mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-02-04 05:23:58 +00:00
779 lines
29 KiB
C++
779 lines
29 KiB
C++
#define LLAMA_API_INTERNAL
|
|
#include "common.h"
|
|
#include "ggml.h"
|
|
#include "llama.h"
|
|
#include "iqk/iqk_quantize.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cinttypes>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <map>
|
|
#include <numeric>
|
|
#include <regex>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
#include <thread>
|
|
#include <mutex>
|
|
#include <chrono>
|
|
|
|
#ifdef __AVX2__
|
|
#include <immintrin.h>
|
|
#endif
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
struct quantize_stats_params {
|
|
std::string model = DEFAULT_MODEL_PATH;
|
|
bool verbose = false;
|
|
bool per_layer_stats = false;
|
|
bool print_histogram = false;
|
|
bool reference = false;
|
|
std::vector<std::string> include_layers;
|
|
std::vector<std::string> exclude_layers;
|
|
std::vector<enum ggml_type> include_types;
|
|
};
|
|
|
|
constexpr size_t HISTOGRAM_BUCKETS = 150;
|
|
constexpr double HISTOGRAM_RANGE = 0.03;
|
|
|
|
struct error_stats {
|
|
size_t num_samples;
|
|
double total_error;
|
|
double max_error;
|
|
double sum_x2;
|
|
uint64_t error_histogram[HISTOGRAM_BUCKETS];
|
|
};
|
|
|
|
static void quantize_stats_print_usage(int /*argc*/, char ** argv) {
|
|
quantize_stats_params params;
|
|
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "options:\n");
|
|
fprintf(stderr, " -h, --help show this help message and exit\n");
|
|
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
|
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
|
fprintf(stderr, " -r, --reference\n");
|
|
fprintf(stderr, " use reference implementation (default: false)\n");
|
|
fprintf(stderr, " -v, --verbose\n");
|
|
fprintf(stderr, " verbose output (default: false)\n");
|
|
fprintf(stderr, " -p, --per-layer-stats\n");
|
|
fprintf(stderr, " print stats per layer (default: false)\n");
|
|
fprintf(stderr, " --histogram\n");
|
|
fprintf(stderr, " print error histogram (default: false)\n");
|
|
fprintf(stderr, " -l LAYER, --include-layer LAYER\n");
|
|
fprintf(stderr, " only test layers matching pattern\n");
|
|
fprintf(stderr, " -L LAYER, --exclude-layer LAYER\n");
|
|
fprintf(stderr, " exclude layers matching pattern\n");
|
|
fprintf(stderr, " -t TYPE, --type TYPE\n");
|
|
fprintf(stderr, " only test given type (q4_0, q4_1)\n");
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
// Check if a layer is included/excluded by command line
|
|
static bool layer_included(const quantize_stats_params & params, const std::string & layer) {
|
|
for (const auto& excluded : params.exclude_layers) {
|
|
if (std::regex_search(layer, std::regex(excluded))) {
|
|
return false;
|
|
}
|
|
}
|
|
for (const auto& included : params.include_layers) {
|
|
if (std::regex_search(layer, std::regex(included))) {
|
|
return true;
|
|
}
|
|
}
|
|
return params.include_layers.empty();
|
|
}
|
|
|
|
// Update error statistics given vectors with the before/after result of quantization
|
|
static void update_error_stats(int64_t nelements, const float * input, const float * output, error_stats & stats) {
|
|
for (int64_t i = 0; i < nelements; i++) {
|
|
double diff = input[i] - output[i];
|
|
stats.total_error += diff * diff;
|
|
