Files
ik_llama.cpp/examples/quantize/quantize.cpp
2025-11-05 10:44:32 +02:00

655 lines
30 KiB
C++

//
// Copyright (C) 2023-2025 The llama.cpp authors
// Copyright (C) 2024-2025 Iwan Kawrakow
// MIT license
// SPDX-License-Identifier: MIT
//
#include "common.h"
#include "llama.h"
#include <cstdio>
#include <cstring>
#include <vector>
#include <string>
#include <unordered_map>
#include <fstream>
#include <cmath>
struct quant_option {
std::string name;
llama_ftype ftype;
std::string desc;
};
static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 3.56G, +0.2166 ppl @ LLaMA-v1-7B", },
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", },
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", },
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
{ "Q6_0", LLAMA_FTYPE_MOSTLY_Q6_0, " 6.5 bpw quantization", },
{ "MXFP4", LLAMA_FTYPE_MOSTLY_MXFP4, " 4.25 bpw 4-bit float quantization",},
{ "IQ2_XXS", LLAMA_FTYPE_MOSTLY_IQ2_XXS, " 2.06 bpw quantization", },
{ "IQ2_XXS_R4",LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4,"IQ2_XXS repacked", },
{ "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
{ "IQ2_XS_R4",LLAMA_FTYPE_MOSTLY_IQ2_XS_R4,"IQ2_XS repacked", },
{ "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
{ "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
{ "IQ2_M_R4", LLAMA_FTYPE_MOSTLY_IQ2_M_R4, " 2.7 bpw quantization", },
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
{ "IQ1_S_R4", LLAMA_FTYPE_MOSTLY_IQ1_S_R4, " 1.5 bpw quantization", },
{ "IQ1_M_R4", LLAMA_FTYPE_MOSTLY_IQ1_M_R4, " 1.75 bpw quantization", },
{ "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", },
{ "IQ1_BN", LLAMA_FTYPE_MOSTLY_IQ1_BN, " 1.62 bpw quantization (Bitnet)", },
{ "IQ2_BN", LLAMA_FTYPE_MOSTLY_IQ2_BN, " 2.00 bpw quantization (Bitnet)", },
{ "IQ2_BN_R4",LLAMA_FTYPE_MOSTLY_IQ2_BN_R4," 2.00 bpw quantization (Bitnet)", },
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
{ "Q2_K_R4", LLAMA_FTYPE_MOSTLY_Q2_K_R4, "Q2_K_S repacked", },
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
{ "IQ3_XXS", LLAMA_FTYPE_MOSTLY_IQ3_XXS, " 3.06 bpw quantization", },
{ "IQ3_KT", LLAMA_FTYPE_MOSTLY_IQ3_KT, " 3.125 bpw trellis quantization", },
{ "IQ4_KT", LLAMA_FTYPE_MOSTLY_IQ4_KT, " 4.0 bpw trellis quantization", },
{ "IQ3_XXS_R4",LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4,"IQ3_XXS repacked", },
{ "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", },
{ "IQ3_S_R4", LLAMA_FTYPE_MOSTLY_IQ3_S_R4, "IQ3_S repacked", },
{ "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", },
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
{ "Q3_K_R4", LLAMA_FTYPE_MOSTLY_Q3_K_R4, "Q3_K_S repacked" },
{ "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization" , },
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", },
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
{ "IQ4_NL_R4",LLAMA_FTYPE_MOSTLY_IQ4_NL_R4," 4.50 bpw non-linear quantization", },
{ "IQ4_XS_R8",LLAMA_FTYPE_MOSTLY_IQ4_XS_R8," 4.25 bpw non-linear quantization", },
{ "Q4_0_R8", LLAMA_FTYPE_MOSTLY_Q4_0_R8, " 4.50 bpw quantization", },
{ "Q5_0_R4", LLAMA_FTYPE_MOSTLY_Q5_0_R4, " 5.50 bpw quantization", },
{ "Q6_0_R4", LLAMA_FTYPE_MOSTLY_Q6_0_R4, " 6.50 bpw quantization", },
{ "Q8_0_R8", LLAMA_FTYPE_MOSTLY_Q8_0_R8, " 8.50 bpw quantization", },
{ "Q8_KV", LLAMA_FTYPE_MOSTLY_Q8_KV, " 8.00 bpw quantization", },
