mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-01-26 17:20:01 +00:00
* Add RPC backend in device list to override tensors. * rpc : prevent crashes on invalid input (#9040) Add more checks which prevent RPC server from crashing if invalid input is received from client # Conflicts: # ggml/src/ggml-rpc.cpp * rpc : print error message when failed to connect endpoint (#9042) * Fix RPC error * Add vulkan, sycl to rpc backend * add thread in rpc cpu backend * add cache folder and other improvement in rpc * add header file * support for models with non-512 aligned tensors * rpc : do not wait for response when sending RPC_CMD_SET_TENSOR (#12943) RPC_CMD_SET_TENSOR always returns an empty response and we send this 4 times per token. We can improve TG speed if we don't wait for this empty response. The performance impact of this change depends on the network latency. # Conflicts: # ggml/src/ggml-rpc.cpp * fix(rpc): Improve input validation and error handling (#13069) * fix(rpc): Improve input validation and error handling The `rpc-server` was vulnerable to Denial of Service attacks via several RPC commands (`SET_TENSOR`, `GRAPH_COMPUTE`, etc.). Malformed messages could trigger failed assertions (e.g., invalid `ggml_type`) or out-of-bounds reads/writes leading to `GGML_ABORT` calls, crashing the server process. This PR introduces robust input validation and replaces `abort()` calls with graceful error handling: - **Type Validation:** `deserialize_tensor` now checks if the `tensor->type` is within the valid `GGML_TYPE_COUNT` range *before* calling `ggml_new_tensor_4d`. Returns `nullptr` on invalid type. - **Bounds Checks:** Replaced `GGML_ABORT` in `set_tensor`, `set_tensor_hash`, and `get_tensor` handlers with error logging and returning `false` when data/offset parameters are out of buffer bounds. - **Size Checks:** Added safe arithmetic checks (for overflow) in `graph_compute` when calculating required message sizes based on client-provided `n_nodes` and `n_tensors`. Returns early if the reported sizes conflict with the actual message size or would lead to overflow. - **Error Propagation:** - `create_node` now checks for `nullptr` return values from `deserialize_tensor` and its recursive calls, propagating `nullptr` upwards on failure. Uses `find` instead of `at` for safer map access. - `copy_tensor` now checks for `nullptr` from `deserialize_tensor` and sets the response status to failure if deserialization or bounds checks fail. - `graph_compute` now checks for `nullptr` return from `create_node` and returns failure status correctly. The final return value now reflects the actual computation status. These changes improve the RPC server's resilience against malformed client requests, preventing crashes and ensuring errors are handled more gracefully. Signed-off-by: Ville Vesilehto <ville@vesilehto.fi> * refactor(rpc): address pr comments removed comments and unnecessary returns Signed-off-by: Ville Vesilehto <ville@vesilehto.fi> * refactor(rpc): ambiguous nullptr from create_node rpc_server::create_node could previously return nullptr if the input ID was 0 (valid) or if an internal error (deserialization, recursion failure) occurred (invalid). This ambiguity made error handling difficult for the caller (`graph_compute`). This commit clarifies the meaning of nullptr: - `graph_compute` now checks if the input 'id' was non-zero when `create_node` returns nullptr, correctly identifying failures versus intentional null links. - `create_node` avoids recursive calls for zero IDs and propagates nullptr unambiguously on failure during recursion. Signed-off-by: Ville Vesilehto <ville@vesilehto.fi> * refactor(rpc): initial zero check in create_node The caller (`graph_compute`) already checks `id != 0` when handling a `nullptr` return from `create_node`, correctly distinguishing intentional null links from actual errors. This makes the initial `if (id == 0)` check redundant. Also removes the log message when a tensor ID is not found in the provided map which was added in this branch. Signed-off-by: Ville Vesilehto <ville@vesilehto.fi> * fix(rpc): Handle get_alloc_size failure in server Check the return value of `server.get_alloc_size` in the RPC server loop. If the call fails, return early to close the connection. Signed-off-by: Ville Vesilehto <ville@vesilehto.fi> * refactor(rpc): input size validation in graph_compute Removes detailed, step-by-step size calculations and overflow checks in favor of simpler direct comparisons, assuming 64-bit overflow is unlikely. Signed-off-by: Ville Vesilehto <ville@vesilehto.fi> * refactor(rpc): remove extra status code setting Removes the explicit setting of `response.result = GGML_STATUS_FAILED` when `create_node` returns `nullptr` within `graph_compute`. Primary signal is the `false` return value in case of failure. Signed-off-by: Ville Vesilehto <ville@vesilehto.fi> * refactor(rpc): remove redundant check for tensor->type Breaks CI on ubuntu-cpu-make. Tensor type is uint32_t, thus the check is not needed. Signed-off-by: Ville Vesilehto <ville@vesilehto.fi> --------- Signed-off-by: Ville Vesilehto <ville@vesilehto.fi> # Conflicts: # ggml/src/ggml-rpc.cpp * rpc : fix cache directory initialization (#13188) Signed-off-by: xiaofei <hbuxiaofei@gmail.com> # Conflicts: # examples/rpc/rpc-server.cpp * rpc : avoid uninitialized memory in serialize_tensor (#13210) Zero out the name and padding buffers. * fix merge error * Add hello command in RPC * bug fix * add rpc header * fix bug for missing rpc names * add tpc no delay for rpc * add back webui --------- Signed-off-by: Ville Vesilehto <ville@vesilehto.fi> Signed-off-by: xiaofei <hbuxiaofei@gmail.com> Co-authored-by: firecoperana <firecoperana> Co-authored-by: Radoslav Gerganov <rgerganov@gmail.com> Co-authored-by: matt23456 <matt23456> Co-authored-by: Ville Vesilehto <ville@vesilehto.fi> Co-authored-by: xiaofei <hbuxiaofei@gmail.com> Co-authored-by: Justin Santa Barbara <justinsb@google.com>
3812 lines
149 KiB
C++
3812 lines
149 KiB
C++
#pragma warning(disable : 4996)
|
|
#include "utils.hpp"
|
|
|
|
#include "common.h"
|
|
#include "json-schema-to-grammar.h"
|
|
#include "llama.h"
|
|
#include "grammar-parser.h"
|
|
|
|
#ifndef NDEBUG
|
|
// crash the server in debug mode, otherwise send an http 500 error
|
|
#define CPPHTTPLIB_NO_EXCEPTIONS 1
|
|
#endif
|
|
// increase max payload length to allow use of larger context size
|
|
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
|
|
// disable Nagle's algorithm
|
|
#define CPPHTTPLIB_TCP_NODELAY true
|
|
#include "httplib.h"
|
|
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
|
#define JSON_ASSERT GGML_ASSERT
|
|
#include "json.hpp"
|
|
#include "index.html.gz.hpp"
|
|
#include "loading.html.hpp"
|
|
|
|
#include <atomic>
|
|
#include <chrono>
|
|
#include <condition_variable>
|
|
#include <cstddef>
|
|
#include <set>
|
|
#include <mutex>
|
|
#include <thread>
|
|
#include <signal.h>
|
|
#include <memory>
|
|
#include <src/llama-impl.h>
|
|
|
|
using json = nlohmann::ordered_json;
|
|
|
|
bool server_verbose = false;
|
|
bool server_log_json = true;
|
|
|
|
|
|
enum stop_type {
|
|
STOP_TYPE_FULL,
|
|
STOP_TYPE_PARTIAL,
|
|
};
|
|
|
|
enum slot_state {
|
|
SLOT_STATE_IDLE,
|
|
SLOT_STATE_PROCESSING,
|
|
};
|
|
|
|
enum slot_command {
|
|
SLOT_COMMAND_NONE,
|
|
SLOT_COMMAND_LOAD_PROMPT,
|
|
SLOT_COMMAND_RELEASE,
|
|
};
|
|
|
|
enum server_state {
|
|
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
|
|
SERVER_STATE_READY, // Server is ready and model is loaded
|
|
SERVER_STATE_ERROR // An error occurred, load_model failed
|
|
};
|
|
|
|
enum server_task_type {
|
|
SERVER_TASK_TYPE_COMPLETION,
|
|
SERVER_TASK_TYPE_CANCEL,
|
|
SERVER_TASK_TYPE_NEXT_RESPONSE,
|
|
SERVER_TASK_TYPE_METRICS,
|
|
SERVER_TASK_TYPE_SLOT_SAVE,
|
|
SERVER_TASK_TYPE_SLOT_RESTORE,
|
|
SERVER_TASK_TYPE_SLOT_ERASE,
|
|
SERVER_TASK_TYPE_SET_LORA,
|
|
};
|
|
|
|
|
|
struct result_timings {
|
|
int32_t prompt_n = -1;
|
|
double prompt_ms;
|
|
double prompt_per_token_ms;
|
|
double prompt_per_second;
|
|
|
|
int32_t predicted_n = -1;
|
|
double predicted_ms;
|
|
double predicted_per_token_ms;
|
|
double predicted_per_second;
|
|
|
|
// Optional speculative metrics - only included when > 0
|
|
int32_t draft_n = 0;
|
|
int32_t draft_n_accepted = 0;
|
|
|
|
json to_json() const {
|
|
json base = {
|
|
{"prompt_n", prompt_n},
|
|
{"prompt_ms", prompt_ms},
|
|
{"prompt_per_token_ms", prompt_per_token_ms},
|
|
{"prompt_per_second", prompt_per_second},
|
|
|
|
{"predicted_n", predicted_n},
|
|
{"predicted_ms", predicted_ms},
|
|
{"predicted_per_token_ms", predicted_per_token_ms},
|
|
{"predicted_per_second", predicted_per_second},
|
|
};
|
|
|
|
if (draft_n > 0) {
|
|
base["draft_n"] = draft_n;
|
|
base["draft_n_accepted"] = draft_n_accepted;
|
|
}
|
|
|
|
return base;
|
|
}
|
|
};
|
|
|
|
struct server_task {
|
|
