mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-01-26 17:20:01 +00:00
756 lines
25 KiB
C++
756 lines
25 KiB
C++
#pragma once
|
|
|
|
#include "llama.h"
|
|
#include "common.h"
|
|
|
|
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
|
#define JSON_ASSERT GGML_ASSERT
|
|
#include <nlohmann/json.hpp>
|
|
#include "chat.h"
|
|
#include <string>
|
|
#include <vector>
|
|
#include <sstream>
|
|
#include <random>
|
|
|
|
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
|
|
|
|
using json = nlohmann::ordered_json;
|
|
|
|
// https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
|
|
enum error_type {
|
|
ERROR_TYPE_INVALID_REQUEST,
|
|
ERROR_TYPE_AUTHENTICATION,
|
|
ERROR_TYPE_SERVER,
|
|
ERROR_TYPE_NOT_FOUND,
|
|
ERROR_TYPE_PERMISSION,
|
|
ERROR_TYPE_UNAVAILABLE, // custom error
|
|
ERROR_TYPE_NOT_SUPPORTED, // custom error
|
|
};
|
|
|
|
extern bool server_verbose;
|
|
extern bool server_log_json;
|
|
|
|
#ifndef SERVER_VERBOSE
|
|
#define SERVER_VERBOSE 1
|
|
#endif
|
|
|
|
#if SERVER_VERBOSE != 1
|
|
#define LOG_VERBOSE(MSG, ...)
|
|
#else
|
|
#define LOG_VERBOSE(MSG, ...) \
|
|
do \
|
|
{ \
|
|
if (server_verbose) \
|
|
{ \
|
|
server_log("VERB", __func__, __LINE__, MSG, __VA_ARGS__); \
|
|
} \
|
|
} while (0)
|
|
#endif
|
|
|
|
#define LOG_ERROR( MSG, ...) server_log("ERR", __func__, __LINE__, MSG, __VA_ARGS__)
|
|
#define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__)
|
|
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
|
|
|
|
static inline void server_log(const char * level, const char * function, int line, const char * message, const json & extra);
|
|
|
|
template <typename T>
|
|
static T json_value(const json & body, const std::string & key, const T & default_value) {
|
|
// Fallback null to default value
|
|
if (body.contains(key) && !body.at(key).is_null()) {
|
|
try {
|
|
return body.at(key);
|
|
} catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const& err) {
|
|
std::stringstream ss;
|
|
ss << "Wrong type supplied for parameter '" << key << "'. Expected '" << json(default_value).type_name() << "', using default value: "<< err.what();
|
|
LOG_WARNING(ss.str().c_str(), body);
|
|
return default_value;
|
|
}
|
|
} else {
|
|
return default_value;
|
|
}
|
|
}
|
|
|
|
// thin wrapper around common_grammar_trigger with (de)serialization functions
|
|
struct server_grammar_trigger {
|
|
common_grammar_trigger value;
|
|
|
|
server_grammar_trigger() = default;
|
|
server_grammar_trigger(const common_grammar_trigger& value) : value(value) {}
|
|
server_grammar_trigger(const json& in) {
|
|
value.type = (common_grammar_trigger_type)in.at("type").get<int>();
|
|
value.value = in.at("value").get<std::string>();
|
|
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
|
|
value.token = (llama_token)in.at("token").get<int>();
|
|
}
|
|
}
|
|
|
|
json to_json() const {
|
|
json out{
|
|
{"type", (int)value.type},
|
|
{"value", value.value},
|
|
};
|
|
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
|
|
out["token"] = (int)value.token;
|
|
}
|
|
return out;
|
|
}
|
|
};
|
|
|
|
static inline void server_log(const char * level, const char * function, int line, const char * message, const json & extra) {
|
|
std::stringstream ss_tid;
|
|
ss_tid << std::this_thread::get_id();
|
|
json log = json{
|
|
{"tid", ss_tid.str()},
|
|
{"timestamp", time(nullptr)},