stats.max_error = fmax(fabs(diff), stats.max_error);
|
|
stats.sum_x2 += input[i]*input[i];
|
|
stats.error_histogram[std::max(std::min((size_t) floor(fabs(diff) / HISTOGRAM_RANGE * HISTOGRAM_BUCKETS), HISTOGRAM_BUCKETS-1), (size_t) 0)]++;
|
|
}
|
|
stats.num_samples += nelements;
|
|
}
|
|
|
|
static void combine_error_stats(error_stats & into, const error_stats & from) {
|
|
into.num_samples += from.num_samples;
|
|
into.total_error += from.total_error;
|
|
into.sum_x2 += from.sum_x2;
|
|
if (from.max_error > into.max_error) into.max_error = from.max_error;
|
|
for (size_t i=0; i<HISTOGRAM_BUCKETS; ++i) into.error_histogram[i] += from.error_histogram[i];
|
|
}
|
|
|
|
static double find_quantile(const error_stats & stats, double quantile) {
|
|
double sum = std::accumulate(std::begin(stats.error_histogram), std::end(stats.error_histogram), 0.0);
|
|
|
|
double accum = 0;
|
|
for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
|
|
accum += stats.error_histogram[i];
|
|
if (accum >= sum*quantile) {
|
|
return (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
|
|
}
|
|
}
|
|
return INFINITY;
|
|
}
|
|
|
|
static void print_error_stats(const std::string & name, const error_stats & stats, bool print_histogram) {
|
|
double rmse = sqrt(stats.total_error / (double) stats.num_samples);
|
|
double av_x = sqrt(stats.sum_x2 / (double) stats.num_samples);
|
|
double median = find_quantile(stats, .5);
|
|
double pct95 = find_quantile(stats, .95);
|
|
printf("%-40s: rmse %.8f, %.6f maxerr %.8f, %.6f 95pct<%.4f, median<%.4f\n", name.c_str(), rmse, rmse/av_x,
|
|
stats.max_error, stats.max_error/av_x, pct95, median);
|
|
if (print_histogram) {
|
|
printf("Error distribution:\n");
|
|
for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
|
|
double lower = i * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
|
|
double upper = (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
|
|
if (i == HISTOGRAM_BUCKETS -1) upper = INFINITY;
|
|
printf("[%3.4f, %3.4f): %11" PRIu64 "\n", lower, upper, stats.error_histogram[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// copied from ggml.h - verify that we can access this as a flat array
|
|
static bool tensor_is_contiguous(const struct ggml_tensor * tensor) {
|
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
|
|
|
return
|
|
tensor->nb[0] == ggml_type_size(tensor->type) &&
|
|
tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
|
|
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
|
|
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
|
|
}
|
|
|
|
static void test_roundtrip_on_chunk(
|
|
const ggml_tensor * layer, int64_t offset, int64_t chunk_size, const ggml_type_traits_t & qfns, bool use_reference,
|
|
float * input_scratch, char * quantized_scratch, float * output_scratch, error_stats & stats, bool fill_input) {
|
|
if (fill_input) {
|
|
if (layer->type == GGML_TYPE_F16) {
|
|
for (int i = 0; i < chunk_size; i++) {
|
|
input_scratch[i] = ggml_get_f32_1d(layer, i + offset);
|
|
}
|
|
} else {
|
|
input_scratch = ggml_get_data_f32(layer) + offset;
|
|
}
|
|
}
|
|
|
|
if (use_reference) {
|
|
qfns.from_float_ref(input_scratch, quantized_scratch, chunk_size);
|
|
} else {
|
|
qfns.from_float(input_scratch, quantized_scratch, chunk_size);
|
|
}
|
|
qfns.to_float(quantized_scratch, output_scratch, chunk_size);
|
|