int id = -1; // to be filled by server_queue
|
|
int id_multi = -1;
|
|
int id_target = -1;
|
|
|
|
server_task_type type;
|
|
json data;
|
|
|
|
bool infill = false;
|
|
bool embedding = false;
|
|
};
|
|
|
|
struct server_task_result {
|
|
int id = -1;
|
|
int id_multi = -1;
|
|
|
|
json data;
|
|
|
|
bool stop;
|
|
bool error;
|
|
result_timings timings;
|
|
|
|
};
|
|
|
|
std::unordered_map<int, server_task_result > server_task_result_dict = {};
|
|
|
|
|
|
struct server_task_multi {
|
|
int id = -1;
|
|
|
|
std::set<int> subtasks_remaining;
|
|
std::vector<server_task_result> results;
|
|
};
|
|
|
|
struct slot_params {
|
|
bool stream = true;
|
|
bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
|
|
|
|
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
|
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
|
|
int32_t n_predict = -1; // new tokens to predict
|
|
|
|
std::vector<std::string> antiprompt;
|
|
|
|
bool timings_per_token = false;
|
|
json input_prefix;
|
|
json input_suffix;
|
|
};
|
|
|
|
struct server_slot {
|
|
int id;
|
|
int id_task = -1;
|
|
int id_multi = -1;
|
|
|
|
struct slot_params params;
|
|
|
|
slot_state state = SLOT_STATE_IDLE;
|
|
slot_command command = SLOT_COMMAND_NONE;
|
|
|
|
// used to determine the slot that has been used the longest
|
|
int64_t t_last_used = -1;
|
|
|
|
// generation props
|
|
int32_t n_ctx = 0; // context size per slot
|
|
int32_t n_past = 0;
|
|
int32_t n_decoded = 0;
|
|
int32_t n_remaining = -1;
|
|
int32_t i_batch = -1;
|
|
int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
|
|
|
|
int32_t n_prompt_tokens = 0;
|
|
int32_t n_prompt_tokens_processed = 0;
|
|
|
|
json prompt; // can be either a string, array of strings or array of token ids
|
|
|
|
// when a task is submitted, we first tokenize the prompt and store it here
|
|
std::vector<llama_token> prompt_tokens;
|
|
|
|
std::string generated_text;
|
|
std::vector<llama_token> cache_tokens;
|
|
std::vector<completion_token_output> generated_token_probs;
|
|
|
|
bool infill = false;
|
|
bool embedding = false;
|
|
bool has_next_token = true;
|
|
bool truncated = false;
|
|
bool stopped_eos = false;
|
|
bool stopped_word = false;
|
|
bool stopped_limit = false;
|
|
|
|
bool oaicompat = false;
|
|
|
|
std::string oaicompat_model;
|
|
std::string stopping_word;
|
|
|
|
// sampling
|
|
llama_token sampled;
|
|
struct llama_sampling_params sparams;
|
|
llama_sampling_context * ctx_sampling = nullptr;
|
|
json json_schema;
|
|
|
|
int32_t ga_i = 0; // group-attention state
|
|
int32_t ga_n = 1; // group-attention factor
|
|
int32_t ga_w = 512; // group-attention width
|
|
|
|
int32_t n_past_se = 0; // self-extend
|
|
|
|
// stats
|
|
size_t n_sent_text = 0; // number of sent text character
|
|
size_t n_sent_token_probs = 0;
|
|
|
|
int64_t t_start_process_prompt;
|
|
int64_t t_start_generation;
|
|
|
|
double t_prompt_processing; // ms
|
|
double t_token_generation; // ms
|
|
|
|
void reset() {
|
|
n_prompt_tokens = 0;
|
|
generated_text = "";
|
|
truncated = false;
|
|
stopped_eos = false;
|
|
stopped_word = false;
|
|
stopped_limit = false;
|
|
stopping_word = "";
|
|
n_past = 0;
|
|
n_sent_text = 0;
|
|
n_sent_token_probs = 0;
|
|
infill = false;
|
|
ga_i = 0;
|
|
n_past_se = 0;
|
|
|
|
generated_token_probs.clear();
|
|
}
|
|
|
|
bool has_budget(gpt_params &global_params) {
|
|
if (params.n_predict == -1 && global_params.n_predict == -1) {
|
|
return true; // limitless
|
|
}
|
|
|
|
n_remaining = -1;
|
|
|
|
if (params.n_predict != -1) {
|
|
n_remaining = params.n_predict - n_decoded;
|
|
} else if (global_params.n_predict != -1) {
|
|
n_remaining = global_params.n_predict - n_decoded;
|
|
}
|
|
|
|
return n_remaining > 0; // no budget
|
|
}
|
|
|
|
bool available() const {
|
|
return state == SLOT_STATE_IDLE && command == SLOT_COMMAND_NONE;
|
|
}
|
|
|
|
bool is_processing() const {
|
|
return (state == SLOT_STATE_IDLE && command == SLOT_COMMAND_LOAD_PROMPT) || state == SLOT_STATE_PROCESSING;
|
|
}
|
|
|
|
void add_token_string(const completion_token_output & token) {
|
|
if (command == SLOT_COMMAND_RELEASE) {
|
|
return;
|
|
}
|
|
generated_token_probs.push_back(token);
|
|
}
|
|
|
|
void release() {
|
|
if (state == SLOT_STATE_PROCESSING) {
|
|
t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
|
|
command = SLOT_COMMAND_RELEASE;
|
|
}
|
|
}
|
|
|
|
json get_formated_timings() const {
|
|
return json {
|
|
{"prompt_n", n_prompt_tokens_processed},
|
|
{"prompt_ms", t_prompt_processing},
|
|
{"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed},
|
|
{"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed},
|
|
|
|
{"predicted_n", n_decoded},
|
|
{"predicted_ms", t_token_generation},
|
|
{"predicted_per_token_ms", t_token_generation / n_decoded},
|
|
{"predicted_per_second", 1e3 / t_token_generation * n_decoded},
|
|
};
|
|
}
|
|
|
|
result_timings get_timings() const {
|
|
result_timings timings;
|
|
timings.prompt_n = n_prompt_tokens_processed;
|
|
timings.prompt_ms = t_prompt_processing;
|
|
timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
|
|
timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
|
|
|
|
|
|
timings.predicted_n = n_decoded;
|
|
timings.predicted_ms = (ggml_time_us() - t_start_generation) / 1e3;
|
|
timings.predicted_per_token_ms = t_token_generation / n_decoded;
|
|
timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
|
|
|
|
//// Add speculative metrics
|
|
//if (n_draft_total > 0) {
|
|
// timings.draft_n = n_draft_total;
|
|
// timings.draft_n_accepted = n_draft_accepted;
|
|
//}
|
|
|
|
return timings;
|
|
}
|
|
size_t find_stopping_strings(const std::string & text, const size_t last_token_size, const stop_type type) {
|
|
size_t stop_pos = std::string::npos;
|
|
|
|
for (const std::string & word : params.antiprompt) {
|
|
size_t pos;
|
|
|
|
if (type == STOP_TYPE_FULL) {
|
|
const size_t tmp = word.size() + last_token_size;
|
|
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
|
|
|
|
pos = text.find(word, from_pos);
|
|
} else {
|
|
pos = find_partial_stop_string(word, text);
|
|
}
|
|
|
|
if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
|
|
if (type == STOP_TYPE_FULL) {
|
|
stopped_word = true;
|
|
stopping_word = word;
|
|
has_next_token = false;
|
|
}
|
|
stop_pos = pos;
|
|
}
|
|
}
|
|
|
|
return stop_pos;
|
|
}
|
|
|
|
void print_timings() const {
|
|
char buffer[512];
|
|
|
|
double t_token = t_prompt_processing / n_prompt_tokens_processed;
|
|
double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
|
|
|
|
snprintf(buffer, 512, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
|
|
t_prompt_processing, n_prompt_tokens_processed,
|
|
t_token, n_tokens_second);
|
|
|
|
LOG_INFO(buffer, {
|
|
{"id_slot", id},
|
|
{"id_task", id_task},
|
|
{"t_prompt_processing", t_prompt_processing},
|
|
{"n_prompt_tokens_processed", n_prompt_tokens_processed},
|
|
{"t_token", t_token},
|
|
{"n_tokens_second", n_tokens_second},
|
|
});
|
|
|
|
t_token = t_token_generation / n_decoded;
|
|
n_tokens_second = 1e3 / t_token_generation * n_decoded;
|
|
|
|
snprintf(buffer, 512, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
|
|
t_token_generation, n_decoded,
|
|
t_token, n_tokens_second);
|
|
|
|
LOG_INFO(buffer, {
|
|
{"id_slot", id},
|
|
{"id_task", id_task},
|
|
{"t_token_generation", t_token_generation},
|
|
{"n_decoded", n_decoded},
|
|
{"t_token", t_token},
|
|
{"n_tokens_second", n_tokens_second},
|
|
});
|
|
|
|
snprintf(buffer, 512, " total time = %10.2f ms", t_prompt_processing + t_token_generation);
|
|
|
|
LOG_INFO(buffer, {
|
|
{"id_slot", id},
|
|
{"id_task", id_task},
|
|
{"t_prompt_processing", t_prompt_processing},
|
|
{"t_token_generation", t_token_generation},
|
|
{"t_total", t_prompt_processing + t_token_generation},
|
|
});
|
|
}
|
|
};
|
|
|
|
struct server_metrics {
|
|
int64_t t_start = 0;
|
|
|
|
uint64_t n_prompt_tokens_processed_total = 0;
|
|
uint64_t t_prompt_processing_total = 0;
|
|
uint64_t n_tokens_predicted_total = 0;
|
|
uint64_t t_tokens_generation_total = 0;
|
|
|
|
uint64_t n_prompt_tokens_processed = 0;
|
|
uint64_t t_prompt_processing = 0;
|
|
|
|
uint64_t n_tokens_predicted = 0;
|
|
uint64_t t_tokens_generation = 0;
|
|
|
|
void init() {
|
|
t_start = ggml_time_us();
|
|
}
|
|
|
|
void on_prompt_eval(const server_slot & slot) {
|
|
n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
|
|
n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
|
|
t_prompt_processing += slot.t_prompt_processing;
|
|
t_prompt_processing_total += slot.t_prompt_processing;
|
|
}
|
|
|
|
void on_prediction(const server_slot & slot) {
|
|
n_tokens_predicted_total += slot.n_decoded;
|
|
n_tokens_predicted += slot.n_decoded;
|
|
t_tokens_generation += slot.t_token_generation;
|
|
t_tokens_generation_total += slot.t_token_generation;
|
|
}
|
|
|
|
void reset_bucket() {
|
|
n_prompt_tokens_processed = 0;
|
|
t_prompt_processing = 0;