{ "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
{ "IQ4_KS", LLAMA_FTYPE_MOSTLY_IQ4_KS, " 4.25 bpw non-linear quantization", },
{ "IQ4_KS_R4",LLAMA_FTYPE_MOSTLY_IQ4_KS_R4,"IQ4_KS repacked", },
{ "IQ5_KS_R4",LLAMA_FTYPE_MOSTLY_IQ5_KS_R4,"IQ5_KS repacked", },
{ "IQ4_KSS", LLAMA_FTYPE_MOSTLY_IQ4_KSS, " 4.0 bpw non-linear quantization", },
{ "IQ5_KS", LLAMA_FTYPE_MOSTLY_IQ5_KS, " 5.25 bpw non-linear quantization", },
{ "IQ2_K", LLAMA_FTYPE_MOSTLY_IQ2_K, " 2.375 bpw non-linear quantization",},
{ "IQ2_K_R4", LLAMA_FTYPE_MOSTLY_IQ2_K_R4, "IQ2_K repacked",},
{ "IQ2_KS", LLAMA_FTYPE_MOSTLY_IQ2_KS, " 2.1875 bpw non-linear quantization",},
{ "IQ1_KT", LLAMA_FTYPE_MOSTLY_IQ1_KT, " 1.75 bpw trellis quantization", },
{ "IQ2_KT", LLAMA_FTYPE_MOSTLY_IQ2_KT, " 2.125 bpw trellis quantization", },
{ "IQ2_KL", LLAMA_FTYPE_MOSTLY_IQ2_KL, " 2.69 bpw non-linear quantization", },
{ "IQ3_KS", LLAMA_FTYPE_MOSTLY_IQ3_KS, " 3.19 bpw non-linear quantization", },
{ "IQ3_K", LLAMA_FTYPE_MOSTLY_IQ3_K, " 3.44 bpw non-linear quantization", },
{ "IQ3_K_R4", LLAMA_FTYPE_MOSTLY_IQ3_K_R4, "IQ3_K repacked", },
{ "IQ3_KL", LLAMA_FTYPE_MOSTLY_IQ3_KL, " 4 bpw non-linear quantization mix",},
{ "IQ4_K", LLAMA_FTYPE_MOSTLY_IQ4_K, " 4.5 bpw non-linear quantization", },
{ "IQ4_K_R4", LLAMA_FTYPE_MOSTLY_IQ4_K_R4, "IQ4_K repacked", },
{ "IQ5_K", LLAMA_FTYPE_MOSTLY_IQ5_K, " 5.5 bpw non-linear quantization", },
{ "IQ5_K_R4", LLAMA_FTYPE_MOSTLY_IQ5_K_R4, "IQ5_K repacked", },
{ "IQ6_K", LLAMA_FTYPE_MOSTLY_IQ6_K, " 6.6 bpw non-linear quantization", },
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
{ "Q4_K_R4", LLAMA_FTYPE_MOSTLY_Q4_K_R4, "Q4_K_S repacked", },
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", },
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", },
{ "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
{ "Q5_K_R4", LLAMA_FTYPE_MOSTLY_Q5_K_R4, "Q5_K_S repacked", },
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", },
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0008 ppl @ LLaMA-v1-7B", },
{ "Q6_K_R4", LLAMA_FTYPE_MOSTLY_Q6_K_R4, "Q6_K repacked", },
{ "Q8_K_R8", LLAMA_FTYPE_MOSTLY_Q8_K_R8, "Q8_K repacked", },
{ "Q8_KV_R8", LLAMA_FTYPE_MOSTLY_Q8_KV_R8, "Q8_KV repacked", },
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
{ "Q4_0_4_4", LLAMA_FTYPE_MOSTLY_Q4_0_4_4, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
{ "Q4_0_4_8", LLAMA_FTYPE_MOSTLY_Q4_0_4_8, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
{ "Q4_0_8_8", LLAMA_FTYPE_MOSTLY_Q4_0_8_8, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, -0.0020 ppl @ Mistral-7B", },
{ "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", },
{ "BF16_R16", LLAMA_FTYPE_MOSTLY_BF16_R16, "14.00G, -0.0050 ppl @ Mistral-7B", },
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
// Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
};
static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = "quantize.imatrix.file";
static const char * const LLM_KV_QUANTIZE_IMATRIX_DATASET = "quantize.imatrix.dataset";
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES = "quantize.imatrix.entries_count";
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS = "quantize.imatrix.chunks_count";
static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
std::string ftype_str;
for (auto ch : ftype_str_in) {