|
|
update_error_stats(chunk_size, input_scratch, output_scratch, stats);
|
|
}
|
|
|
|
#ifdef __AVX2__
|
|
static inline float hsum_float_4(__m128 x) {
|
|
x = _mm_add_ps(x, _mm_movehl_ps(x, x));
|
|
x = _mm_add_ss(x, _mm_movehdup_ps(x));
|
|
return _mm_cvtss_f32(x);
|
|
}
|
|
static inline float hsum_float_8(__m256 x) {
|
|
return hsum_float_4(_mm_add_ps(_mm256_castps256_ps128(x), _mm256_extractf128_ps(x, 1)));
|
|
}
|
|
#endif
|
|
|
|
static void f_helper(int nrows, int stride, float norm, const float * g, const float * q, float * f, float& sum_f) {
|
|
#ifdef __AVX2__
|
|
auto vnorm = _mm256_set1_ps(norm);
|
|
__m256 sums[8] = {};
|
|
for (int row = 0; row < nrows; ++row) {
|
|
__m256 vg = _mm256_set1_ps(g[row]);
|
|
auto qr = q + row*stride;
|
|
for (int k = 0; k < 8; ++k) {
|
|
auto vq = _mm256_loadu_ps(qr + 8*k);
|
|
sums[k] = _mm256_fmadd_ps(vg, vq, sums[k]);
|
|
}
|
|
}
|
|
__m256 tot = _mm256_setzero_ps();
|
|
for (int k = 0; k < 8; ++k) {
|
|
sums[k] = _mm256_mul_ps(vnorm, sums[k]);
|
|
_mm256_storeu_ps(f + 8*k, sums[k]);
|
|
tot = _mm256_fmadd_ps(sums[k], sums[k], tot);
|
|
sums[k] = _mm256_setzero_ps();
|
|
}
|
|
sum_f += hsum_float_8(tot);
|
|
#else
|
|
std::memset(f, 0, 64*sizeof(float));
|
|
for (int row = 0; row < nrows; ++row) {
|
|
auto qr = q + row*stride;
|
|
for (int k = 0; k < 64; ++k) {
|
|
f[k] += qr[k]*g[row];
|
|
}
|
|
}
|
|
float s = 0;
|
|
for (int k = 0; k < 64; ++k) {
|
|
f[k] *= norm;
|
|
s += f[k]*f[k];
|
|
}
|
|
sum_f += s;
|
|
#endif
|
|
}
|
|
|
|
static void g_helper(int n_per_row, const float * qr, const float * f, float norm, float& g, float& mse) {
|
|
float sum_g = 0;
|
|
float sum = 0;
|
|
#ifdef __AVX2__
|
|
__m256 vsum = _mm256_setzero_ps();
|
|
for (int j = 0; j < n_per_row; j += 8) {
|
|
auto vq = _mm256_loadu_ps(qr + j);
|
|
auto vf = _mm256_loadu_ps(f + j);
|
|
vsum = _mm256_fmadd_ps(vq, vf, vsum);
|
|
}
|
|
sum = hsum_float_8(vsum);
|
|
#else
|
|
for (int j = 0; j < n_per_row; ++j) sum += qr[j]*f[j];
|
|
#endif
|
|
g = sum * norm;
|
|
#ifdef __AVX2__
|
|
auto vg = _mm256_set1_ps(g);
|
|
auto vmse = _mm256_setzero_ps();
|
|
for (int j = 0; j < n_per_row; j += 8) {
|
|
auto vq = _mm256_loadu_ps(qr + j);
|
|
auto vf = _mm256_loadu_ps(f + j);
|
|
auto vdiff = _mm256_sub_ps(vq, _mm256_mul_ps(vg, vf));
|
|
vmse = _mm256_fmadd_ps(vdiff, vdiff, vmse);
|
|
}
|
|
mse += hsum_float_8(vmse);
|
|
#else
|
|
for (int j = 0; j < n_per_row; ++j) {
|
|
float diff = qr[j] - g*f[j];
|
|
mse += diff*diff;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void do_svd_iteration(int n_per_row, int nrows, const float * q, float * f, float * g, float& f_norm, float& mse,
|
|
std::vector<std::thread>& workers, std::vector<float>& work) {
|
|
GGML_ASSERT(n_per_row % 64 == 0);
|
|
GGML_ASSERT(nrows % 16 == 0);
|
|
GGML_ASSERT(!workers.empty());
|
|
|
|
if (work.size() < 2*workers.size()) work.resize(2*workers.size());
|
|
int nblock = n_per_row/64;
|
|
|
|
auto compute_f = [&] (int ith) {
|
|
float sum_f = 0;
|
|
for (int i = ith; i < nblock; i += workers.size()) {
|
|
f_helper(nrows, n_per_row, f_norm, g, q + 64*i, f + 64*i, sum_f);
|
|
}
|
|
work[ith] = sum_f;
|
|
};
|
|
for (int i = 0; i < int(workers.size())-1; ++i) workers[i] = std::thread(compute_f, i);
|
|
compute_f(workers.size()-1);
|
|
for (int i = 0; i < int(workers.size())-1; ++i) workers[i].join();