|
|
};
|
|
|
|
if (server_log_json) {
|
|
log.merge_patch({
|
|
{"level", level},
|
|
{"function", function},
|
|
{"line", line},
|
|
{"msg", message},
|
|
});
|
|
|
|
if (!extra.empty()) {
|
|
log.merge_patch(extra);
|
|
}
|
|
|
|
printf("%s\n", log.dump(-1, ' ', false, json::error_handler_t::replace).c_str());
|
|
} else {
|
|
char buf[1024];
|
|
snprintf(buf, 1024, "%4s [%24s] %s", level, function, message);
|
|
|
|
if (!extra.empty()) {
|
|
log.merge_patch(extra);
|
|
}
|
|
std::stringstream ss;
|
|
ss << buf << " |";
|
|
for (const auto & el : log.items())
|
|
{
|
|
const std::string value = el.value().dump(-1, ' ', false, json::error_handler_t::replace);
|
|
ss << " " << el.key() << "=" << value;
|
|
}
|
|
|
|
const std::string str = ss.str();
|
|
printf("%.*s\n", (int)str.size(), str.data());
|
|
}
|
|
fflush(stdout);
|
|
}
|
|
|
|
//
|
|
// chat template utils
|
|
//
|
|
|
|
//
|
|
// base64 utils (TODO: move to common in the future)
|
|
//
|
|
|
|
static const std::string base64_chars =
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
"abcdefghijklmnopqrstuvwxyz"
|
|
"0123456789+/";
|
|
|
|
static inline bool is_base64(uint8_t c) {
|
|
return (isalnum(c) || (c == '+') || (c == '/'));
|
|
}
|
|
|
|
static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string) {
|
|
int i = 0;
|
|
int j = 0;
|
|
int in_ = 0;
|
|
|
|
int in_len = encoded_string.size();
|
|
|
|
uint8_t char_array_4[4];
|
|
uint8_t char_array_3[3];
|
|
|
|
std::vector<uint8_t> ret;
|
|
|
|
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
|
|
char_array_4[i++] = encoded_string[in_]; in_++;
|
|
if (i == 4) {
|
|
for (i = 0; i < 4; i++) {
|
|
char_array_4[i] = base64_chars.find(char_array_4[i]);
|
|
}
|
|
|
|
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
|
|
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
|
|
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
|
|
|
|
for (i = 0; (i < 3); i++) {
|
|
ret.push_back(char_array_3[i]);
|
|
}
|
|
|
|
i = 0;
|
|
}
|
|
}
|
|
|
|
if (i) {
|
|
for (j = i; j < 4; j++) {
|
|
char_array_4[j] = 0;
|
|
}
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
char_array_4[j] = base64_chars.find(char_array_4[j]);
|
|
}
|
|
|
|
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
|
|
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
|
|
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
|
|
|
|
for (j = 0; j < i - 1; j++) {
|
|
ret.push_back(char_array_3[j]);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
//
|
|
// random string / id
|
|
//
|
|
|
|
static std::string random_string() {
|
|
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
|
|
|
|
std::random_device rd;
|
|
std::mt19937 generator(rd());
|
|
|
|
std::string result(32, ' ');
|
|
|
|
for (int i = 0; i < 32; ++i) {
|
|
result[i] = str[generator() % str.size()];
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static std::string gen_chatcmplid() {
|
|
std::stringstream chatcmplid;
|
|
chatcmplid << "chatcmpl-" << random_string();
|
|
|
|
return chatcmplid.str();
|
|
}
|
|
|
|
static std::string gen_tool_call_id() {
|
|
return random_string();
|
|
}
|
|
|
|
//
|
|
// other common utils
|
|
//
|
|
|
|
static size_t common_part(const std::vector<llama_token> & a, const std::vector<llama_token> & b) {
|
|
size_t i;
|
|
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
|
|
