mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-01-26 17:20:01 +00:00
* Does this fix #690? * Another attempt --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
234 lines
9.2 KiB
C++
234 lines
9.2 KiB
C++
#pragma once
|
||
|
||
#include "json.hpp"
|
||
#include "streaming_chat.hpp"
|
||
#include "parsers/kimi_k2_parser.hpp"
|
||
#include "parsers/qwen3_parser.hpp"
|
||
#include "qwen3_tools.hpp"
|
||
#include "deepseek_r1_tools.hpp"
|
||
#include "../../common/chat.h"
|
||
#include "../../common/chat-parser.h"
|
||
#include <string>
|
||
#include <regex>
|
||
|
||
using json = nlohmann::ordered_json;
|
||
|
||
// Function calling interface for Kimi-K2 format
|
||
static json parse_kimi_k2_tool_calls(const std::string& text) {
|
||
return kimi_k2::parse_tool_calls(text);
|
||
}
|
||
|
||
// Function calling interface for Qwen3 format
|
||
static json parse_qwen3_tool_calls(const std::string& text) {
|
||
return qwen3::parse_tool_calls(text);
|
||
}
|
||
|
||
static std::string clean_function_calls_from_content(const std::string& content) {
|
||
return kimi_k2::clean_content(content);
|
||
}
|
||
|
||
// New llama.cpp-style content extraction with streaming support
|
||
static std::string extract_content_from_mixed_input(const std::string& content, bool is_partial, const std::string& model_name = "") {
|
||
if (is_qwen3_model(model_name)) {
|
||
return qwen3::extract_content_during_parsing(content, is_partial);
|
||
} else if (is_deepseek_r1_model(model_name)) {
|
||
// DeepSeek R1 content extraction - remove <think> tags and tool calls
|
||
constexpr std::string_view k_think_start{"<think>"};
|
||
constexpr std::string_view k_think_end{"</think>"};
|
||
|
||
auto result = content;
|
||
|
||
// Remove <think>...</think> tags
|
||
size_t think_start = 0;
|
||
size_t tool_start = 0;
|
||
bool is_thinking = false;
|
||
while ((think_start = result.find(k_think_start, think_start)) != std::string::npos) {
|
||
size_t think_end = result.find(k_think_end, think_start);
|
||
if (think_end != std::string::npos) {
|
||
think_start = think_end + k_think_end.length();
|
||
tool_start = think_start;
|
||
//result.erase(think_start, think_end + k_think_end.length() - think_start);
|
||
} else {
|
||
is_thinking = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
// Is this the right thing to do? If we have an open thinking tag, we just retrun and do not try to
|
||
// remove function calls.
|
||
if (is_thinking) {
|
||
return result;
|
||
}
|
||
|
||
// Remove DeepSeek R1 tool call syntax
|
||
//size_t tool_start = 0;
|
||
while ((tool_start = result.find("<|tool▁calls▁begin|>", tool_start)) != std::string::npos) {
|
||
size_t tool_end = result.find("<|tool▁calls▁end|>", tool_start);
|
||
if (tool_end != std::string::npos) {
|
||
result.erase(tool_start, tool_end + strlen("<|tool▁calls▁end|>") - tool_start);
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
|
||
return result;
|
||
} else {
|
||
return kimi_k2::extract_content_during_parsing(content, is_partial);
|
||
}
|
||
}
|
||
|
||
// Incremental parsing for streaming tool calls with model detection
|
||
static ik_chat_msg parse_chat_message_incremental(const std::string& content, bool is_partial = false, const std::string& model_name = "") {
|
||
ik_chat_msg msg;
|
||
msg.role = "assistant";
|
||
|
||
try {
|
||
json tool_calls_json;
|
||
bool has_function_syntax = false;
|
||
|
||
// Route parsing based on model type
|
||
if (is_qwen3_model(model_name)) {
|
||
// Use Qwen3 XML parser
|
||
tool_calls_json = parse_qwen3_tool_calls(content);
|
||
|
||
// Check for partial content during streaming
|
||
if (is_partial && qwen3::is_partial_content_advanced(content)) {
|
||
throw std::runtime_error("partial structured content detected");
|
||
}
|
||
|
||
// Check for malformed XML tool call syntax
|
||
has_function_syntax = content.find("<tool_call>") != std::string::npos;
|
||
} else if (is_deepseek_r1_model(model_name)) {
|
||
// Use common chat parser for DeepSeek R1
|
||
try {
|
||
common_chat_syntax syntax;
|
||
syntax.format = COMMON_CHAT_FORMAT_DEEPSEEK_R1;
|
||
syntax.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||
syntax.reasoning_in_content = true; // Fix for thinking tag termination issue
|
||