|
|
|
|
float sum_f = 0; for (int i = 0; i < int(workers.size()); ++i) sum_f += work[i];
|
|
float g_norm = 1/sum_f;
|
|
|
|
nblock = nrows/16;
|
|
auto compute_g = [&] (int ith) {
|
|
float sum_g = 0, mse = 0;
|
|
for (int i = ith; i < nblock; i += workers.size()) {
|
|
for (int j = 0; j < 16; ++j) {
|
|
g_helper(n_per_row, q + (16*i + j)*n_per_row, f, g_norm, g[16*i + j], mse);
|
|
sum_g += g[16*i + j]*g[16*i + j];
|
|
}
|
|
}
|
|
work[2*ith+0] = sum_g;
|
|
work[2*ith+1] = mse;
|
|
};
|
|
for (int i = 0; i < int(workers.size())-1; ++i) workers[i] = std::thread(compute_g, i);
|
|
compute_g(workers.size()-1);
|
|
for (int i = 0; i < int(workers.size())-1; ++i) workers[i].join();
|
|
|
|
float sum_g = 0; mse = 0;
|
|
for (int i = 0; i < int(workers.size()); ++i) {
|
|
sum_g += work[2*i+0];
|
|
mse += work[2*i+1];
|
|
}
|
|
|
|
f_norm = 1/sum_g;
|
|
|
|
}
|
|
|
|
static void try_lora(int n_per_row, int nrows, const float * x, float * q, int nsvd_iter, int verbosity = 1) {
|
|
constexpr int kNiter = 10;
|
|
if (nsvd_iter < 1) nsvd_iter = kNiter;
|
|
std::vector<float> f(n_per_row, 1), aux(n_per_row), g(nrows, 1);
|
|
for (int iter = 0; iter < nsvd_iter; ++iter) {
|
|
float mse0 = 0;
|
|
for (int row = 0; row < nrows; ++row) {
|
|
const float * xr = x + row*n_per_row;
|
|
const float * qr = q + row*n_per_row;
|
|
float sumqx = 0, sumq2 = 0;
|
|
for (int j = 0; j < n_per_row; ++j) {
|
|
float diff = xr[j] - g[row]*f[j]*qr[j];
|
|
mse0 += diff*diff;
|
|
float w = f[j]*qr[j];
|
|
sumqx += xr[j]*w;
|
|
sumq2 += w*w;
|
|
}
|
|
g[row] = sumq2 > 0 ? sumqx/sumq2 : 1;
|
|
}
|
|
std::memset(f.data(), 0, f.size()*sizeof(float));
|
|
std::memset(aux.data(), 0, aux.size()*sizeof(float));
|
|
for (int row = 0; row < nrows; ++row) {
|
|
const float * xr = x + row*n_per_row;
|
|
const float * qr = q + row*n_per_row;
|
|
for (int j = 0; j < n_per_row; ++j) {
|
|
float w = g[row]*qr[j];
|
|
f[j] += w*xr[j];
|
|
aux[j] += w*w;
|
|
}
|
|
}
|
|
for (int j = 0; j < n_per_row; ++j) if (aux[j] > 0) f[j] /= aux[j];
|
|
float mse = 0;
|
|
for (int row = 0; row < nrows; ++row) {
|
|
const float * xr = x + row*n_per_row;
|
|
const float * qr = q + row*n_per_row;
|
|
for (int j = 0; j < n_per_row; ++j) {
|
|
float diff = xr[j] - g[row]*f[j]*qr[j];
|
|
mse += diff*diff;
|
|
}
|
|
}
|
|
printf("%s(%d): rmse0 = %g, rmse = %g\n", __func__, iter, sqrt(mse0/(n_per_row*nrows)), sqrt(mse/(n_per_row*nrows)));
|
|
}
|
|
}
|
|
|
|
static void try_svd(int n_per_row, int nrows, const float * b, float * q, int nsvd, int nsvd_iter, char * scratch, int verbosity = 1) {
|
|
constexpr int kNiter = 10;
|
|
if (nsvd_iter < 1) nsvd_iter = kNiter;
|
|
if (nsvd > nrows) nsvd = nrows;
|
|
auto tim1 = std::chrono::steady_clock::now();
|
|
int nelem = n_per_row*nrows;
|
|
double mse = 0;
|
|
bool use_avx2 = false;
|
|
#ifdef __AVX2__
|
|
GGML_ASSERT(n_per_row%64 == 0);
|
|
use_avx2 = true;
|
|
#endif
|
|
float max_error = 0;
|
|
for (int j = 0; j < nelem; ++j) {
|
|
q[j] = b[j] - q[j];
|
|
mse += q[j]*q[j];
|
|
max_error = std::max(max_error, std::abs(q[j]));
|
|
}
|
|
int nthread = std::max(1, int(std::thread::hardware_concurrency()/2));
|
|
std::vector<std::thread> workers(nthread);
|
|
std::vector<float> work;
|
|
if (verbosity > 0) printf("===================== %s(%d x %d, %d, %d): rmse = %g, max_err = %g\n", __func__,