|
|
n_tokens_predicted = 0;
|
|
t_tokens_generation = 0;
|
|
}
|
|
};
|
|
|
|
struct server_queue {
|
|
int id = 0;
|
|
bool running;
|
|
|
|
// queues
|
|
std::vector<server_task> queue_tasks;
|
|
std::vector<server_task> queue_tasks_deferred;
|
|
|
|
std::vector<server_task_multi> queue_multitasks;
|
|
|
|
std::mutex mutex_tasks;
|
|
std::condition_variable condition_tasks;
|
|
|
|
// callback functions
|
|
std::function<void(server_task &)> callback_new_task;
|
|
std::function<void(server_task_multi &)> callback_finish_multitask;
|
|
std::function<void(void)> callback_update_slots;
|
|
|
|
// Add a new task to the end of the queue
|
|
int post(server_task task) {
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
if (task.id == -1) {
|
|
task.id = id++;
|
|
LOG_VERBOSE("new task id", {{"new_id", task.id}});
|
|
}
|
|
queue_tasks.push_back(std::move(task));
|
|
condition_tasks.notify_one();
|
|
return task.id;
|
|
}
|
|
|
|
// Add a new task, but defer until one slot is available
|
|
void defer(server_task task) {
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
queue_tasks_deferred.push_back(std::move(task));
|
|
}
|
|
|
|
// Get the next id for creating anew task
|
|
int get_new_id() {
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
int new_id = id++;
|
|
LOG_VERBOSE("new task id", {{"new_id", new_id}});
|
|
return new_id;
|
|
}
|
|
|
|
// Register function to process a new task
|
|
void on_new_task(std::function<void(server_task &)> callback) {
|
|
callback_new_task = std::move(callback);
|
|
}
|
|
|
|
// Register function to process a multitask when it is finished
|
|
void on_finish_multitask(std::function<void(server_task_multi&)> callback) {
|
|
callback_finish_multitask = std::move(callback);
|
|
}
|
|
|
|
// Register the function to be called when all slots data is ready to be processed
|
|
void on_update_slots(std::function<void(void)> callback) {
|
|
callback_update_slots = std::move(callback);
|
|
}
|
|
|
|
// Call when the state of one slot is changed
|
|
void notify_slot_changed() {
|
|
// move deferred tasks back to main loop
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
for (auto & task : queue_tasks_deferred) {
|
|
queue_tasks.push_back(std::move(task));
|
|
}
|
|
queue_tasks_deferred.clear();
|
|
}
|
|
|
|
// end the start_loop routine
|
|
void terminate() {
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
running = false;
|
|
condition_tasks.notify_all();
|
|
}
|
|
|
|
/**
|
|
* Main loop consists of these steps:
|
|
* - Wait until a new task arrives
|
|
* - Process the task (i.e. maybe copy data into slot)
|
|
* - Check if multitask is finished
|
|
* - Update all slots
|
|
*/
|
|
void start_loop() {
|
|
running = true;
|
|
|
|
while (true) {
|
|
LOG_VERBOSE("new task may arrive", {});
|
|
|
|
while (true) {
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
if (queue_tasks.empty()) {
|
|
lock.unlock();
|
|
break;
|
|
}
|
|
server_task task = queue_tasks.front();
|
|
queue_tasks.erase(queue_tasks.begin());
|
|
lock.unlock();
|
|
LOG_VERBOSE("callback_new_task", {{"id_task", task.id}});
|
|
callback_new_task(task);
|
|
}
|
|
|
|
LOG_VERBOSE("update_multitasks", {});
|
|
|
|
// check if we have any finished multitasks
|
|
auto queue_iterator = queue_multitasks.begin();
|
|
while (queue_iterator != queue_multitasks.end()) {
|
|
if (queue_iterator->subtasks_remaining.empty()) {
|
|
// all subtasks done == multitask is done
|
|
server_task_multi current_multitask = *queue_iterator;
|
|
callback_finish_multitask(current_multitask);
|
|
// remove this multitask
|
|
queue_iterator = queue_multitasks.erase(queue_iterator);
|
|
} else {
|
|
++queue_iterator;
|
|
}
|
|
}
|
|
|
|
// all tasks in the current loop is processed, slots data is now ready
|
|
LOG_VERBOSE("callback_update_slots", {});
|
|
|
|
callback_update_slots();
|
|
|
|
LOG_VERBOSE("wait for new task", {});
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
if (queue_tasks.empty()) {
|
|
if (!running) {
|
|
LOG_VERBOSE("ending start_loop", {});
|
|
return;
|
|
}
|
|
condition_tasks.wait(lock, [&]{
|
|
return (!queue_tasks.empty() || !running);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// functions to manage multitasks
|
|
//
|
|
|
|
// add a multitask by specifying the id of all subtask (subtask is a server_task)
|
|
void add_multitask(int id_multi, std::vector<int> & sub_ids) {
|
|
std::lock_guard<std::mutex> lock(mutex_tasks);
|
|
server_task_multi multi;
|
|
multi.id = id_multi;
|
|
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
|
|
queue_multitasks.push_back(multi);
|
|
}
|
|
|
|
// updatethe remaining subtasks, while appending results to multitask
|
|
void update_multitask(int id_multi, int id_sub, server_task_result & result) {
|
|
std::lock_guard<std::mutex> lock(mutex_tasks);
|
|
for (auto & multitask : queue_multitasks) {
|
|
if (multitask.id == id_multi) {
|
|
multitask.subtasks_remaining.erase(id_sub);
|
|
multitask.results.push_back(result);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
struct server_response {
|
|
typedef std::function<void(int, int, server_task_result &)> callback_multitask_t;
|
|
callback_multitask_t callback_update_multitask;
|
|
|
|
// for keeping track of all tasks waiting for the result
|
|
std::set<int> waiting_task_ids;
|
|
|
|
// the main result queue
|
|
std::vector<server_task_result> queue_results;
|
|
|
|
std::mutex mutex_results;
|
|
std::condition_variable condition_results;
|
|
|
|
// add the id_task to the list of tasks waiting for response
|
|
void add_waiting_task_id(int id_task) {
|
|
LOG_VERBOSE("waiting for task id", {{"id_task", id_task}});
|
|
|
|
std::unique_lock<std::mutex> lock(mutex_results);
|
|
waiting_task_ids.insert(id_task);
|
|
}
|
|
|
|
// when the request is finished, we can remove task associated with it
|
|
void remove_waiting_task_id(int id_task) {
|
|
LOG_VERBOSE("remove waiting for task id", {{"id_task", id_task}});
|
|
|
|
std::unique_lock<std::mutex> lock(mutex_results);
|
|
waiting_task_ids.erase(id_task);
|
|
}
|
|
|
|
// This function blocks the thread until there is a response for this id_task
|
|
server_task_result recv(int id_task) {
|
|
while (true) {
|
|
std::unique_lock<std::mutex> lock(mutex_results);
|
|
condition_results.wait(lock, [&]{
|
|
return !queue_results.empty();
|
|
});
|
|
|
|
for (int i = 0; i < (int) queue_results.size(); i++) {
|
|
if (queue_results[i].id == id_task) {
|
|
assert(queue_results[i].id_multi == -1);
|
|
server_task_result res = queue_results[i];
|
|
queue_results.erase(queue_results.begin() + i);
|
|
return res;
|
|
}
|
|
}
|
|
}
|
|
|
|
// should never reach here
|
|
}
|
|
|
|
// Register the function to update multitask
|
|
void on_multitask_update(callback_multitask_t callback) {
|
|
callback_update_multitask = std::move(callback);
|
|
}
|
|
|
|
// Send a new result to a waiting id_task
|
|
void send(server_task_result result) {
|
|
LOG_VERBOSE("send new result", {{"id_task", result.id}});
|
|
|
|
std::unique_lock<std::mutex> lock(mutex_results);
|
|
for (const auto & id_task : waiting_task_ids) {
|
|
// LOG_TEE("waiting task id %i \n", id_task);
|
|
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
|
|
if (result.id_multi == id_task) {
|
|
LOG_VERBOSE("callback_update_multitask", {{"id_task", id_task}});
|
|
callback_update_multitask(id_task, result.id, result);
|
|
continue;
|
|
}
|
|
|
|
if (result.id == id_task) {
|
|
LOG_VERBOSE("queue_results.push_back", {{"id_task", id_task}});
|
|
queue_results.push_back(result);
|
|
condition_results.notify_all();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
struct server_context {
|
|
llama_model * model = nullptr;
|
|
llama_context * ctx = nullptr;
|
|
std::vector<llama_lora_adapter_container> lora_adapters;
|
|
|
|
gpt_params params;
|
|
|
|
llama_batch batch;
|
|
|
|
bool clean_kv_cache = true;
|
|
bool add_bos_token = true;
|
|
|
|
int32_t n_ctx; // total context for all clients / slots
|
|
|
|
// system prompt
|
|
bool system_need_update = false;
|
|
|
|
std::string system_prompt;
|
|
std::vector<llama_token> system_tokens;
|
|
|
|
// slots / clients
|
|
std::vector<server_slot> slots;
|
|
json default_generation_settings_for_props;
|
|
|
|
server_queue queue_tasks;
|
|
server_response queue_results;
|
|
|
|
server_metrics metrics;
|
|
|
|
// Necessary similarity of prompt for slot selection
|
|
float slot_prompt_similarity = 0.0f;
|
|
|
|
~server_context() {
|
|
if (ctx) {
|
|
llama_free(ctx);
|
|
ctx = nullptr;
|
|
}
|
|
|
|
if (model) {
|
|
llama_free_model(model);
|
|
model = nullptr;
|
|
}
|
|
|
|
// Clear any sampling context
|
|
for (server_slot & slot : slots) {
|
|
if (slot.ctx_sampling != nullptr) {
|
|
llama_sampling_free(slot.ctx_sampling);
|
|
}
|
|
}
|
|
|
|
llama_batch_free(batch);
|
|
}
|
|
|
|
bool load_model(const gpt_params & params_) {
|
|
params = params_;
|
|
|
|