ftype_str.push_back(std::toupper(ch));
}
for (auto & it : QUANT_OPTIONS) {
if (it.name == ftype_str) {
ftype = it.ftype;
ftype_str_out = it.name;
return true;
}
}
try {
int ftype_int = std::stoi(ftype_str);
for (auto & it : QUANT_OPTIONS) {
if (it.ftype == ftype_int) {
ftype = it.ftype;
ftype_str_out = it.name;
return true;
}
}
}
catch (...) {
// stoi failed
}
return false;
}
// usage:
// ./llama-quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
//
[[noreturn]]
static void usage(const char * executable) {
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--hide-imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--ffn-gate-inp-type] [--attn-q-type] [--attn-k-type] [--attn-v-type] [--attn-qkv-type] [--attn-output-type] [--ffn-gate-type] [--ffn-down-type] [--ffn-up-type] [--keep-split] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n");
printf(" --hide-imatrix: do not store imatrix details in the quantized model\n");
printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n");
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor.\n");
printf(" --token-embedding-type ggml_type: use this ggml_type for the token_embd.weight tensor.\n\n");
printf(" --ffn-gate-inp-type ggml_type: use this ggml_type for the ffn_gate_inp tensors.\n\n");
printf(" --custom-q regex1=type1,regex2=type2...: use this to specify custom quantization type rules.\n\n");
printf(" --repack Repack all tensors to the corresponding _r4/8 variant if available.\n\n");
printf(" --repack-pattern Comma separated list of regexs to use for matching tensor names to be repacked.\n\n");
printf("Additional specific tensor quantization types used in the custom quant scheme 'CQS (default is Q2_K):\n");
printf(" --attn-q-type ggml_type: use this ggml_type for the attn_q.weight tensor.\n");
printf(" --attn-k-type ggml_type: use this ggml_type for the attn_k.weight tensor.\n");
printf(" --attn-v-type ggml_type: use this ggml_type for the attn_v.weight tensor.\n");
printf(" --attn-qkv-type ggml_type: use this ggml_type for the attn_qkv.weight tensor.\n");
printf(" --attn-output-type ggml_type: use this ggml_type for the attn_output.weight tensor.\n");
printf(" --ffn-gate-type ggml_type: use this ggml_type for the ffn_gate tensor.\n");
printf(" --ffn-down-type ggml_type: use this ggml_type for the ffn_down tensor.\n");
printf(" --ffn-up-type ggml_type: use this ggml_type for the ffn_up tensor.\n\n");
printf(" --keep-split: will generate quantized model in the same shards as input\n");
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n\n");
printf("Note: --include-weights and --exclude-weights cannot be used together\n");
printf("Note: The token embeddings tensor is loaded in system RAM, even in case of full GPU/VRAM offload.\n");
printf("Note: The recommanded type for the output tensor is q6_K for the ffn types > iq3_xxs and < q8_0.\n\n");
printf("Note for the Custom Quant Scheme FTYPE:\n");
printf(" Write the specific tensor legacy quants as qN_N, the K-Quants as qN_K, the IQ-Quants as iqN_xx.\n");
printf(" Usually, attn-q-type can be one type below the chosen ffn type, and attn-v-type should be one type above.\n");
printf(" attn-qkv-type replaces the types attn-q, attn-k and attn-v on some models.\n");
//TODO: - eventually - harmonize the CAPS writing of the FTYPEs, and non CAPS writing of the GGML_TYPEs.