|
|
n_per_row, nrows, nsvd, use_avx2, sqrt(mse/nelem), max_error);
|
|
float mse_old = mse;
|
|
std::vector<float> f(n_per_row), g(nrows, 1);
|
|
for (int isvd = 0; isvd < nsvd; ++isvd) {
|
|
if (verbosity > 1) printf("--- isvd = %d\n", isvd);
|
|
float norm = 1.f/nrows;
|
|
for (int iter = 0; iter < nsvd_iter; ++iter) {
|
|
float this_mse = 0;
|
|
do_svd_iteration(n_per_row, nrows, q, f.data(), g.data(), norm, this_mse, workers, work);
|
|
if (verbosity > 1) printf(" after %d iterations: %g\n", iter+1, sqrt(this_mse/nelem));
|
|
if (mse_old/this_mse - 1 < 1e-6f) break;
|
|
mse_old = this_mse;
|
|
}
|
|
if (false) {
|
|
quantize_iq2_k(f.data(), (block_iq2_k *)scratch, 1, n_per_row, nullptr);
|
|
dequantize_row_iq2_k((block_iq2_k *)scratch, f.data(), n_per_row);
|
|
quantize_iq2_k(g.data(), (block_iq2_k *)scratch, 1, nrows, nullptr);
|
|
dequantize_row_iq2_k((block_iq2_k *)scratch, g.data(), nrows);
|
|
//quantize_iq4_k(f.data(), (block_iq4_k *)scratch, 1, n_per_row, nullptr);
|
|
//dequantize_row_iq4_k((block_iq4_k *)scratch, f.data(), n_per_row);
|
|
//quantize_iq4_k(g.data(), (block_iq4_k *)scratch, 1, nrows, nullptr);
|
|
//dequantize_row_iq4_k((block_iq4_k *)scratch, g.data(), nrows);
|
|
}
|
|
#ifdef __AVX2__
|
|
for (int row = 0; row < nrows; ++row) {
|
|
auto qr = q + row*n_per_row;
|
|
auto vg = _mm256_set1_ps(g[row]);
|
|
for (int j = 0; j < n_per_row; j += 8) {
|
|
auto vf = _mm256_loadu_ps(f.data() + j);
|
|
auto vq = _mm256_loadu_ps(qr + j);
|
|
vq = _mm256_sub_ps(vq, _mm256_mul_ps(vf, vg));
|
|
_mm256_storeu_ps(qr + j, vq);
|
|
}
|
|
g[row] = 1;
|
|
}
|
|
#else
|
|
for (int row = 0; row < nrows; ++row) {
|
|
auto qr = q + row*n_per_row;
|
|
for (int j = 0; j < n_per_row; ++j) {
|
|
qr[j] -= g[row]*f[j];
|
|
}
|
|
g[row] = 1;
|
|
}
|
|
#endif
|
|
}
|
|
auto tim2 = std::chrono::steady_clock::now();
|
|
if (verbosity > 0) {
|
|
max_error = 0;
|
|
#ifdef __AVX2__
|
|
auto vmax = _mm256_setzero_ps();
|
|
auto sign = _mm256_set1_ps(-0.0f);
|
|
for (int row = 0; row < nrows; ++row) {
|
|
auto qr = q + row*n_per_row;
|
|
for (int j = 0; j < n_per_row; j += 8) {
|
|
auto vq = _mm256_loadu_ps(qr + j);
|
|
vmax = _mm256_max_ps(vmax, _mm256_andnot_ps(sign, vq));
|
|
}
|
|
}
|
|
__m128 max4 = _mm_max_ps(_mm256_extractf128_ps(vmax, 1), _mm256_castps256_ps128(vmax));
|
|
max4 = _mm_max_ps(max4, _mm_movehl_ps(max4, max4));
|
|
max4 = _mm_max_ss(max4, _mm_movehdup_ps(max4));
|
|
max_error = _mm_cvtss_f32(max4);
|
|
#else
|
|
for (int row = 0; row < nrows; ++row) {
|
|
auto qr = q + row*n_per_row;
|
|
for (int j = 0; j < n_per_row; ++j) {
|
|
max_error = std::max(max_error, std::abs(qr[j]));
|
|
}
|
|
}
|
|
#endif
|
|
printf("%s: finished in %g s. Final rmse = %g max_error = %g\n", __func__,
|
|
1e-3*std::chrono::duration_cast<std::chrono::milliseconds>(tim2-tim1).count(), sqrt(mse_old/nelem), max_error);
|
|
}
|
|
}
|
|
|
|
// Run quantization function for a single layer and update error stats
|
|
static void test_roundtrip_on_layer(
|
|
std::string & name, bool print_layer_stats, const ggml_type_traits_t & qfns, bool use_reference,
|
|
const ggml_tensor * layer, std::vector<float> & input_scratch, std::vector<char> & quantized_scratch,
|
|
std::vector<float> & output_scratch, error_stats & total_error, int nsvd_before, int nsvd_after,