|
|
return i;
|
|
}
|
|
|
|
static size_t common_part(const std::string & a, const std::string & b) {
|
|
size_t i;
|
|
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
|
|
|
|
return i;
|
|
}
|
|
|
|
// return the last index of character that can form a valid string
|
|
// if the last character is potentially cut in half, return the index before the cut
|
|
// if validate_utf8(text) == text.size(), then the whole text is valid utf8
|
|
static size_t validate_utf8(const std::string& text) {
|
|
size_t len = text.size();
|
|
if (len == 0) return 0;
|
|
|
|
// Check the last few bytes to see if a multi-byte character is cut off
|
|
for (size_t i = 1; i <= 4 && i <= len; ++i) {
|
|
unsigned char c = text[len - i];
|
|
// Check for start of a multi-byte sequence from the end
|
|
if ((c & 0xE0) == 0xC0) {
|
|
// 2-byte character start: 110xxxxx
|
|
// Needs at least 2 bytes
|
|
if (i < 2) return len - i;
|
|
}
|
|
else if ((c & 0xF0) == 0xE0) {
|
|
// 3-byte character start: 1110xxxx
|
|
// Needs at least 3 bytes
|
|
if (i < 3) return len - i;
|
|
}
|
|
else if ((c & 0xF8) == 0xF0) {
|
|
// 4-byte character start: 11110xxx
|
|
// Needs at least 4 bytes
|
|
if (i < 4) return len - i;
|
|
}
|
|
}
|
|
|
|
// If no cut-off multi-byte character is found, return full length
|
|
return len;
|
|
}
|
|
|
|
// TODO: reuse llama_detokenize
|
|
template <class Iter>
|
|
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
|
|
std::string ret;
|
|
for (; begin != end; ++begin) {
|
|
ret += llama_token_to_piece(ctx, *begin);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
// format incomplete utf-8 multibyte character for output
|
|
static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
|
|
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
|
|
|
|
// if the size is 1 and first bit is 1, meaning it's a partial character
|
|
// (size > 1 meaning it's already a known token)
|
|
if (out.size() == 1 && (out[0] & 0x80) == 0x80) {
|
|
std::stringstream ss;
|
|
ss << std::hex << (out[0] & 0xff);
|
|
std::string res(ss.str());
|
|
out = "byte: \\x" + res;
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
struct completion_token_output {
|
|
llama_token tok;
|
|
std::string text_to_send;
|
|
float prob;
|
|
|
|
struct prob_info {
|
|
llama_token tok;
|
|
std::string txt;
|
|
float prob;
|
|
};
|
|
std::vector<prob_info> probs;
|
|
|
|
json to_json(bool post_sampling_probs) const {
|
|
json probs_for_token = json::array();
|
|
for (const auto& p : probs) {
|
|
std::string txt(p.txt);
|
|
txt.resize(validate_utf8(txt));
|
|
probs_for_token.push_back(json{
|
|
{"id", p.tok},
|
|
{"token", txt},
|
|
{"bytes", str_to_bytes(p.txt)},
|
|
{
|
|
post_sampling_probs ? "prob" : "logprob",
|
|
post_sampling_probs ? p.prob : logarithm(p.prob)
|
|
},
|
|
});
|
|
}
|
|
return probs_for_token;
|
|
}
|
|
|
|
static float logarithm(float x) {
|
|
// nlohmann::json converts -inf to null, so we need to prevent that
|
|
return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
|
|
}
|
|
|
|
static std::vector<unsigned char> str_to_bytes(const std::string& str) {
|
|
std::vector<unsigned char> bytes;
|
|
for (unsigned char c : str) {
|
|
bytes.push_back(c);
|
|
}
|
|
return bytes;
|
|
}
|
|
|
|
|
|
static json probs_vector_to_json(const std::vector<completion_token_output>& probs, bool post_sampling_probs) {
|
|