printf("\nAllowed quantization types:\n");
for (auto & it : QUANT_OPTIONS) {
if (it.name != "COPY") {
printf(" %2d or ", it.ftype);
} else {
printf(" ");
}
printf("%-7s : %s\n", it.name.c_str(), it.desc.c_str());
}
exit(1);
}
static int load_imatrix(const std::string & imatrix_file, std::string & imatrix_dataset, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
std::ifstream in(imatrix_file.c_str(), std::ios::binary);
if (!in) {
printf("%s: failed to open %s\n",__func__, imatrix_file.c_str());
exit(1);
}
int n_entries;
in.read((char *)&n_entries, sizeof(n_entries));
if (in.fail() || n_entries < 1) {
printf("%s: no data in file %s\n", __func__, imatrix_file.c_str());
exit(1);
}
for (int i = 0; i < n_entries; ++i) {
int len; in.read((char *)&len, sizeof(len));
std::vector<char> name_as_vec(len+1);
in.read((char *)name_as_vec.data(), len);
if (in.fail()) {
printf("%s: failed reading name for entry %d from %s\n", __func__, i+1, imatrix_file.c_str());
exit(1);
}
name_as_vec[len] = 0;
std::string name{name_as_vec.data()};
auto & e = imatrix_data[name];
int ncall;
in.read((char *)&ncall, sizeof(ncall));
int nval;
in.read((char *)&nval, sizeof(nval));
if (in.fail() || nval < 1) {
printf("%s: failed reading number of values for entry %d\n", __func__, i);
imatrix_data = {};
exit(1);
}
e.resize(nval);
in.read((char *)e.data(), nval*sizeof(float));
if (in.fail()) {
printf("%s: failed reading data for entry %d\n", __func__, i);
imatrix_data = {};
exit(1);
}
if (ncall > 0) {
for (auto& v : e) v /= ncall;
}
if (getenv("LLAMA_TRACE")) {
printf("%s: loaded data (size = %6d, ncall = %6d) for '%s'\n", __func__, int(e.size()), ncall, name.c_str());
}
}
// latest imatrix version contains the dataset filename at the end of the file
int m_last_call = 0;
if (in.peek() != EOF) {
in.read((char *)&m_last_call, sizeof(m_last_call));
int dataset_len;
in.read((char *)&dataset_len, sizeof(dataset_len));
std::vector<char> dataset_as_vec(dataset_len);
in.read(dataset_as_vec.data(), dataset_len);
imatrix_dataset.assign(dataset_as_vec.begin(), dataset_as_vec.end());
printf("%s: imatrix dataset='%s'\n", __func__, imatrix_dataset.c_str());
}
printf("%s: loaded %d importance matrix entries from %s computed on %d chunks\n", __func__, int(imatrix_data.size()), imatrix_file.c_str(), m_last_call);
return m_last_call;
}
static int prepare_imatrix(const std::string & imatrix_file,
std::string & imatrix_dataset,
const std::vector<std::string> & included_weights,
const std::vector<std::string> & excluded_weights,
std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
int m_last_call = -1;
if (!imatrix_file.empty()) {
m_last_call = load_imatrix(imatrix_file, imatrix_dataset, imatrix_data);
}
if (imatrix_data.empty()) {
return m_last_call;
}
if (!excluded_weights.empty()) {
for (auto& name : excluded_weights) {
for (auto it = imatrix_data.begin(); it != imatrix_data.end(); ) {
auto pos = it->first.find(name);
if (pos != std::string::npos) it = imatrix_data.erase(it);
else ++it;
}
}
}
if (!included_weights.empty()) {
std::unordered_map<std::string, std::vector<float>> tmp;
for (auto& name : included_weights) {
for (auto& e : imatrix_data) {
auto pos = e.first.find(name);
if (pos != std::string::npos) {
tmp.emplace(std::move(e));
}
}
}
imatrix_data = std::move(tmp);
}
if (!imatrix_data.empty()) {
printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size()));
}
return m_last_call;
}
static ggml_type parse_ggml_type(const char * arg) {
ggml_type result = GGML_TYPE_COUNT;
for (int j = 0; j < GGML_TYPE_COUNT; ++j) {
auto type = ggml_type(j);
const auto * name = ggml_type_name(type);
if (name && strcmp(arg, name) == 0) {
result = type; break;
}
}
return result;
}
using CustomQ = std::pair<std::string, ggml_type>;
static bool parse_custom_quants(const std::string& arg, std::vector<CustomQ>& custom_quants) {
for (const auto & item : string_split<std::string>(arg, ',')) {
auto pos = item.find('=');
if (pos == std::string::npos) {
fprintf(stderr, "Invalid custom quantization input %s\n", arg.c_str());
return false;
}
auto pattern = item.substr(0, pos);
auto type_as_string = item.substr(pos + 1);
auto type = parse_ggml_type(type_as_string.c_str());
if (type == GGML_TYPE_COUNT) {