|
|
bool do_lora, int nsvd_iter, int verbosity, int max_thread = 0) {
|
|
assert(tensor_is_contiguous(layer));
|
|
error_stats layer_error {};
|
|
uint64_t nelements = ggml_nelements(layer);
|
|
|
|
float* input_scratch_ptr = nullptr;
|
|
if (layer->type == GGML_TYPE_F16) {
|
|
if (input_scratch.size() < nelements) input_scratch.resize(nelements);
|
|
input_scratch_ptr = input_scratch.data();
|
|
}
|
|
if (output_scratch.size() < nelements) output_scratch.resize(nelements);
|
|
if (quantized_scratch.size() < 4*nelements) quantized_scratch.resize(4*nelements);
|
|
|
|
bool fill_input = true;
|
|
if (nsvd_before > 0 && layer->ne[0] > 1 && layer->ne[1] > 1 && layer->ne[2] == 1 && layer->ne[3] == 1) {
|
|
if (layer->type == GGML_TYPE_F16) {
|
|
for (int i = 0; i < nelements; i++) {
|
|
input_scratch[i] = ggml_get_f32_1d(layer, i);
|
|
}
|
|
} else {
|
|
printf("%s: f32 is not supported\n", __func__);
|
|
return;
|
|
//input_scratch = ggml_get_data_f32(layer) + 0;
|
|
}
|
|
std::memset(output_scratch.data(), 0, nelements*sizeof(float));
|
|
try_svd(layer->ne[0], layer->ne[1], input_scratch_ptr, output_scratch.data(), nsvd_before, nsvd_iter, quantized_scratch.data(), verbosity);
|
|
std::memcpy(input_scratch_ptr, output_scratch.data(), nelements*sizeof(float));
|
|
fill_input = false;
|
|
}
|
|
|
|
if (max_thread < 1) max_thread = std::thread::hardware_concurrency();
|
|
int chunk_size = 32*512;
|
|
int num_chunks = (nelements + chunk_size - 1)/chunk_size;
|
|
|
|
if (num_chunks < 2 || max_thread < 2) {
|
|
test_roundtrip_on_chunk(layer, 0, nelements, qfns, use_reference, input_scratch_ptr, quantized_scratch.data(),
|
|
output_scratch.data(), print_layer_stats ? layer_error : total_error, fill_input);
|
|
} else {
|
|
auto & stats = print_layer_stats ? layer_error : total_error;
|
|
std::mutex mutex;
|
|
uint64_t counter = 0;
|
|
auto compute = [&mutex, &counter, &stats, &qfns, nelements, layer, use_reference, input_scratch_ptr,
|
|
&quantized_scratch, &output_scratch, chunk_size, fill_input] () {
|
|
error_stats local_stats {};
|
|
while (true) {
|
|
std::unique_lock<std::mutex> lock(mutex);
|
|
uint64_t offset = counter; counter += chunk_size;
|
|
if (offset >= nelements) {
|
|
combine_error_stats(stats, local_stats);
|
|
break;
|
|
}
|
|
lock.unlock();
|
|
uint64_t chunk = offset + chunk_size < nelements ? chunk_size : nelements - offset;
|
|
test_roundtrip_on_chunk(layer, offset, chunk, qfns, use_reference, input_scratch_ptr + offset,
|
|
quantized_scratch.data() + 4*offset, output_scratch.data() + offset, local_stats, fill_input);
|
|
}
|
|
};
|
|
int nthread = std::min(num_chunks, max_thread);
|
|
std::vector<std::thread> workers(nthread-1);
|
|
for (auto& w : workers) w = std::thread(compute);
|
|
compute();
|
|
for (auto& w : workers) w.join();
|
|
}
|
|
|
|
if (do_lora) {
|
|
try_lora(layer->ne[0], layer->ne[1], input_scratch_ptr, output_scratch.data(), nsvd_iter, verbosity);
|
|
}
|
|
|
|
if (print_layer_stats) {
|
|
print_error_stats(name, layer_error, false);
|
|
combine_error_stats(total_error, layer_error);
|
|
}
|
|
|
|
if (nsvd_after > 0 && layer->ne[0] > 1 && layer->ne[1] > 1 && layer->ne[2] == 1 && layer->ne[3] == 1) {
|
|
try_svd(layer->ne[0], layer->ne[1], input_scratch_ptr, output_scratch.data(), nsvd_after, nsvd_iter, quantized_scratch.data(), verbosity);
