl1q_u8(vreinterpretq_u8_u64(a.val[1]), shuff1), shift), qmask), m1);
v.val[2] = vsubq_s8(vandq_u8(vshlq_u16(vqtbl1q_u8(vreinterpretq_u8_u64(a.val[2]), shuff1), shift), qmask), m1);
v.val[3] = vsubq_s8(vandq_u8(vshlq_u16(vqtbl1q_u8(vreinterpretq_u8_u64(a.val[3]), shuff1), shift), qmask), m1);
v.val[0] = vmulq_s8(v.val[0], signs.val[0]);
v.val[1] = vmulq_s8(v.val[1], signs.val[1]);
v.val[2] = vmulq_s8(v.val[2], signs.val[2]);
v.val[3] = vmulq_s8(v.val[3], signs.val[3]);
}
};
template <int nrc_y>
static void mul_mat_iq1bn_q8_K64(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
const int nb = n / QK_IQ1BN;
Q8_K64<nrc_y> q8(info);
DequantizerIQ1BN deq;
int32x4_t accd[nrc_y];
int8x16x4_t v1, v2;
const block_iq1_bn * x = (const block_iq1_bn *)((const char *)vx);
for (int ix = 0; ix < nrc_x; ++ix) {
x = (const block_iq1_bn *)((const char *)vx + ix*bx);
if constexpr (nrc_y == 1) {
int32x4_t acc[4] = {};
for (int i = 0; i < nb/2; ++i) {
deq.prepare_iq1bn_quants(x[2*i+0].extra, x[2*i+0].ql, x[2*i+0].qh, v1);
auto q = q8.load_quants64(0, i, 0);
for (int j = 0; j < 4; ++j) acc[j] = ggml_vdotq_s32(acc[j], q.val[j], v1.val[j]);
deq.prepare_iq1bn_quants(x[2*i+1].extra, x[2*i+1].ql, x[2*i+1].qh, v1);
q = q8.load_quants64(0, i, 1);
for (int j = 0; j < 4; ++j) acc[j] = ggml_vdotq_s32(acc[j], q.val[j], v1.val[j]);
}
accd[0] = vaddq_s32(vaddq_s32(acc[0], acc[1]), vaddq_s32(acc[2], acc[3]));
}
else {
for (int iy = 0; iy < nrc_y; ++iy) accd[iy] = vdupq_n_s32(0);
for (int i = 0; i < nb/2; ++i) {
deq.prepare_iq1bn_quants(x[2*i+0].extra, x[2*i+0].ql, x[2*i+0].qh, v1);
deq.prepare_iq1bn_quants(x[2*i+1].extra, x[2*i+1].ql, x[2*i+1].qh, v2);
for (int iy = 0; iy < nrc_y; ++iy) {
auto q = q8.load_quants(iy, i, 0);
accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v1.val[0]), q.val[1], v1.val[1]);
q = q8.load_quants(iy, i, 1);
accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v1.val[2]), q.val[1], v1.val[3]);
q = q8.load_quants(iy, i, 2);
accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v2.val[0]), q.val[1], v2.val[1]);
q = q8.load_quants(iy, i, 3);
accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v2.val[2]), q.val[1], v2.val[3]);
}
}
}
int i = 2*(nb/2);
if (i < nb) {
deq.prepare_iq1bn_quants(x[i].extra, x[i].ql, x[i].qh, v1);
if constexpr (nrc_y == 1) {
auto q = q8.load_quants(0, i/2, 0);
for (int j = 0; j < 4; ++j) {
accd[0] = ggml_vdotq_s32(accd[0], q.val[j], v1.val[j]);
}
} else {
for (int iy = 0; iy < nrc_y; ++iy) {
auto q = q8.load_quants(iy, i/2, 0);
accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v1.val[0]), q.val[1], v1.val[1]);