// dedicate one sequence to the system prompt
|
|
params.n_parallel += 1;
|
|
|
|
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
|
|
|
model = llama_init.model;
|
|
ctx = llama_init.context;
|
|
lora_adapters = llama_init.lora_adapters;
|
|
params.n_parallel -= 1; // but be sneaky about it
|
|
if (model == nullptr) {
|
|
LOG_ERROR("unable to load model", {{"model", params.model}});
|
|
return false;
|
|
}
|
|
|
|
n_ctx = llama_n_ctx(ctx);
|
|
|
|
add_bos_token = llama_should_add_bos_token(model);
|
|
GGML_ASSERT(llama_add_eos_token(model) != 1);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool validate_model_chat_template() const {
|
|
llama_chat_message chat[] = {{"user", "test"}};
|
|
|
|
const int res = llama_chat_apply_template(model, nullptr, chat, 1, true, nullptr, 0);
|
|
|
|
return res > 0;
|
|
}
|
|
|
|
void init() {
|
|
const int32_t n_ctx_slot = n_ctx / params.n_parallel;
|
|
|
|
LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}});
|
|
|
|
for (int i = 0; i < params.n_parallel; i++) {
|
|
server_slot slot;
|
|
|
|
slot.id = i;
|
|
slot.n_ctx = n_ctx_slot;
|
|
slot.n_predict = params.n_predict;
|
|
|
|
LOG_INFO("new slot", {
|
|
{"id_slot", slot.id},
|
|
{"n_ctx_slot", slot.n_ctx}
|
|
});
|
|
|
|
const int ga_n = params.grp_attn_n;
|
|
const int ga_w = params.grp_attn_w;
|
|
|
|
if (ga_n != 1) {
|
|
GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
|
|
GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
|
|
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
|
|
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
|
|
|
|
LOG_INFO("slot self-extend", {
|
|
{"id_slot", slot.id},
|
|
{"ga_n", ga_n},
|
|
{"ga_w", ga_w}
|
|
});
|
|
}
|
|
|
|
slot.ga_i = 0;
|
|
slot.ga_n = ga_n;
|
|
slot.ga_w = ga_w;
|
|
|
|
slot.sparams = params.sparams;
|
|
|
|
slot.reset();
|
|
|
|
slots.push_back(slot);
|
|
}
|
|
|
|
default_generation_settings_for_props = get_formated_generation(slots.front());
|
|
default_generation_settings_for_props["seed"] = -1;
|
|
|
|
// the update_slots() logic will always submit a maximum of n_batch tokens
|
|
// note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
|
|
{
|
|
const int32_t n_batch = llama_n_batch(ctx);
|
|
|
|
// only a single seq_id per token is needed
|
|
batch = llama_batch_init(n_batch, 0, 1);
|
|
}
|
|
|
|
metrics.init();
|
|
}
|
|
|
|
std::vector<llama_token> tokenize(const json & json_prompt, bool add_special) const {
|
|
// TODO: currently, we tokenize using special tokens by default
|
|
// this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
|
|
// but it's better compared to completely ignoring ChatML and other chat templates
|
|
const bool TMP_FORCE_SPECIAL = true;
|
|
|
|
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
|
|
// or the first element of the json_prompt array is a string.
|
|
std::vector<llama_token> prompt_tokens;
|
|
|
|
if (json_prompt.is_array()) {
|
|
bool first = true;
|
|
for (const auto & p : json_prompt) {
|
|
if (p.is_string()) {
|
|
auto s = p.template get<std::string>();
|
|
|
|
std::vector<llama_token> p;
|
|
if (first) {
|
|
p = ::llama_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
|
|
first = false;
|
|
} else {
|
|
p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
|
|
}
|
|
|
|
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
|
|
} else {
|
|
if (first) {
|
|
first = false;
|
|
}
|
|
|
|
prompt_tokens.push_back(p.template get<llama_token>());
|
|
}
|
|
}
|
|
} else {
|
|
auto s = json_prompt.template get<std::string>();
|
|
prompt_tokens = ::llama_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
|
|
}
|
|
|
|
return prompt_tokens;
|
|
}
|
|
|
|
server_slot * get_slot_by_id(int id) {
|
|
for (server_slot & slot : slots) {
|
|
if (slot.id == id) {
|
|
return &slot;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
server_slot * get_available_slot(const std::string & prompt) {
|
|
server_slot * ret = nullptr;
|
|
|
|
// find the slot that has at least n% prompt similarity
|
|
if (ret == nullptr && slot_prompt_similarity != 0.0f && !prompt.empty()) {
|
|
int max_lcp_len = 0;
|
|
float similarity = 0;
|
|
|
|
for (server_slot & slot : slots) {
|
|
// skip the slot if it is not available
|
|
if (!slot.available()) {
|
|
continue;
|
|
}
|
|
|
|
// skip the slot if it does not contains prompt
|
|
if (!slot.prompt.is_string()) {
|
|
continue;
|
|
}
|
|
|
|
// current slot's prompt
|
|
std::string slot_prompt = slot.prompt.get<std::string>();
|
|
|
|
// length of the current slot's prompt
|
|
int slot_prompt_len = slot_prompt.size();
|
|
|
|
// length of the Longest Common Prefix between the current slot's prompt and the input prompt
|
|
int lcp_len = common_part(slot_prompt, prompt);
|
|
|
|
// fraction of the common substring length compared to the current slot's prompt length
|
|
similarity = static_cast<float>(lcp_len) / slot_prompt_len;
|
|
|
|
// select the current slot if the criteria match
|
|
if (lcp_len > max_lcp_len && similarity > slot_prompt_similarity) {
|
|
max_lcp_len = lcp_len;
|
|
ret = &slot;
|
|
}
|
|
}
|
|
|
|
if (ret != nullptr) {
|
|
LOG_VERBOSE("selected slot by lcp similarity", {
|
|
{"id_slot", ret->id},
|
|
{"max_lcp_len", max_lcp_len},
|
|
{"similarity", similarity},
|
|
});
|
|
}
|
|
}
|
|
|
|
// find the slot that has been least recently used
|
|
if (ret == nullptr) {
|
|
int64_t t_last = ggml_time_us();
|
|
for (server_slot & slot : slots) {
|
|
// skip the slot if it is not available
|
|
if (!slot.available()) {
|
|
continue;
|
|
}
|
|
|
|
// select the current slot if the criteria match
|
|
if (slot.t_last_used < t_last) {
|
|
t_last = slot.t_last_used;
|
|
ret = &slot;
|
|
}
|
|
}
|
|
|
|
if (ret != nullptr) {
|
|
LOG_VERBOSE("selected slot by lru", {
|
|
{"id_slot", ret->id},
|
|
{"t_last", t_last},
|
|
});
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool launch_slot_with_task(server_slot & slot, const server_task & task) {
|
|
slot_params default_params;
|
|
// Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
|
|
llama_sampling_params default_sparams = params.sparams;
|
|
auto & data = task.data;
|
|
|
|
if (data.count("__oaicompat") != 0) {
|
|
slot.oaicompat = true;
|
|
slot.oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
|
|
} else {
|
|
slot.oaicompat = false;
|
|
slot.oaicompat_model = "";
|
|
}
|
|
slot.params.timings_per_token = json_value(data, "timings_per_token", false);
|
|
slot.params.stream = json_value(data, "stream", false);
|
|
slot.params.cache_prompt = json_value(data, "cache_prompt", true);
|
|
slot.params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", default_params.n_predict));
|
|
slot.sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
|
|
slot.sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
|
|
slot.sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
|
|
slot.sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
|
|
slot.sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
|
|
slot.sparams.temp = json_value(data, "temperature", default_sparams.temp);
|
|
slot.sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
|
|
slot.sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
|
|
slot.sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
|
|
slot.sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
|
|
slot.sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
|
|
slot.sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
|
|
slot.sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
|
|
slot.sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
|
|
slot.sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
|
|
slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
|
|
slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep);
|
|
slot.params.n_discard = json_value(data, "n_discard", default_params.n_discard);
|
|
slot.sparams.seed = json_value(data, "seed", default_sparams.seed);
|
|
slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
|
|
slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
|
|
|
|
// process "json_schema" and "grammar"
|
|
if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
|
|
send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST);
|
|
return false;
|
|
} else if (data.contains("json_schema") && !data.contains("grammar")) {
|
|
try {
|
|
auto schema = json_value(data, "json_schema", json::object());
|
|
slot.sparams.grammar = json_schema_to_grammar(schema);
|
|
} catch (const std::exception & e) {
|
|
send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
|
|
return false;
|
|
}
|
|
} else {
|
|
slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
|
|
}
|
|
|
|
if (slot.params.cache_prompt && slot.ga_n != 1) {
|
|
LOG_WARNING("cache_prompt is not supported with group-attention", {});
|
|
slot.params.cache_prompt = false;
|
|
}
|
|
|
|
if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
|
|
// Might be better to reject the request with a 400 ?