|
|
}
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
ggml_time_init();
|
|
|
|
quantize_stats_params params;
|
|
|
|
// read command line
|
|
|
|
int max_thread = 0;
|
|
int nsvd_before = 0;
|
|
int nsvd_after = 0;
|
|
int nsvd_iter = 0;
|
|
int verbosity = 1;
|
|
bool do_lora = false;
|
|
bool invalid_param = false;
|
|
std::string arg;
|
|
for (int i = 1; i < argc; i++) {
|
|
arg = argv[i];
|
|
|
|
if (arg == "-h" || arg == "--help") {
|
|
quantize_stats_print_usage(argc, argv);
|
|
exit(0);
|
|
} else if (arg == "-r" || arg == "--reference") {
|
|
params.reference = true;
|
|
} else if (arg == "-v") {
|
|
params.verbose = true;
|
|
} else if (arg == "-p" || arg == "--per-layer-stats") {
|
|
params.per_layer_stats = true;
|
|
} else if (arg == "--histogram") {
|
|
params.print_histogram = true;
|
|
} else if (arg == "--lora") {
|
|
do_lora = true;
|
|
} else if (arg == "--svd-before") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
nsvd_before = atoi(argv[i]);
|
|
} else if (arg == "--svd-after") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
nsvd_after = atoi(argv[i]);
|
|
} else if (arg == "-ni" || arg == "--svd-iterations") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
nsvd_iter = atoi(argv[i]);
|
|
} else if (arg == "-sv" || arg == "--svd-verbosity") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
verbosity = atoi(argv[i]);
|
|
} else if (arg == "-m" || arg == "--model") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.model = argv[i];
|
|
} else if (arg == "-l" || arg == "--include-layer") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.include_layers.emplace_back(argv[i]);
|
|
} else if (arg == "-L" || arg == "--exclude-layer") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.exclude_layers.emplace_back(argv[i]);
|
|
} else if (arg == "-t" || arg == "--type") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
int j;
|
|
for (j = 0; j < GGML_TYPE_COUNT; ++j) {
|
|
const auto * name = ggml_type_name((ggml_type) j);
|
|
if (name && strcmp(argv[i], name) == 0) break;
|
|
}
|
|
if (j < GGML_TYPE_COUNT) {
|
|
params.include_types.push_back((ggml_type) j);
|
|
} else {
|
|
fprintf(stderr, "error: %s not in list of types\n", argv[i]);
|
|
invalid_param = true;
|
|
}
|
|
} else if (arg == "-n" || arg == "--num-threads") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
max_thread = atoi(argv[i]);
|
|
} else {
|
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
quantize_stats_print_usage(argc, argv);
|
|
return 1;
|
|
}
|
|
}
|
|
if (invalid_param) {
|
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
|
quantize_stats_print_usage(argc, argv);
|
|
return 1;
|
|
}
|
|
if (do_lora && (nsvd_before > 0 || nsvd_after > 0)) {
|
|
fprintf(stderr, "error: lora cannot be combined with SVD\n");
|
|
return 1;
|
|
}
|
|
|
|
print_build_info();
|
|
|
|
// load the model
|
|
fprintf(stderr, "Loading model\n");
|
|
|
|
const int64_t t_main_start_us = ggml_time_us();
|
|
llama_model * model;
|
|
llama_context * ctx;
|
|
|
|
{
|
|
auto mparams = llama_model_default_params();
|
|
mparams.use_mlock = false;
|
|
|
|
model = llama_load_model_from_file(params.model.c_str(), mparams);
|
|
|
|
if (model == NULL) {
|
|
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
|
|
return 1;
|