json out = json::array();
|
|
for (const auto& p : probs) {
|
|
std::string txt(p.text_to_send);
|
|
txt.resize(validate_utf8(txt));
|
|
out.push_back(json{
|
|
{"id", p.tok},
|
|
{"token", txt},
|
|
{"bytes", str_to_bytes(p.text_to_send)},
|
|
{
|
|
post_sampling_probs ? "prob" : "logprob",
|
|
post_sampling_probs ? p.prob : logarithm(p.prob)
|
|
},
|
|
{
|
|
post_sampling_probs ? "top_probs" : "top_logprobs",
|
|
p.to_json(post_sampling_probs)
|
|
},
|
|
});
|
|
}
|
|
return out;
|
|
}
|
|
};
|
|
|
|
// convert a vector of completion_token_output to json
|
|
static json probs_vector_to_json(const llama_context * ctx, const std::vector<completion_token_output> & probs) {
|
|
json out = json::array();
|
|
|
|
for (const auto & prob : probs) {
|
|
json probs_for_token = json::array();
|
|
|
|
for (const auto & p : prob.probs) {
|
|
const std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
|
|
probs_for_token.push_back(json {
|
|
{"tok_str", tok_str},
|
|
{"prob", p.prob},
|
|
});
|
|
}
|
|
|
|
const std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
|
|
out.push_back(json {
|
|
{"content", tok_str},
|
|
{"probs", probs_for_token},
|
|
});
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
//
|
|
// OAI utils
|
|
//
|
|
// used by /completions endpoint
|
|
static json oaicompat_chat_params_parse(const json& body) {
|
|
json llama_params;
|
|
|
|
if (!body.contains("prompt")) {
|
|
throw std::runtime_error("\"prompt\" is required");
|
|
}
|
|
|
|
// Handle "stop" field
|
|
if (body.contains("stop") && body.at("stop").is_string()) {
|
|
llama_params["stop"] = json::array({ body.at("stop").get<std::string>() });
|
|
}
|
|
else {
|
|
llama_params["stop"] = json_value(body, "stop", json::array());
|
|
}
|
|
|
|
// Handle "n" field
|
|
int n_choices = json_value(body, "n", 1);
|
|
if (n_choices != 1) {
|
|
throw std::runtime_error("Only one completion choice is allowed");
|
|
}
|
|
|
|
// Handle "echo" field
|
|
if (json_value(body, "echo", false)) {
|
|
throw std::runtime_error("Only no echo is supported");
|
|
}
|
|
|
|
// Params supported by OAI but unsupported by llama.cpp
|
|
static const std::vector<std::string> unsupported_params{ "best_of", "suffix" };
|
|
for (const auto& param : unsupported_params) {
|
|
if (body.contains(param)) {
|
|
throw std::runtime_error("Unsupported param: " + param);
|
|
}
|
|
}
|
|
|
|
// Copy remaining properties to llama_params
|
|
for (const auto& item : body.items()) {
|
|
// Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
|
|
if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
|
|
llama_params[item.key()] = item.value();
|
|
}
|
|
}
|
|
|
|
return llama_params;
|
|
}
|
|
|
|
struct oaicompat_parser_options {
|
|
bool use_jinja;
|
|
bool prefill_assistant;
|
|
common_reasoning_format reasoning_format;
|
|
std::map<std::string, std::string> chat_template_kwargs;
|
|
common_chat_templates* tmpls;
|
|
bool allow_image;
|
|
bool allow_audio;
|
|
bool enable_thinking = true;
|
|
};
|
|
|
|
// used by /chat/completions endpoint
|
|
static json oaicompat_chat_params_parse(
|
|
const struct llama_model* model,
|
|
const json& body, /* openai api json semantics */
|
|
const oaicompat_parser_options& opt)
|
|
{
|
|
json llama_params;
|
|
|
|
llama_params["__oaicompat"] = true;
|
|
auto tools = json_value(body, "tools", json());
|
|