|
|
LOG_WARNING("Max tokens to predict exceeds server configuration", {
|
|
{"params.n_predict", slot.params.n_predict},
|
|
{"slot.n_predict", slot.n_predict},
|
|
});
|
|
slot.params.n_predict = slot.n_predict;
|
|
}
|
|
|
|
// infill
|
|
slot.params.input_prefix = json_value(data, "input_prefix", default_params.input_prefix);
|
|
slot.params.input_suffix = json_value(data, "input_suffix", default_params.input_suffix);
|
|
|
|
// get prompt
|
|
if (!task.infill) {
|
|
const auto & prompt = data.find("prompt");
|
|
if (prompt == data.end()) {
|
|
send_error(task, "\"prompt\" must be provided", ERROR_TYPE_INVALID_REQUEST);
|
|
return false;
|
|
}
|
|
|
|
if ((prompt->is_string()) ||
|
|
(prompt->is_array() && prompt->size() == 1 && prompt->at(0).is_string()) ||
|
|
(prompt->is_array() && !prompt->empty() && prompt->at(0).is_number_integer())) {
|
|
slot.prompt = *prompt;
|
|
} else if (prompt->is_array() && prompt->size() == 1 && prompt->at(0).is_array()) {
|
|
slot.prompt = prompt->at(0);
|
|
} else {
|
|
send_error(task, "\"prompt\" must be a string or an array of integers", ERROR_TYPE_INVALID_REQUEST);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// penalize user-provided tokens
|
|
{
|
|
slot.sparams.penalty_prompt_tokens.clear();
|
|
slot.sparams.use_penalty_prompt_tokens = false;
|
|
|
|
const auto & penalty_prompt = data.find("penalty_prompt");
|
|
|
|
if (penalty_prompt != data.end()) {
|
|
if (penalty_prompt->is_string()) {
|
|
const auto penalty_prompt_string = penalty_prompt->get<std::string>();
|
|
slot.sparams.penalty_prompt_tokens = llama_tokenize(model, penalty_prompt_string, false);
|
|
|
|
if (slot.params.n_predict > 0) {
|
|
slot.sparams.penalty_prompt_tokens.reserve(slot.sparams.penalty_prompt_tokens.size() + slot.params.n_predict);
|
|
}
|
|
slot.sparams.use_penalty_prompt_tokens = true;
|
|
|
|
LOG_VERBOSE("penalty_prompt_tokens", {
|
|
{"id_slot", slot.id},
|
|
{"tokens", slot.sparams.penalty_prompt_tokens},
|
|
});
|
|
}
|
|
else if (penalty_prompt->is_array()) {
|
|
const auto n_tokens = penalty_prompt->size();
|
|
slot.sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot.params.n_predict));
|
|
|
|
const int n_vocab = llama_n_vocab(model);
|
|
for (const auto & penalty_token : *penalty_prompt) {
|
|
if (penalty_token.is_number_integer()) {
|
|
const auto tok = penalty_token.get<llama_token>();
|
|
if (tok >= 0 && tok < n_vocab) {
|
|
slot.sparams.penalty_prompt_tokens.push_back(tok);
|
|
}
|
|
}
|
|
}
|
|
slot.sparams.use_penalty_prompt_tokens = true;
|
|
|
|
LOG_VERBOSE("penalty_prompt_tokens", {
|
|
{"id_slot", slot.id},
|
|
{"tokens", slot.sparams.penalty_prompt_tokens},
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
slot.sparams.logit_bias.clear();
|
|
|
|
if (json_value(data, "ignore_eos", false)) {
|
|
slot.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
|
|
}
|
|
|
|
const auto & logit_bias = data.find("logit_bias");
|
|
if (logit_bias != data.end() && logit_bias->is_array()) {
|
|
const int n_vocab = llama_n_vocab(model);
|
|
for (const auto & el : *logit_bias) {
|
|
// TODO: we may want to throw errors here, in case "el" is incorrect
|
|
if (el.is_array() && el.size() == 2) {
|
|
float bias;
|
|
if (el[1].is_number()) {
|
|
bias = el[1].get<float>();
|
|
} else if (el[1].is_boolean() && !el[1].get<bool>()) {
|
|
bias = -INFINITY;
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
if (el[0].is_number_integer()) {
|
|
llama_token tok = el[0].get<llama_token>();
|
|
if (tok >= 0 && tok < n_vocab) {
|
|
slot.sparams.logit_bias[tok] = bias;
|
|
}
|
|
} else if (el[0].is_string()) {
|
|
auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
|
|
for (auto tok : toks) {
|
|
slot.sparams.logit_bias[tok] = bias;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
slot.params.antiprompt.clear();
|
|
|
|
const auto & stop = data.find("stop");
|
|
if (stop != data.end() && stop->is_array()) {
|
|
for (const auto & word : *stop) {
|
|
if (!word.empty()) {
|
|
slot.params.antiprompt.push_back(word);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
const auto & samplers_sequence = data.find("samplers");
|
|
if (samplers_sequence != data.end() && samplers_sequence->is_array()) {
|
|
std::vector<std::string> sampler_names;
|
|
for (const auto & sampler_name : *samplers_sequence) {
|
|
if (sampler_name.is_string()) {
|
|
sampler_names.emplace_back(sampler_name);
|
|
}
|
|
}
|
|
slot.sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, false);
|
|
} else {
|
|
slot.sparams.samplers_sequence = default_sparams.samplers_sequence;
|
|
}
|
|
}
|
|
|
|
{
|
|
if (slot.ctx_sampling != nullptr) {
|
|
llama_sampling_free(slot.ctx_sampling);
|
|
}
|
|
slot.ctx_sampling = llama_sampling_init(slot.sparams);
|
|
if (slot.ctx_sampling == nullptr) {
|
|
// for now, the only error that may happen here is invalid grammar
|
|
send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
slot.command = SLOT_COMMAND_LOAD_PROMPT;
|
|
slot.prompt_tokens.clear();
|
|
|
|
LOG_INFO("slot is processing task", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task},
|
|
});
|
|
|
|
return true;
|
|
}
|
|
|
|
void kv_cache_clear() {
|
|
LOG_VERBOSE("clearing KV cache", {});
|
|
|
|
// clear the entire KV cache
|
|
llama_kv_cache_clear(ctx);
|
|
clean_kv_cache = false;
|
|
}
|
|
|
|
void system_prompt_update() {
|
|
LOG_VERBOSE("system prompt update", {
|
|
{"system_prompt", system_prompt},
|
|
});
|
|
|
|
kv_cache_clear();
|
|
system_tokens.clear();
|
|
|
|
if (!system_prompt.empty()) {
|
|
system_tokens = ::llama_tokenize(ctx, system_prompt, true);
|
|
|
|
llama_batch_clear(batch);
|
|
|
|
for (int i = 0; i < (int)system_tokens.size(); ++i) {
|
|
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
|
|
}
|
|
|
|
const int32_t n_batch = llama_n_batch(ctx);
|
|
|
|
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
|
|
const int32_t n_tokens = std::min(params.n_batch, batch.n_tokens - i);
|
|
llama_batch batch_view = {
|
|
n_tokens,
|
|
batch.token + i,
|
|
nullptr,
|
|
batch.pos + i,
|
|
batch.n_seq_id + i,
|
|
batch.seq_id + i,
|
|
batch.logits + i,
|
|
0, 0, 0, // unused
|
|
};
|
|
|
|
if (llama_decode(ctx, batch_view) != 0) {
|
|
LOG_ERROR("llama_decode() failed", {});
|
|
return;
|
|
}
|
|
}
|
|
|
|
// assign the system KV cache to all parallel sequences
|
|
for (int32_t i = 1; i <= params.n_parallel; ++i) {
|
|
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
|
|
}
|
|
}
|
|
|
|
system_need_update = false;
|
|
}
|
|
|
|
bool system_prompt_set(const std::string & sys_prompt) {
|
|
system_prompt = sys_prompt;
|
|
|
|
LOG_VERBOSE("system prompt process", {
|
|
{"system_prompt", system_prompt},
|
|
});
|
|
|
|
// release all slots
|
|
for (server_slot & slot : slots) {
|
|
slot.release();
|
|
}
|
|
|
|
system_need_update = true;
|
|
return true;
|
|
}
|
|
|
|
bool process_token(completion_token_output & result, server_slot & slot) {
|
|
// remember which tokens were sampled - used for repetition penalties during sampling
|
|
const std::string token_str = llama_token_to_piece(ctx, result.tok, params.special);
|
|
slot.sampled = result.tok;
|
|
|
|
// search stop word and delete it
|
|
slot.generated_text += token_str;
|
|
slot.has_next_token = true;
|
|
|
|
if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1) {
|
|
// we can change penalty_prompt_tokens because it is always created from scratch each request
|
|
slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
|
|
}
|
|
|
|
// check if there is incomplete UTF-8 character at the end
|
|
bool incomplete = false;
|
|
for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) {
|
|
unsigned char c = slot.generated_text[slot.generated_text.size() - i];
|
|
if ((c & 0xC0) == 0x80) {
|
|
// continuation byte: 10xxxxxx
|
|
continue;
|
|
}
|
|
if ((c & 0xE0) == 0xC0) {
|
|
// 2-byte character: 110xxxxx ...