|
}
|
|
|
|
auto cparams = llama_context_default_params();
|
|
cparams.n_ctx = 256;
|
|
cparams.seed = 1;
|
|
|
|
ctx = llama_new_context_with_model(model, cparams);
|
|
|
|
if (ctx == NULL) {
|
|
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
|
|
llama_free_model(model);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
const auto &tensors = llama_internal_get_tensor_map(ctx);
|
|
|
|
// check layer tensors
|
|
int included_layers = 0;
|
|
int64_t max_nelements = 0;
|
|
bool is_f16 = false;
|
|
for (const auto& kv_tensor : tensors) {
|
|
if (!layer_included(params, kv_tensor.first)) {
|
|
continue;
|
|
}
|
|
if (kv_tensor.second->ne[0] == 1 || kv_tensor.second->ne[1] == 1) {
|
|
// we never quantize those
|
|
continue;
|
|
}
|
|
if (params.verbose) {
|
|
printf("%s: type %s, size %" PRId64 "\n", kv_tensor.first.c_str(), ggml_type_name(kv_tensor.second->type), ggml_nelements(kv_tensor.second));
|
|
}
|
|
if (kv_tensor.second->type == GGML_TYPE_F16) {
|
|
is_f16 = true;
|
|
} else if (kv_tensor.second->type != GGML_TYPE_F32) {
|
|
fprintf(stderr, "%s: error: Quantization should be tested with a float model, "
|
|
"this model contains already quantized layers (%s is type %d)\n", __func__, kv_tensor.first.c_str(), kv_tensor.second->type);
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
return 1;
|
|
}
|
|
included_layers++;
|
|
max_nelements = std::max(max_nelements, ggml_nelements(kv_tensor.second));
|
|
}
|
|
|
|
if (is_f16) {
|
|
printf("note: source model is f16\n");
|
|
}
|
|
printf("testing %d layers with max size %" PRId64 "\n", included_layers, max_nelements);
|
|
// allocate scratch space
|
|
std::vector<float> input_scratch;
|
|
std::vector<char> quantized_scratch;
|
|
std::vector<float> output_scratch;
|
|
|
|
// loop throught quantization types
|
|
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
|
|
const ggml_type type = (ggml_type) i;
|
|
if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) {
|
|
continue;
|
|
}
|
|
ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
|
|
if (qfns.from_float && qfns.to_float) {
|
|
if (params.verbose) {
|
|
printf("testing %s ...\n", ggml_type_name(type));
|
|
}
|
|
|
|
ggml_quantize_init(type);
|
|
|
|
error_stats global_stats {};
|
|
|
|
for (const auto& kv_tensor : tensors) {
|
|
if (!layer_included(params, kv_tensor.first)) {
|
|
continue;
|
|
}
|
|
if (kv_tensor.second->ne[0] == 1 || kv_tensor.second->ne[1] == 1) {
|
|
// we never quantize those
|
|
continue;
|
|
}
|
|
if (params.verbose) {
|
|
printf(" %s ...\n", kv_tensor.first.c_str());
|
|
}
|
|
std::string layer_name { ggml_type_name(type) };
|
|
layer_name += "::" + kv_tensor.first;
|
|
test_roundtrip_on_layer(
|
|
layer_name,
|
|
params.per_layer_stats,
|
|
qfns,
|
|
params.reference,
|
|
kv_tensor.second,
|
|
input_scratch,
|
|
quantized_scratch,
|
|
output_scratch,
|
|
global_stats,
|
|
nsvd_before, nsvd_after,
|
|
do_lora,
|
|
nsvd_iter,
|
|
verbosity,
|
|
max_thread
|
|
);
|
|
}
|
|
|
|
print_error_stats(ggml_type_name(type), global_stats, params.print_histogram);
|
|
}
|
|
}
|
|
|
|
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
// report timing
|
|
{
|
|
const int64_t t_main_end_us = ggml_time_us();
|
|
|
|
printf("\n");
|
|
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
|
|
}
|
|
|
|
return 0;
|
|
}
|