q = q8.load_quants(iy, i/2, 1);
accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v1.val[2]), q.val[1], v1.val[3]);
}
}
}
for (int iy = 0; iy < nrc_y; ++iy) {
info.store(ix, iy, vaddvq_f32(vmulq_f32(q8.scale(iy), vcvtq_f32_s32(accd[iy]))));
}
}
}
template <int nrc_y>
static void mul_mat_iq2bn_q8_K64(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
const int nb = n / QK_IQ1BN;
Q8_K64<nrc_y> q8(info);
int32x4_t accd[nrc_y];
const auto m1 = vdupq_n_u8(1);
const auto mask2 = vdupq_n_s8(3);
for (int ix = 0; ix < nrc_x; ++ix) {
const block_iq2_bn * x = (const block_iq2_bn *)((const char *)vx + ix*bx);
if constexpr (nrc_y == 1) {
int8x16x4_t v1;
int32x4_t acc[4] = {};
for (int i = 0; i < nb/2; ++i) {
for (int j = 0; j < 2; ++j) {
auto q = q8.load_quants64(0, i, j);
auto q2bits = vld1q_u8(x[2*i+j].qs);
v1.val[0] = vsubq_s8(vandq_s8(q2bits, mask2), m1);
v1.val[1] = vsubq_s8(vandq_s8(vshrq_n_u8(q2bits, 2), mask2), m1);
v1.val[2] = vsubq_s8(vandq_s8(vshrq_n_u8(q2bits, 4), mask2), m1);
v1.val[3] = vsubq_s8(vshrq_n_u8(q2bits, 6), m1);
acc[0] = ggml_vdotq_s32(acc[0], q.val[0], v1.val[0]);
acc[1] = ggml_vdotq_s32(acc[1], q.val[1], v1.val[1]);
acc[2] = ggml_vdotq_s32(acc[2], q.val[2], v1.val[2]);
acc[3] = ggml_vdotq_s32(acc[3], q.val[3], v1.val[3]);
}
}
accd[0] = vaddq_s32(vaddq_s32(acc[0], acc[1]), vaddq_s32(acc[2], acc[3]));
} else {
int8x16x4_t v1, v2;
for (int iy = 0; iy < nrc_y; ++iy) accd[iy] = vdupq_n_s32(0);
for (int i = 0; i < nb/2; ++i) {
auto q2bits = vld1q_u8(x[2*i+0].qs);
v1.val[0] = vsubq_s8(vandq_s8(q2bits, mask2), m1);
v1.val[1] = vsubq_s8(vandq_s8(vshrq_n_u8(q2bits, 2), mask2), m1);
v1.val[2] = vsubq_s8(vandq_s8(vshrq_n_u8(q2bits, 4), mask2), m1);
v1.val[3] = vsubq_s8(vshrq_n_u8(q2bits, 6), m1);
q2bits = vld1q_u8(x[2*i+1].qs);
v2.val[0] = vsubq_s8(vandq_s8(q2bits, mask2), m1);
v2.val[1] = vsubq_s8(vandq_s8(vshrq_n_u8(q2bits, 2), mask2), m1);
v2.val[2] = vsubq_s8(vandq_s8(vshrq_n_u8(q2bits, 4), mask2), m1);
v2.val[3] = vsubq_s8(vshrq_n_u8(q2bits, 6), m1);
for (int iy = 0; iy < nrc_y; ++iy) {
auto q = q8.load_quants(iy, i, 0);
accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v1.val[0]), q.val[1], v1.val[1]);
q = q8.load_quants(iy, i, 1);
accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v1.val[2]), q.val[1], v1.val[3]);
q = q8.load_quants(iy, i, 2);
accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v2.val[0]), q.val[1], v2.val[1]);
q = q8.load_quants(iy, i, 3);
accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v2.val[2]), q.val[1], v2.val[3]);
}
}
}
int i = 2*(nb/2);
if (i < nb) {
auto q2bits = vld1q_u8(x[i].qs);
int8x16x4_t v1;