|
|
incomplete = i < 2;
|
|
} else if ((c & 0xF0) == 0xE0) {
|
|
// 3-byte character: 1110xxxx ...
|
|
incomplete = i < 3;
|
|
} else if ((c & 0xF8) == 0xF0) {
|
|
// 4-byte character: 11110xxx ...
|
|
incomplete = i < 4;
|
|
}
|
|
// else 1-byte character or invalid byte
|
|
break;
|
|
}
|
|
|
|
if (!incomplete) {
|
|
size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
|
|
|
|
const std::string str_test = slot.generated_text.substr(pos);
|
|
bool is_stop_full = false;
|
|
|
|
size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_FULL);
|
|
if (stop_pos != std::string::npos) {
|
|
is_stop_full = true;
|
|
slot.generated_text.erase(
|
|
slot.generated_text.begin() + pos + stop_pos,
|
|
slot.generated_text.end());
|
|
pos = std::min(slot.n_sent_text, slot.generated_text.size());
|
|
} else {
|
|
is_stop_full = false;
|
|
stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_PARTIAL);
|
|
}
|
|
|
|
// check if there is any token to predict
|
|
if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0)) {
|
|
// no send the stop word in the response
|
|
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
|
|
slot.n_sent_text += result.text_to_send.size();
|
|
// add the token to slot queue and cache
|
|
}
|
|
|
|
slot.add_token_string(result);
|
|
if (slot.params.stream) {
|
|
send_partial_response(slot, result);
|
|
}
|
|
}
|
|
|
|
if (incomplete) {
|
|
slot.has_next_token = true;
|
|
}
|
|
|
|
// check the limits
|
|
if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params)) {
|
|
slot.stopped_limit = true;
|
|
slot.has_next_token = false;
|
|
|
|
LOG_VERBOSE("stopped by limit", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task},
|
|
{"n_decoded", slot.n_decoded},
|
|
{"n_predict", slot.params.n_predict},
|
|
});
|
|
}
|
|
|
|
if (llama_token_is_eog(model, result.tok)) {
|
|
slot.stopped_eos = true;
|
|
slot.has_next_token = false;
|
|
|
|
LOG_VERBOSE("eos token found", {});
|
|
}
|
|
|
|
auto n_ctx_train = llama_n_ctx_train(model);
|
|
if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.ga_n == 1
|
|
&& slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
|
|
LOG_WARNING("n_predict is not set and self-context extend is disabled."
|
|
" Limiting generated tokens to n_ctx_train to avoid EOS-less generation infinite loop", {
|
|
{ "id_slot", slot.id },
|
|
{ "params.n_predict", slot.params.n_predict },
|
|
{ "slot.n_prompt_tokens", slot.n_prompt_tokens },
|
|
{ "slot.n_decoded", slot.n_decoded },
|
|
{ "slot.n_predict", slot.n_predict },
|
|
{ "n_slots", params.n_parallel },
|
|
{ "slot.n_ctx", slot.n_ctx },
|
|
{ "n_ctx", n_ctx },
|
|
{ "n_ctx_train", n_ctx_train },
|
|
{ "ga_n", slot.ga_n },
|
|
});
|
|
slot.truncated = true;
|
|
slot.stopped_limit = true;
|
|
slot.has_next_token = false; // stop prediction
|
|
}
|
|
|
|
LOG_VERBOSE("next token", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task},
|
|
{"token", result.tok},
|
|
{"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
|
|
{"has_next_token", slot.has_next_token},
|
|
{"n_remain", slot.n_remaining},
|
|
{"n_decoded", slot.n_decoded},
|
|
{"stopped_eos", slot.stopped_eos},
|
|
{"stopped_word", slot.stopped_word},
|
|
{"stopped_limit", slot.stopped_limit},
|
|
{"stopping_word", slot.stopping_word},
|
|
});
|
|
|
|
return slot.has_next_token; // continue
|
|
}
|
|
|
|
json get_formated_generation(const server_slot & slot) const {
|
|
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
|
|
const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() && eos_bias->second < 0.0f && std::isinf(eos_bias->second);
|
|
|
|
std::vector<std::string> samplers_sequence;
|
|
samplers_sequence.reserve(slot.sparams.samplers_sequence.size());
|
|
for (const auto & sampler_type : slot.sparams.samplers_sequence) {
|
|
samplers_sequence.emplace_back(llama_sampling_type_to_str(sampler_type));
|
|
}
|
|
|
|
return json {
|
|
{"n_ctx", slot.n_ctx},
|
|
{"n_predict", slot.n_predict},
|
|
{"model", params.model_alias},
|
|
{"seed", slot.sparams.seed},
|
|
{"temperature", slot.sparams.temp},
|
|
{"dynatemp_range", slot.sparams.dynatemp_range},
|
|
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},
|
|
{"top_k", slot.sparams.top_k},
|
|
{"top_p", slot.sparams.top_p},
|
|
{"min_p", slot.sparams.min_p},
|
|
{"tfs_z", slot.sparams.tfs_z},
|
|
{"typical_p", slot.sparams.typical_p},
|
|
{"repeat_last_n", slot.sparams.penalty_last_n},
|
|
{"repeat_penalty", slot.sparams.penalty_repeat},
|
|
{"presence_penalty", slot.sparams.penalty_present},
|
|
{"frequency_penalty", slot.sparams.penalty_freq},
|
|
{"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
|
|
{"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
|
|
{"mirostat", slot.sparams.mirostat},
|
|
{"mirostat_tau", slot.sparams.mirostat_tau},
|
|
{"mirostat_eta", slot.sparams.mirostat_eta},
|
|
{"penalize_nl", slot.sparams.penalize_nl},
|
|
{"stop", slot.params.antiprompt},
|
|
{"n_predict", slot.params.n_predict}, // TODO: fix duplicate key n_predict
|
|
{"n_keep", slot.params.n_keep},
|
|
{"n_discard", slot.params.n_discard},
|
|
{"ignore_eos", ignore_eos},
|
|
{"stream", slot.params.stream},
|
|
{"logit_bias", slot.sparams.logit_bias},
|
|
{"n_probs", slot.sparams.n_probs},
|
|
{"min_keep", slot.sparams.min_keep},
|
|
{"grammar", slot.sparams.grammar},
|
|
{"samplers", samplers_sequence}
|
|
};
|
|
}
|
|
|
|
void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
|
|
send_error(task.id, task.id_multi, error, type);
|
|
}
|
|
|
|
void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
|
|
send_error(slot.id_task, slot.id_multi, error, type);
|
|
}
|
|
|
|
void send_error(const int id_task, const int id_multi, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
|
|
LOG_ERROR("task error", {
|
|
{"id_multi", id_multi},
|
|
{"id_task", id_task},
|
|
{"error", error},
|
|
});
|
|
|
|
server_task_result res;
|
|
res.id = id_task;
|
|
res.id_multi = id_multi;
|
|
res.stop = false;
|
|
res.error = true;
|
|
res.data = format_error_response(error, type);
|
|
|
|
queue_results.send(res);
|
|
}
|
|
|
|
void send_partial_response(server_slot & slot, completion_token_output tkn) {
|
|
server_task_result res;
|
|
res.id = slot.id_task;
|
|