fprintf(stderr, "Invalid quantization type '%s' in custom quantization input %s\n", type_as_string.c_str(), item.c_str());
return false;
}
printf("Adding custom rule %s -> %s\n", pattern.c_str(), ggml_type_name(type));
custom_quants.emplace_back(std::move(pattern), type);
}
return true;
}
int main(int argc, char ** argv) {
if (argc < 3) {
usage(argv[0]);
}
llama_model_quantize_params params = llama_model_quantize_default_params();
int arg_idx = 1;
std::string imatrix_file;
std::vector<std::string> included_weights, excluded_weights;
std::vector<llama_model_kv_override> kv_overrides;
std::vector<CustomQ> custom_quants;
std::vector<std::string> repack_patterns;
bool hide_imatrix = false;
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
params.quantize_output_tensor = false;
} else if (strcmp(argv[arg_idx], "--ignore-imatrix-rules") == 0) {
params.ignore_imatrix_rules = true;
} else if (strcmp(argv[arg_idx], "--repack") == 0) {
params.only_repack = true;
} else if (strcmp(argv[arg_idx], "--repack-pattern") == 0) {
if (arg_idx < argc-1) {
auto p = string_split(argv[++arg_idx], ',');
repack_patterns.insert(repack_patterns.end(), p.begin(), p.end());
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--output-tensor-type") == 0) {
if (arg_idx < argc-1) {
params.output_tensor_type = parse_ggml_type(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--token-embedding-type") == 0) {
if (arg_idx < argc-1) {
params.token_embedding_type = parse_ggml_type(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--ffn-gate-inp-type") == 0) {
if (arg_idx < argc-1) {
params.ffn_gate_inp_type = parse_ggml_type(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--attn-q-type") == 0) {
if (arg_idx < argc-1) {
params.attn_q_type = parse_ggml_type(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--attn-k-type") == 0) {
if (arg_idx < argc-1) {
params.attn_k_type = parse_ggml_type(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--attn-v-type") == 0) {
if (arg_idx < argc-1) {
params.attn_v_type = parse_ggml_type(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--attn-qkv-type") == 0) {
if (arg_idx < argc-1) {
params.attn_qkv_type = parse_ggml_type(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--attn-output-type") == 0) {
if (arg_idx < argc-1) {
params.attn_output_type = parse_ggml_type(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--ffn-gate-type") == 0) {
if (arg_idx < argc-1) {
params.ffn_gate_type = parse_ggml_type(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--ffn-down-type") == 0) {
if (arg_idx < argc-1) {
params.ffn_down_type = parse_ggml_type(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--ffn-up-type") == 0) {
if (arg_idx < argc-1) {
params.ffn_up_type = parse_ggml_type(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
if (arg_idx == argc-1 || !string_parse_kv_override(argv[++arg_idx], kv_overrides)) {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--custom-q") == 0) {
if (arg_idx == argc-1 || !parse_custom_quants(argv[++arg_idx], custom_quants)) {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
params.allow_requantize = true;
} else if (strcmp(argv[arg_idx], "--pure") == 0) {
params.pure = true;
} else if (strcmp(argv[arg_idx], "--imatrix") == 0) {
if (arg_idx < argc-1) {
imatrix_file = argv[++arg_idx];
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--hide-imatrix") == 0) {
hide_imatrix = true;
} else if (strcmp(argv[arg_idx], "--include-weights") == 0) {
if (arg_idx < argc-1) {
included_weights.emplace_back(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--exclude-weights") == 0) {
if (arg_idx < argc-1) {
excluded_weights.emplace_back(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--keep-split") == 0) {
params.keep_split = true;
} else {
usage(argv[0]);
}
}
if (!repack_patterns.empty()) {
params.repack_pattern = &repack_patterns;
}
if (argc - arg_idx < 2) {
printf("%s: bad arguments\n", argv[0]);
usage(argv[0]);
}
if (!included_weights.empty() && !excluded_weights.empty()) {
usage(argv[0]);
}
std::string imatrix_dataset;
std::unordered_map<std::string, std::vector<float>> imatrix_data;
int m_last_call = prepare_imatrix(imatrix_file, imatrix_dataset, included_weights, excluded_weights, imatrix_data);
if (!imatrix_data.empty()) {
