Files
ik_llama.cpp/gguf-py
Kawrakow 3e536b95b0 Add optional MLA (#188)
* Deepseek MLA Optimizations

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>

* Make MLA optional

* Remove some unnecessary copies in the MLA attention

* Deepseek MLA Optimizations V2 (#195)

* Avoid allocating MHA KV cache when MLA is turned on

* Added missing gguf-py file

* Added final optimizations

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>

* Make sure we do have wk_b and wv_b before enabling MLA

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>

* Use type_k and type_v to set the types of the MLA caches

They were hard-coded at f16.
On my Ryzen-7950X with native bf16 support I get a fairly
significant PP performance boost with bf16 KV-cache:
PP-4096 = 320 t/s up from 292 t/s with fp16 KV-cache.

* Better gemm strategy when nth > nhead

It gives a ~10% PP performance boost for DeepSeek-Lite with 32 threads
(with or without MLA).
Before this commit, when nth > nhead heads were processed
sequentially with all nth threads participating in each
matrix multiplication. Now we ind the gcd of nhead and
nth and split threads into nth/gcd groups, each group
processing nhead/gcd heads.

---------

Co-authored-by: Saood Karim <saood05@gmail.com>
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-09 19:48:44 +02:00
..
2025-02-09 19:48:44 +02:00
2024-07-27 07:55:01 +02:00
2024-08-12 15:14:32 +02:00
2023-08-25 09:26:05 +03:00
2024-07-27 07:55:01 +02:00
2024-07-27 07:55:01 +02:00

gguf

This is a Python package for writing binary files in the GGUF (GGML Universal File) format.

See convert_hf_to_gguf.py as an example for its usage.

Installation

pip install gguf

API Examples/Simple Tools

examples/writer.py — Generates example.gguf in the current directory to demonstrate generating a GGUF file. Note that this file cannot be used as a model.

scripts/gguf_dump.py — Dumps a GGUF file's metadata to the console.

scripts/gguf_set_metadata.py — Allows changing simple metadata values in a GGUF file by key.

scripts/gguf_convert_endian.py — Allows converting the endianness of GGUF files.

scripts/gguf_new_metadata.py — Copies a GGUF file with added/modified/removed metadata values.

Development

Maintainers who participate in development of this package are advised to install it in editable mode:

cd /path/to/llama.cpp/gguf-py

pip install --editable .

Note: This may require to upgrade your Pip installation, with a message saying that editable installation currently requires setup.py. In this case, upgrade Pip to the latest:

pip install --upgrade pip

Automatic publishing with CI

There's a GitHub workflow to make a release automatically upon creation of tags in a specified format.

  1. Bump the version in pyproject.toml.
  2. Create a tag named gguf-vx.x.x where x.x.x is the semantic version number.
git tag -a gguf-v1.0.0 -m "Version 1.0 release"
  1. Push the tags.
git push origin --tags

Manual publishing

If you want to publish the package manually for any reason, you need to have twine and build installed:

pip install build twine

Then, follow these steps to release a new version:

  1. Bump the version in pyproject.toml.
  2. Build the package:
python -m build
  1. Upload the generated distribution archives:
python -m twine upload dist/*

Run Unit Tests

From root of this repository you can run this command to run all the unit tests

python -m unittest discover ./gguf-py -v

TODO

  • Include conversion scripts as command line entry points in this package.