res.id_multi = slot.id_multi;
|
|
res.error = false;
|
|
res.stop = false;
|
|
res.data = json {
|
|
{"content", tkn.text_to_send},
|
|
{"stop", false},
|
|
{"id_slot", slot.id},
|
|
{"multimodal", false}
|
|
};
|
|
|
|
if (slot.sparams.n_probs > 0) {
|
|
const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
|
|
const size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
|
|
const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
|
|
|
|
std::vector<completion_token_output> probs_output;
|
|
if (probs_pos < probs_stop_pos) {
|
|
probs_output = std::vector<completion_token_output>(
|
|
slot.generated_token_probs.begin() + probs_pos,
|
|
slot.generated_token_probs.begin() + probs_stop_pos);
|
|
}
|
|
slot.n_sent_token_probs = probs_stop_pos;
|
|
|
|
res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
|
|
}
|
|
|
|
if (slot.oaicompat) {
|
|
res.data["oaicompat_token_ctr"] = slot.n_decoded;
|
|
res.data["model"] = slot.oaicompat_model;
|
|
}
|
|
// populate timings if this is final response or timings_per_token is enabled
|
|
if (slot.params.timings_per_token) {
|
|
//res.data["timings"] = slot.get_formated_timings();
|
|
res.timings = slot.get_timings();
|
|
}
|
|
server_task_result_dict[slot.id_task] = res;
|
|
queue_results.send(std::move(res));
|
|
}
|
|
|
|
void send_final_response(const server_slot & slot) {
|
|
server_task_result res;
|
|
res.id = slot.id_task;
|
|
res.id_multi = slot.id_multi;
|
|
res.error = false;
|
|
res.stop = true;
|
|
res.data = json {
|
|
{"content", !slot.params.stream ? slot.generated_text : ""},
|
|
{"id_slot", slot.id},
|
|
{"stop", true},
|
|
{"model", params.model_alias},
|
|
{"tokens_predicted", slot.n_decoded},
|
|
{"tokens_evaluated", slot.n_prompt_tokens},
|
|
{"generation_settings", get_formated_generation(slot)},
|
|
{"prompt", slot.prompt},
|
|
{"truncated", slot.truncated},
|
|
{"stopped_eos", slot.stopped_eos},
|
|
{"stopped_word", slot.stopped_word},
|
|
{"stopped_limit", slot.stopped_limit},
|
|
{"stopping_word", slot.stopping_word},
|
|
{"tokens_cached", slot.n_past},
|
|
{"timings", slot.get_formated_timings()}
|
|
};
|
|
|
|
if (slot.sparams.n_probs > 0) {
|
|
std::vector<completion_token_output> probs;
|
|
if (!slot.params.stream && slot.stopped_word) {
|
|
const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
|
|
|
|
size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
|
|
probs = std::vector<completion_token_output>(
|
|
slot.generated_token_probs.begin(),
|
|
slot.generated_token_probs.end() - safe_offset);
|
|
} else {
|
|
probs = std::vector<completion_token_output>(
|
|
slot.generated_token_probs.begin(),
|
|
slot.generated_token_probs.end());
|
|
}
|
|
|
|
res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs);
|
|
}
|
|
|
|
if (slot.oaicompat) {
|
|
res.data["oaicompat_token_ctr"] = slot.n_decoded;
|
|
res.data["model"] = slot.oaicompat_model;
|
|
}
|
|
|
|
queue_results.send(res);
|
|
}
|
|
|
|
void send_embedding(const server_slot & slot, const llama_batch & batch) {
|
|
server_task_result res;
|
|
res.id = slot.id_task;
|
|
res.id_multi = slot.id_multi;
|
|
res.error = false;
|
|
res.stop = true;
|
|
|
|
const int n_embd = llama_n_embd(model);
|
|
|
|
std::vector<float> embd_res(n_embd, 0.0f);
|
|
|
|
for (int i = 0; i < batch.n_tokens; ++i) {
|
|
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id + 1) {
|
|
continue;
|
|
}
|
|
|
|
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
|
|
if (embd == NULL) {
|
|
embd = llama_get_embeddings_ith(ctx, i);
|
|
}
|
|
|
|
if (embd == NULL) {
|
|
LOG_ERROR("failed to get embeddings", {
|
|
{"token", batch.token [i]},
|
|
{"seq_id", batch.seq_id[i][0]}
|
|
});
|
|
|
|
res.data = json {
|
|
{"embedding", std::vector<float>(n_embd, 0.0f)},
|
|
};
|
|
|
|
continue;
|
|
}
|
|
|
|
llama_embd_normalize(embd, embd_res.data(), n_embd);
|
|
|
|
res.data = json {
|
|
{"embedding", embd_res},
|
|
};
|
|
}
|
|
|
|
queue_results.send(res);
|
|
}
|
|
|
|
void request_completion(int id_task, int id_multi, json data, bool infill, bool embedding) {
|
|
server_task task;
|
|
task.id = id_task;
|
|
task.id_multi = id_multi;
|
|
task.id_target = 0;
|
|
task.data = std::move(data);
|
|
task.infill = infill;
|
|
task.embedding = embedding;
|
|
task.type = SERVER_TASK_TYPE_COMPLETION;
|
|
|
|
// when a completion task's prompt array is not a singleton, we split it into multiple requests
|
|
// otherwise, it's a single-prompt task, we actually queue it
|
|
// if there's numbers in the prompt array it will be treated as an array of tokens
|
|
if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) {
|
|
bool numbers = false;
|
|
for (const auto & e : task.data.at("prompt")) {
|
|
if (e.is_number()) {
|
|
numbers = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
|
|
// it will completely stall the server. I don't know where the bug for this is.
|
|
//
|
|
// if there are numbers, it needs to be treated like a single prompt,
|
|
// queue_tasks handles a mix of strings and numbers just fine.
|
|
if (numbers) {
|
|
queue_tasks.post(task);
|
|
} else {
|
|
split_multiprompt_task(id_task, task);
|
|
}
|
|
} else {
|
|
queue_tasks.post(task);
|
|
}
|
|
}
|
|
|
|
void request_cancel(int id_task) {
|
|
server_task task;
|
|
task.type = SERVER_TASK_TYPE_CANCEL;
|
|
task.id_target = id_task;
|
|
|
|
queue_tasks.post(task);
|
|
}
|
|
|
|
void split_multiprompt_task(int id_multi, const server_task & multiprompt_task) {
|
|
const int prompt_count = multiprompt_task.data.at("prompt").size();
|
|
if (prompt_count <= 1) {
|
|
send_error(multiprompt_task, "error while handling multiple prompts");
|
|
return;
|
|
}
|
|
|
|
// generate all the ID for subtask
|
|
std::vector<int> subtask_ids(prompt_count);
|
|
for (int i = 0; i < prompt_count; i++) {
|
|
subtask_ids[i] = queue_tasks.get_new_id();
|
|
}
|
|
|
|
// queue up the multitask so we can track its subtask progression
|
|
queue_tasks.add_multitask(id_multi, subtask_ids);
|
|
|
|
// add subtasks
|
|
for (int i = 0; i < prompt_count; i++) {
|
|
json subtask_data = multiprompt_task.data;
|
|
subtask_data["prompt"] = subtask_data.at("prompt")[i];
|
|
|
|
// subtasks inherit everything else (infill mode, embedding mode, etc.)