params.imatrix = &imatrix_data;
{
llama_model_kv_override kvo;
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_FILE);
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
if (hide_imatrix) {
strncpy(kvo.val_str, "top_secret", 127);
} else {
strncpy(kvo.val_str, imatrix_file.c_str(), 127);
}
kvo.val_str[127] = '\0';
kv_overrides.emplace_back(std::move(kvo));
}
if (!imatrix_dataset.empty()) {
llama_model_kv_override kvo;
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_DATASET);
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
if (hide_imatrix) {
strncpy(kvo.val_str, "top_secret", 127);
} else {
strncpy(kvo.val_str, imatrix_dataset.c_str(), 127);
}
kvo.val_str[127] = '\0';
kv_overrides.emplace_back(std::move(kvo));
}
{
llama_model_kv_override kvo;
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES);
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
if (hide_imatrix) {
kvo.val_i64 = 0;
} else {
kvo.val_i64 = imatrix_data.size();
}
kv_overrides.emplace_back(std::move(kvo));
}
if (m_last_call > 0) {
llama_model_kv_override kvo;
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS);
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
if (hide_imatrix) {
kvo.val_i64 = 0;
} else {
kvo.val_i64 = m_last_call;
}
kv_overrides.emplace_back(std::move(kvo));
}
}
if (!kv_overrides.empty()) {
kv_overrides.emplace_back();
kv_overrides.back().key[0] = 0;
params.kv_overrides = &kv_overrides;
}
if (!custom_quants.empty()) {
params.custom_quants = &custom_quants;
}
llama_backend_init();
// parse command line arguments
const std::string fname_inp = argv[arg_idx];
arg_idx++;
std::string fname_out;
std::string ftype_str;
std::string suffix = ".gguf";
if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
std::string fpath;
const size_t pos = fname_inp.find_last_of("/\\");
if (pos != std::string::npos) {
fpath = fname_inp.substr(0, pos + 1);
}
// export as [inp path]/ggml-model-[ftype]. Only add extension if there is no splitting
fname_out = fpath + "ggml-model-" + ftype_str;
if (!params.keep_split) {
fname_out += suffix;
}
arg_idx++;
if (ftype_str == "COPY") {
params.only_copy = true;
}
} else {
fname_out = argv[arg_idx];
if (params.keep_split && fname_out.find(suffix) != std::string::npos) {
fname_out = fname_out.substr(0, fname_out.length() - suffix.length());
}
arg_idx++;
if (argc <= arg_idx) {
fprintf(stderr, "%s: missing ftype\n", __func__);
return 1;
}
if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
return 1;
}
if (ftype_str == "COPY") {
params.only_copy = true;
}
arg_idx++;
}
// parse nthreads
if (argc > arg_idx) {
try {
params.nthread = std::stoi(argv[arg_idx]);
}
catch (const std::exception & e) {
fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
return 1;
}
}
if (!params.ignore_imatrix_rules && imatrix_data.empty() &&
(params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4 ||
params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS_R4 ||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S_R4 ||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_M_R4 ||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_M)) {
fprintf(stderr, "\n==========================================================================================================\n");
fprintf(stderr, "Please do not use IQ1_S, IQ1_M, IQ2_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
fprintf(stderr, "==========================================================================================================\n\n\n");
return 1;
}
print_build_info();
fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
if (params.nthread > 0) {
fprintf(stderr, " using %d threads", params.nthread);
}
fprintf(stderr, "\n");
const int64_t t_main_start_us = llama_time_us();
int64_t t_quantize_us = 0;
// load the model
{
const int64_t t_start_us = llama_time_us();
if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), &params)) {
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
return 1;
}
t_quantize_us = llama_time_us() - t_start_us;
}
// report timing
{
const int64_t t_main_end_us = llama_time_us();
printf("\n");
printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0);
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
}
llama_backend_free();
return 0;
}