v1.val[0] = vsubq_s8(vandq_s8(q2bits, mask2), m1);
v1.val[1] = vsubq_s8(vandq_s8(vshrq_n_u8(q2bits, 2), mask2), m1);
v1.val[2] = vsubq_s8(vandq_s8(vshrq_n_u8(q2bits, 4), mask2), m1);
v1.val[3] = vsubq_s8(vshrq_n_u8(q2bits, 6), m1);
for (int iy = 0; iy < nrc_y; ++iy) {
auto q = q8.load_quants(iy, i/2, 0);
accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v1.val[0]), q.val[1], v1.val[1]);
q = q8.load_quants(iy, i/2, 1);
accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v1.val[2]), q.val[1], v1.val[3]);
}
}
for (int iy = 0; iy < nrc_y; ++iy) {
info.store(ix, iy, vaddvq_f32(vmulq_f32(q8.scale(iy), vcvtq_f32_s32(accd[iy]))));
}
}
}
template <typename Dequantizer> void MulMat::set_functions(MulMat& m) {
if constexpr (std::is_same_v<Dequantizer, DequantizerQ40> || std::is_same_v<Dequantizer, DequantizerQ50> ||
std::is_same_v<Dequantizer, DequantizerQ80> || std::is_same_v<Dequantizer, DequantizerIQ4NL>) {
m.funcs[0] = mul_mat_qX_0_q8_0<Dequantizer, 1>;
m.funcs[1] = mul_mat_qX_0_q8_0<Dequantizer, 2>;
m.funcs[2] = mul_mat_qX_0_q8_0<Dequantizer, 3>;
m.funcs[3] = mul_mat_qX_0_q8_0<Dequantizer, 4>;
m.funcs[4] = mul_mat_qX_0_q8_0<Dequantizer, 5>;
m.funcs[5] = mul_mat_qX_0_q8_0<Dequantizer, 6>;
m.funcs[6] = mul_mat_qX_0_q8_0<Dequantizer, 7>;
m.funcs[7] = mul_mat_qX_0_q8_0<Dequantizer, 8>;
}
else if constexpr (std::is_same_v<Dequantizer, DequantizerQ41> || std::is_same_v<Dequantizer, DequantizerQ51>) {
m.funcs[0] = mul_mat_qX_1_q8_1<Dequantizer, 1>;
m.funcs[1] = mul_mat_qX_1_q8_1<Dequantizer, 2>;
m.funcs[2] = mul_mat_qX_1_q8_1<Dequantizer, 3>;
m.funcs[3] = mul_mat_qX_1_q8_1<Dequantizer, 4>;
m.funcs[4] = mul_mat_qX_1_q8_1<Dequantizer, 5>;
m.funcs[5] = mul_mat_qX_1_q8_1<Dequantizer, 6>;
m.funcs[6] = mul_mat_qX_1_q8_1<Dequantizer, 7>;
m.funcs[7] = mul_mat_qX_1_q8_1<Dequantizer, 8>;
}
else {
m.funcs[0] = mul_mat_qX_K_q8_K_T<1, Dequantizer>;
m.funcs[1] = mul_mat_qX_K_q8_K_T<2, Dequantizer>;
m.funcs[2] = mul_mat_qX_K_q8_K_T<3, Dequantizer>;
m.funcs[3] = mul_mat_qX_K_q8_K_T<4, Dequantizer>;
m.funcs[4] = mul_mat_qX_K_q8_K_T<5, Dequantizer>;
m.funcs[5] = mul_mat_qX_K_q8_K_T<6, Dequantizer>;
m.funcs[6] = mul_mat_qX_K_q8_K_T<7, Dequantizer>;
m.funcs[7] = mul_mat_qX_K_q8_K_T<8, Dequantizer>;
}
}
bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& m, int /*Ny*/) {
if (typeA == GGML_TYPE_F16 && typeB == GGML_TYPE_F16) {
if (ne00%8) return false;
for (auto& f : m.funcs) f = nullptr;
m.funcs[0] = mul_mat_f16_f16_T<1>;
m.funcs[1] = mul_mat_f16_f16_T<2>;
m.funcs[2] = mul_mat_f16_f16_T<3>;
m.funcs[3] = mul_mat_f16_f16_T<4>;
m.funcs[4] = mul_mat_f16_f16_T<5>;
return true;
}