auto has_tools = tools.is_array() && !tools.empty();
|
|
auto stream = json_value(body, "stream", false);
|
|
auto tool_choice = json_value(body, "tool_choice", std::string("auto"));
|
|
|
|
/* if (tools.is_array() && !tools.empty()) {
|
|
if (stream) {
|
|
throw std::runtime_error("Cannot use tools with stream");
|
|
}
|
|
if (!use_jinja) {
|
|
throw std::runtime_error("tools param requires --jinja flag");
|
|
}
|
|
}
|
|
if (!use_jinja) {
|
|
if (body.contains("tool_choice") && !body.at("tool_choice").is_null()) {
|
|
throw std::runtime_error("Unsupported param: tool_choice");
|
|
}
|
|
}*/
|
|
|
|
if (!opt.use_jinja) {
|
|
if (has_tools) {
|
|
throw std::runtime_error("tools param requires --jinja flag");
|
|
}
|
|
if (tool_choice != "auto") {
|
|
throw std::runtime_error("tool_choice param requires --jinja flag");
|
|
}
|
|
}
|
|
// Handle "stop" field
|
|
if (body.contains("stop") && body.at("stop").is_string()) {
|
|
llama_params["stop"] = json::array({ body.at("stop").get<std::string>() });
|
|
}
|
|
else {
|
|
llama_params["stop"] = json_value(body, "stop", json::array());
|
|
}
|
|
|
|
auto json_schema = json_value(body, "json_schema", json());
|
|
auto grammar = json_value(body, "grammar", std::string());
|
|
if (!json_schema.is_null() && !grammar.empty()) {
|
|
throw std::runtime_error("Cannot use both json_schema and grammar");
|
|
}
|
|
|
|
// Handle "response_format" field
|
|
if (body.contains("response_format")) {
|
|
json response_format = json_value(body, "response_format", json::object());
|
|
std::string response_type = json_value(response_format, "type", std::string());
|
|
if (response_type == "json_object") {
|
|
json_schema = json_value(response_format, "schema", json::object());
|
|
}
|
|
else if (response_type == "json_schema") {
|
|
auto schema_wrapper = json_value(response_format, "json_schema", json::object());
|
|
json_schema = json_value(schema_wrapper, "schema", json::object());
|
|
}
|
|
else if (!response_type.empty() && response_type != "text") {
|
|
json_schema = json_value(json_schema, "schema", json::object());
|
|
}
|
|
}
|
|
common_chat_templates_inputs inputs;
|
|
inputs.messages = common_chat_msgs_parse_oaicompat(body.at("messages"));
|
|
inputs.tools = common_chat_tools_parse_oaicompat(tools);
|
|
inputs.tool_choice = common_chat_tool_choice_parse_oaicompat(tool_choice);
|
|
inputs.json_schema = json_schema.is_null() ? "" : json_schema.dump();
|
|
inputs.grammar = grammar;
|
|
inputs.use_jinja = opt.use_jinja;
|
|
inputs.parallel_tool_calls = json_value(body, "parallel_tool_calls", false);
|
|
inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true);
|
|
inputs.reasoning_format = opt.reasoning_format;
|
|
inputs.enable_thinking = opt.enable_thinking;
|
|
if (!inputs.tools.empty() && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE) {
|
|
if (body.contains("grammar")) {
|
|
throw std::runtime_error("Cannot use custom grammar constraints with tools.");
|
|
}
|
|
llama_params["parse_tool_calls"] = true;
|
|
}
|
|
|
|
// merge the template args provided from command line with the args provided in the user request
|
|
auto chat_template_kwargs_object = json_value(body, "chat_template_kwargs", json::object());
|
|
inputs.chat_template_kwargs = opt.chat_template_kwargs;
|
|
for (const auto& item : chat_template_kwargs_object.items()) {
|
|