syntax.enable_tool_calls = true;
|
||
|
||
common_chat_msg_parser parser(content, is_partial, syntax);
|
||
parser.parse();
|
||
auto result = parser.result();
|
||
|
||
// Convert tool calls to JSON format expected by the system
|
||
tool_calls_json = json::array();
|
||
for (const auto& tool_call : result.tool_calls) {
|
||
json tc;
|
||
tc["id"] = tool_call.id.empty() ? ("call_" + std::to_string(rand())) : tool_call.id;
|
||
tc["type"] = "function";
|
||
tc["function"]["name"] = tool_call.name;
|
||
tc["function"]["arguments"] = tool_call.arguments;
|
||
tool_calls_json.push_back(tc);
|
||
}
|
||
|
||
// Check for malformed DeepSeek R1 tool call syntax
|
||
has_function_syntax = content.find("<|tool▁calls▁begin|>") != std::string::npos;
|
||
} catch (const common_chat_msg_partial_exception&) {
|
||
if (is_partial) {
|
||
throw std::runtime_error("partial structured content detected");
|
||
}
|
||
// If not partial, treat as regular content
|
||
tool_calls_json = json::array();
|
||
has_function_syntax = false;
|
||
}
|
||
} else {
|
||
// Default to Kimi-K2 parser
|
||
tool_calls_json = parse_kimi_k2_tool_calls(content);
|
||
|
||
// Check for partial content during streaming
|
||
if (is_partial && kimi_k2::is_partial_content_advanced(content)) {
|
||
throw std::runtime_error("partial structured content detected");
|
||
}
|
||
|
||
// Check for malformed function call syntax
|
||
has_function_syntax = content.find("functions.") != std::string::npos;
|
||
}
|
||
|
||
bool parsing_succeeded = !tool_calls_json.empty();
|
||
|
||
if (has_function_syntax && !parsing_succeeded) {
|
||
throw std::runtime_error("malformed function call syntax detected");
|
||
}
|
||
|
||
// Process successful parsing results
|
||
if (!tool_calls_json.empty()) {
|
||
for (const auto& tc_json : tool_calls_json) {
|
||
try {
|
||
ik_chat_tool_call tc;
|
||
tc.id = tc_json.value("id", "");
|
||
|
||
if (!tc_json.contains("function") || !tc_json["function"].is_object() || !tc_json["function"].contains("name")) {
|
||
continue;
|
||
}
|
||
|
||
tc.name = tc_json["function"]["name"];
|
||
if (tc.name.empty()) {
|
||
continue;
|
||
}
|
||
|
||
if (tc_json["function"].contains("arguments")) {
|
||
tc.arguments = tc_json["function"]["arguments"];
|
||
} else {
|
||
tc.arguments = "{}";
|
||
}
|
||
|
||
// Validate arguments (only if not partial)
|
||
if (!is_partial && !tc.arguments.empty()) {
|
||
try {
|
||
auto parsed = json::parse(tc.arguments);
|
||
(void)parsed;
|
||
} catch (const std::exception&) {
|
||
continue;
|
||
}
|
||
}
|
||
|
||
msg.tool_calls.push_back(tc);
|
||
} catch (const std::exception&) {
|
||
continue;
|
||
}
|
||
}
|
||
|
||
// Use model-specific content extraction
|
||
if (is_qwen3_model(model_name)) {
|
||
msg.content = qwen3::extract_content_during_parsing(content, is_partial);
|
||
} else if (is_deepseek_r1_model(model_name)) {
|
||
msg.content = extract_content_from_mixed_input(content, is_partial, model_name);
|
||
} else {
|
||
msg.content = kimi_k2::extract_content_during_parsing(content, is_partial);
|
||
}
|
||
} else {
|
||
// No tool calls found, extract content
|
||
if (is_qwen3_model(model_name)) {
|
||
msg.content = qwen3::extract_content_during_parsing(content, is_partial);
|
||
} else if (is_deepseek_r1_model(model_name)) {
|
||
msg.content = extract_content_from_mixed_input(content, is_partial, model_name);
|
||
} else {
|
||
msg.content = kimi_k2::extract_content_during_parsing(content, is_partial);
|
||
}
|
||
}
|
||
|
||
} catch (const std::exception& e) {
|
||
if (!is_partial) {
|
||
// Original llama.cpp fallback pattern - use public API
|
||
common_chat_syntax syntax;
|
||
syntax.format = COMMON_CHAT_FORMAT_CONTENT_ONLY; // Use content-only format
|
||
|
||
// Use the public API that handles fallback internally
|
||
common_chat_msg fallback_result = common_chat_parse(content, is_partial, syntax);
|
||
|
||
// Convert to ik_chat_msg
|
||
msg.tool_calls.clear();
|
||
msg.content = fallback_result.content;
|
||
}
|
||
// If is_partial=true, keep empty result (no content chunks during streaming)
|
||
}
|
||
|
||
return msg;
|
||
}
|
||
|
||
static std::string generate_tool_call_id() {
|
||
static int counter = 0;
|
||
return "call_" + std::to_string(++counter);
|
||
}
|