auto expected_Btype = GGML_TYPE_Q8_K;
switch (typeA) {
case GGML_TYPE_Q2_K:
MulMat::set_functions<DequantizerQ2K>(m);
break;
case GGML_TYPE_Q3_K:
MulMat::set_functions<DequantizerQ3K>(m);
break;
case GGML_TYPE_Q4_K:
MulMat::set_functions<DequantizerQ4K>(m);
break;
case GGML_TYPE_Q5_K:
MulMat::set_functions<DequantizerQ5K>(m);
break;
case GGML_TYPE_Q6_K:
MulMat::set_functions<DequantizerQ6K>(m);
break;
case GGML_TYPE_IQ4_XS:
MulMat::set_functions<DequantizerIQ4XS>(m);
break;
case GGML_TYPE_IQ2_XXS:
MulMat::set_functions<DequantizerIQ2XXS>(m);
break;
case GGML_TYPE_IQ2_XS:
MulMat::set_functions<DequantizerIQ2XS>(m);
break;
case GGML_TYPE_IQ2_S:
MulMat::set_functions<DequantizerIQ2S>(m);
break;
case GGML_TYPE_IQ3_XXS:
MulMat::set_functions<DequantizerIQ3XXS>(m);
break;
case GGML_TYPE_IQ3_S:
MulMat::set_functions<DequantizerIQ3S>(m);
break;
case GGML_TYPE_IQ1_BN:
m.funcs[0] = mul_mat_iq1bn_q8_K64<1>;
m.funcs[1] = mul_mat_iq1bn_q8_K64<2>;
m.funcs[2] = mul_mat_iq1bn_q8_K64<3>;
m.funcs[3] = mul_mat_iq1bn_q8_K64<4>;
m.funcs[4] = mul_mat_iq1bn_q8_K64<5>;
m.funcs[5] = mul_mat_iq1bn_q8_K64<6>;
m.funcs[6] = mul_mat_iq1bn_q8_K64<7>;
m.funcs[7] = mul_mat_iq1bn_q8_K64<8>;
expected_Btype = GGML_TYPE_Q8_K64;
break;
case GGML_TYPE_IQ2_BN:
m.funcs[0] = mul_mat_iq2bn_q8_K64<1>;
m.funcs[1] = mul_mat_iq2bn_q8_K64<2>;
m.funcs[2] = mul_mat_iq2bn_q8_K64<3>;
m.funcs[3] = mul_mat_iq2bn_q8_K64<4>;
m.funcs[4] = mul_mat_iq2bn_q8_K64<5>;
m.funcs[5] = mul_mat_iq2bn_q8_K64<6>;
m.funcs[6] = mul_mat_iq2bn_q8_K64<7>;
m.funcs[7] = mul_mat_iq2bn_q8_K64<8>;
expected_Btype = GGML_TYPE_Q8_K64;
break;
case GGML_TYPE_Q4_0:
MulMat::set_functions<DequantizerQ40>(m);
expected_Btype = GGML_TYPE_Q8_0;
break;
case GGML_TYPE_Q4_1:
MulMat::set_functions<DequantizerQ41>(m);
expected_Btype = GGML_TYPE_Q8_1;
break;
case GGML_TYPE_Q5_0:
MulMat::set_functions<DequantizerQ50>(m);
expected_Btype = GGML_TYPE_Q8_0;
break;
case GGML_TYPE_Q5_1:
MulMat::set_functions<DequantizerQ51>(m);
expected_Btype = GGML_TYPE_Q8_1;
break;
case GGML_TYPE_Q8_0:
MulMat::set_functions<DequantizerQ80>(m);
expected_Btype = GGML_TYPE_Q8_0;
break;
case GGML_TYPE_IQ4_NL:
MulMat::set_functions<DequantizerIQ4NL>(m);
expected_Btype = GGML_TYPE_Q8_0;
break;
default:
return false;
}
return typeB == expected_Btype;
}
}
#endif // __aarch64__
#else // IQK_IMPLEMENT
bool iqk_mul_mat(int, long, long, long, int, const void *, long, int, const void *, long, float *, long, int, int) {
return false;
}
bool iqk_mul_mat_moe(long, long, long, int, int, const void *, long, int, const void *, long, float *, long, long,
const void *, int, int) {
return false;
}
#endif