inputs.chat_template_kwargs[item.key()] = item.value().dump();
|
|
}
|
|
|
|
// parse the "enable_thinking" kwarg to override the default value
|
|
auto enable_thinking_kwarg = json_value(inputs.chat_template_kwargs, "enable_thinking", std::string(""));
|
|
if (enable_thinking_kwarg == "true") {
|
|
inputs.enable_thinking = true;
|
|
}
|
|
else if (enable_thinking_kwarg == "false") {
|
|
inputs.enable_thinking = false;
|
|
}
|
|
else if (!enable_thinking_kwarg.empty() && enable_thinking_kwarg[0] == '"') {
|
|
throw std::runtime_error("invalid type for \"enable_thinking\" (expected boolean, got string)");
|
|
}
|
|
|
|
/*"whether to prefill the assistant's response if the last message is an assistant message (default: prefill enabled)\n"
|
|
"when this flag is set, if the last message is an assistant message then it will be treated as a full message and not prefilled\n"*/
|
|
bool prefill_assistant_message = !inputs.messages.empty() && inputs.messages.back().role == "assistant" &&opt.prefill_assistant;
|
|
common_chat_msg last_message;
|
|
if (prefill_assistant_message) {
|
|
last_message = inputs.messages.back();
|
|
inputs.messages.pop_back();
|
|
|
|
/* sanity check, max one assistant message at the end of the list */
|
|
if (!inputs.messages.empty() && inputs.messages.back().role == "assistant") {
|
|
throw std::runtime_error("Cannot have 2 or more assistant messages at the end of the list.");
|
|
}
|
|
|
|
/* TODO: test this properly */
|
|
inputs.reasoning_format = COMMON_REASONING_FORMAT_NONE;
|
|
if (inputs.enable_thinking) {
|
|
throw std::runtime_error("Assistant response prefill is incompatible with enable_thinking.");
|
|
}
|
|
inputs.add_generation_prompt = true;
|
|
}
|
|
|
|
// Apply chat template to the list of messages
|
|
auto chat_params = common_chat_templates_apply(opt.tmpls, inputs);
|
|
|
|
llama_params["chat_format"] = static_cast<int>(chat_params.format);
|
|
llama_params["prompt"] = chat_params.prompt;
|
|
llama_params["grammar"] = chat_params.grammar;
|
|
llama_params["grammar_lazy"] = chat_params.grammar_lazy;
|
|
auto grammar_triggers = json::array();
|
|
for (const auto& trigger : chat_params.grammar_triggers) {
|
|
grammar_triggers.push_back(trigger.to_json<json>());
|
|
}
|
|
llama_params["grammar_triggers"] = grammar_triggers;
|
|
llama_params["preserved_tokens"] = chat_params.preserved_tokens;
|
|
llama_params["thinking_forced_open"] = chat_params.thinking_forced_open;
|
|
for (const auto& stop : chat_params.additional_stops) {
|
|
llama_params["stop"].push_back(stop);
|
|
}
|
|
|
|
// Handle "n" field
|
|
int n_choices = json_value(body, "n", 1);
|
|
if (n_choices != 1) {
|
|
throw std::runtime_error("Only one completion choice is allowed");
|
|
}
|
|
|
|
// Handle "logprobs" field
|
|
// TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
|
|
if (json_value(body, "logprobs", false)) {
|
|
if (has_tools && stream) {
|
|
throw std::runtime_error("logprobs is not supported with tools + stream");
|
|
}
|
|
llama_params["n_probs"] = json_value(body, "top_logprobs", 20);
|
|
} else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) {
|
|
throw std::runtime_error("top_logprobs requires logprobs to be set to true");
|
|
}
|
|
|
|
|
|
// Copy remaining properties to llama_params
|
|
// This allows user to use llama.cpp-specific params like "mirostat", "tfs_z",... via OAI endpoint.
|
|
// See "launch_slot_with_task()" for a complete list of params supported by llama.cpp
|
|
for (const auto& item : body.items()) {
|
|
// Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
|
|
if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
|
|
llama_params[item.key()] = item.value();
|
|
}
|
|
}
|
|
|
|
return llama_params;
|
|
}
|
|
|
|
// get value by path(key1 / key2)
|
|
static json json_get_nested_values(const std::vector<std::string>& paths, const json& js) {
|
|
json result = json::object();
|
|
|
|
for (const std::string& path : paths) {
|
|
json current = js;
|
|
const auto keys = string_split<std::string>(path, /*separator*/ '/');
|
|
bool valid_path = true;
|
|
for (const std::string& k : keys) {
|
|
if (valid_path && current.is_object() && current.contains(k)) {
|
|
current = current[k];
|
|
}
|
|
else {
|
|
valid_path = false;
|
|
}
|
|
}
|
|
if (valid_path) {
|
|
result[path] = current;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
static json format_tokenizer_response(const std::vector<llama_token> & tokens) {
|
|
return json {
|
|
{"tokens", tokens}
|
|
};
|
|
}
|
|
|
|
static json format_detokenized_response(const std::string & content) {
|
|
return json {
|
|
{"content", content}
|
|
};
|
|
}
|
|
|
|
static json format_error_response(const std::string & message, const enum error_type type) {
|
|
std::string type_str;
|
|
int code = 500;
|
|
switch (type) {
|
|
case ERROR_TYPE_INVALID_REQUEST:
|
|
type_str = "invalid_request_error";
|
|
code = 400;
|
|
break;
|
|
case ERROR_TYPE_AUTHENTICATION:
|
|
type_str = "authentication_error";
|
|
code = 401;
|
|
break;
|
|
case ERROR_TYPE_NOT_FOUND:
|
|
type_str = "not_found_error";
|
|
code = 404;
|
|
break;
|
|
case ERROR_TYPE_SERVER:
|
|
type_str = "server_error";
|
|
code = 500;
|
|
break;
|
|
case ERROR_TYPE_PERMISSION:
|
|
type_str = "permission_error";
|
|
code = 403;
|
|
break;
|
|
case ERROR_TYPE_NOT_SUPPORTED:
|
|
type_str = "not_supported_error";
|
|
code = 501;
|
|
break;
|
|
case ERROR_TYPE_UNAVAILABLE:
|
|
type_str = "unavailable_error";
|
|
code = 503;
|
|
break;
|
|
}
|
|
return json {
|
|
{"code", code},
|
|
{"message", message},
|
|
{"type", type_str},
|
|
};
|
|
}
|
|
|
|
struct token_probabilities {
|
|
float sampled_token_p;
|
|
std::vector<llama_token_data> cur;
|
|
};
|
|
|
|
static token_probabilities get_token_probabilities(llama_context * ctx, int idx, llama_token sampled_token_id, int n_sorted) {
|
|
const auto * logits = llama_get_logits_ith(ctx, idx);
|
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
|
n_sorted = std::min(n_sorted, n_vocab);
|
|
|
|
std::vector<std::pair<float, llama_token>> sorted(n_vocab);
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) sorted[token_id] = {logits[token_id], token_id};
|
|
|
|
std::partial_sort(sorted.begin(), sorted.begin() + n_sorted, sorted.end(), std::greater<std::pair<float,llama_token>>{});
|
|
|
|
float max_l = sorted.front().first;
|
|
float cum_sum = 0.0f;
|
|
float sampled_token_p = 0.0f;
|
|
bool sampled_token_found = false;
|
|
std::vector<llama_token_data> cur(n_sorted);
|
|
for (int i = 0; i < n_vocab; ++i) {
|
|
float p = expf(sorted[i].first - max_l);
|
|
cum_sum += p;
|
|
if (i < n_sorted) {
|
|
cur[i] = {sorted[i].second, sorted[i].first, p};
|
|
}
|
|
if (!sampled_token_found && sorted[i].second == sampled_token_id) {
|
|
sampled_token_p = p;
|
|
sampled_token_found = true;
|
|
}
|
|
}
|
|
for (int i = n_sorted; i < n_vocab; ++i) cum_sum += expf(sorted[i].first - max_l);
|
|
|
|
float inv_cum_sum = 1/cum_sum;
|
|
for (int i = 0; i < n_sorted; ++i) cur[i].p *= inv_cum_sum;
|
|
sampled_token_p *= inv_cum_sum;
|
|
|
|
return {sampled_token_p, cur};
|
|
}
|