|
|
request_completion(subtask_ids[i], id_multi, subtask_data, multiprompt_task.infill, multiprompt_task.embedding);
|
|
}
|
|
}
|
|
|
|
void process_single_task(const server_task & task) {
|
|
switch (task.type) {
|
|
case SERVER_TASK_TYPE_COMPLETION:
|
|
{
|
|
const int id_slot = json_value(task.data, "id_slot", -1);
|
|
|
|
server_slot * slot;
|
|
|
|
if (id_slot != -1) {
|
|
slot = get_slot_by_id(id_slot);
|
|
} else {
|
|
std::string prompt;
|
|
if (task.data.contains("prompt") && task.data.at("prompt").is_string()) {
|
|
prompt = json_value(task.data, "prompt", std::string());
|
|
}
|
|
|
|
slot = get_available_slot(prompt);
|
|
}
|
|
|
|
if (slot == nullptr) {
|
|
// if no slot is available, we defer this task for processing later
|
|
LOG_VERBOSE("no slot is available", {{"id_task", task.id}});
|
|
queue_tasks.defer(task);
|
|
break;
|
|
}
|
|
if (!slot->available()) {
|
|
// if requested slot is unavailable, we defer this task for processing later
|
|
LOG_VERBOSE("requested slot is unavailable", {{"id_task", task.id}});
|
|
queue_tasks.defer(task);
|
|
break;
|
|
}
|
|
|
|
if (task.data.contains("system_prompt")) {
|
|
std::string sys_prompt = json_value(task.data, "system_prompt", std::string());
|
|
system_prompt_set(sys_prompt);
|
|
|
|
for (server_slot & slot : slots) {
|
|
slot.n_past = 0;
|
|
slot.n_past_se = 0;
|
|
}
|
|
}
|
|
|
|
slot->reset();
|
|
|
|
slot->id_task = task.id;
|
|
slot->id_multi = task.id_multi;
|
|
slot->infill = task.infill;
|
|
slot->embedding = task.embedding;
|
|
|
|
if (!launch_slot_with_task(*slot, task)) {
|
|
LOG_ERROR("error while launching slot", task.data);
|
|
break;
|
|
}
|
|
} break;
|
|
case SERVER_TASK_TYPE_CANCEL:
|
|
{
|
|
// release slot linked with the task id
|
|
for (auto & slot : slots) {
|
|
if (slot.id_task == task.id_target) {
|
|
slot.release();
|
|
break;
|
|
}
|
|
}
|
|
} break;
|
|
case SERVER_TASK_TYPE_NEXT_RESPONSE:
|
|
{
|
|
// do nothing
|
|
} break;
|
|
case SERVER_TASK_TYPE_METRICS:
|
|
{
|
|
json slots_data = json::array();
|
|
|
|
int n_idle_slots = 0;
|
|
int n_processing_slots = 0;
|
|
|
|
for (server_slot & slot : slots) {
|
|
json slot_data = get_formated_generation(slot);
|
|
slot_data["id"] = slot.id;
|
|
slot_data["id_task"] = slot.id_task;
|
|
slot_data["state"] = slot.state;
|
|
slot_data["prompt"] = slot.prompt;
|
|
slot_data["next_token"] = {
|
|
{"has_next_token", slot.has_next_token},
|
|
{"n_remain", slot.n_remaining},
|
|
{"n_decoded", slot.n_decoded},
|
|
{"stopped_eos", slot.stopped_eos},
|
|
{"stopped_word", slot.stopped_word},
|
|
{"stopped_limit", slot.stopped_limit},
|
|
{"stopping_word", slot.stopping_word},
|
|
};
|
|
|
|
if (slot_data["state"] == SLOT_STATE_IDLE) {
|
|
n_idle_slots++;
|
|
} else {
|
|
n_processing_slots++;
|
|
}
|
|
|
|
slots_data.push_back(slot_data);
|
|
}
|
|
LOG_INFO("slot data", {
|
|
{"id_task", task.id},
|
|
{"n_idle_slots", n_idle_slots},
|
|
{"n_processing_slots", n_processing_slots}
|
|
});
|
|
|
|
LOG_VERBOSE("slot data", {
|
|
{"id_task", task.id},
|
|
{"n_idle_slots", n_idle_slots},
|
|
{"n_processing_slots", n_processing_slots},
|
|
{"slots", slots_data}
|
|
});
|
|
|
|
server_task_result res;
|
|
res.id = task.id;
|
|
res.id_multi = task.id_multi;
|
|
res.stop = true;
|
|
res.error = false;
|
|
res.data = {
|
|
{ "idle", n_idle_slots },
|
|
{ "processing", n_processing_slots },
|
|
{ "deferred", queue_tasks.queue_tasks_deferred.size() },
|
|
{ "t_start", metrics.t_start},
|
|
|
|
{ "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total},
|
|
{ "t_tokens_generation_total", metrics.t_tokens_generation_total},
|
|
{ "n_tokens_predicted_total", metrics.n_tokens_predicted_total},
|
|
{ "t_prompt_processing_total", metrics.t_prompt_processing_total},
|
|
|
|
{ "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed},
|
|
{ "t_prompt_processing", metrics.t_prompt_processing},
|
|
{ "n_tokens_predicted", metrics.n_tokens_predicted},
|
|
{ "t_tokens_generation", metrics.t_tokens_generation},
|
|
|
|
{ "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)},
|
|
{ "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)},
|
|
|
|
{ "slots", slots_data },
|
|
};
|
|
|
|
if (json_value(task.data, "reset_bucket", false)) {
|
|
metrics.reset_bucket();
|
|
}
|
|
queue_results.send(res);
|
|
} break;
|
|
case SERVER_TASK_TYPE_SLOT_SAVE:
|
|
{
|
|
int id_slot = task.data.at("id_slot");
|
|
server_slot * slot = get_slot_by_id(id_slot);
|
|
if (slot == nullptr) {
|
|
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
|
|
break;
|
|
}
|
|
if (!slot->available()) {
|
|
// if requested slot is unavailable, we defer this task for processing later
|
|
LOG_VERBOSE("requested slot is unavailable", {{"id_task", task.id}});
|
|
queue_tasks.defer(task);
|
|
break;
|
|
}
|
|
|
|
const size_t token_count = slot->cache_tokens.size();
|
|
const int64_t t_start = ggml_time_us();
|
|
|
|
std::string filename = task.data.at("filename");
|
|
std::string filepath = task.data.at("filepath");
|
|
|
|
const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), token_count);
|
|
|
|
const int64_t t_end = ggml_time_us();
|
|
const double t_save_ms = (t_end - t_start) / 1000.0;
|
|
|
|
server_task_result result;
|
|
result.id = task.id;
|
|
result.stop = true;
|
|
result.error = false;
|
|
result.data = json {
|
|
{ "id_slot", id_slot },
|
|
{ "filename", filename },
|
|
{ "n_saved", token_count }, // tokens saved
|
|
{ "n_written", nwrite }, // bytes written
|
|
{ "timings", {
|
|
{ "save_ms", t_save_ms }
|
|
} }
|
|
};
|
|
queue_results.send(result);
|
|
} break;
|
|
case SERVER_TASK_TYPE_SLOT_RESTORE:
|
|
{
|
|
int id_slot = task.data.at("id_slot");
|
|
server_slot * slot = get_slot_by_id(id_slot);
|
|
if (slot == nullptr) {
|
|
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
|
|
break;
|
|
}
|
|
if (!slot->available()) {
|
|
// if requested slot is unavailable, we defer this task for processing later
|
|
LOG_VERBOSE("requested slot is unavailable", {{"id_task", task.id}});
|
|
queue_tasks.defer(task);
|
|
break;
|
|
}
|
|
|
|
const int64_t t_start = ggml_time_us();
|
|
|
|
std::string filename = task.data.at("filename");
|
|
std::string filepath = task.data.at("filepath");
|
|
|
|
slot->cache_tokens.resize(slot->n_ctx);
|
|
size_t token_count = 0;
|
|
size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
|
|
if (nread == 0) {
|
|
slot->cache_tokens.resize(0);
|
|
send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
|
|
break;
|
|
}
|
|
slot->cache_tokens.resize(token_count);
|
|
|
|
const int64_t t_end = ggml_time_us();
|
|
const double t_restore_ms = (t_end - t_start) / 1000.0;
|
|
|
|
server_task_result result;
|
|
result.id = task.id;
|
|
result.stop = true;
|
|
result.error = false;
|
|
result.data = json {
|
|
{ "id_slot", id_slot },
|
|
{ "filename", filename },
|
|
{ "n_restored", token_count }, // tokens restored
|
|
{ "n_read", nread }, // bytes read
|
|
{ "timings", {
|
|
{ "restore_ms", t_restore_ms }
|
|
} }
|
|
};
|
|
queue_results.send(result);
|
|
} break;
|
|
case SERVER_TASK_TYPE_SLOT_ERASE:
|
|
{
|
|
int id_slot = task.data.at("id_slot");
|
|
server_slot * slot = get_slot_by_id(id_slot);
|
|
if (slot == nullptr) {
|
|
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
|
|
break;
|
|
}
|
|
if (!slot->available()) {
|
|
// if requested slot is unavailable, we defer this task for processing later
|
|
LOG_VERBOSE("requested slot is unavailable", {{"id_task", task.id}});
|
|
queue_tasks.defer(task);
|
|
break;
|
|
}
|
|
|
|
// Erase token cache
|
|
const size_t n_erased = slot->cache_tokens.size();
|
|
llama_kv_cache_seq_rm(ctx, slot->id + 1, -1, -1);
|
|
slot->cache_tokens.clear();
|
|
|
|
server_task_result result;
|
|
result.id = task.id;
|
|
result.stop = true;
|
|
result.error = false;
|
|
result.data = json {
|
|
{ "id_slot", id_slot },
|
|
{ "n_erased", n_erased }
|
|
};
|
|
queue_results.send(result);
|
|
} break;
|
|
case SERVER_TASK_TYPE_SET_LORA:
|
|
{
|
|
llama_lora_adapters_apply(ctx, lora_adapters);
|
|
server_task_result result;
|
|
result.id = task.id;
|
|
result.data = json{{ "success", true }};
|
|
queue_results.send(result);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
void on_finish_multitask(const server_task_multi & multitask) {
|
|
// all subtasks done == multitask is done
|
|
server_task_result result;
|
|
result.id = multitask.id;
|
|
result.stop = true;
|
|
result.error = false;
|
|
|
|
// collect json results into one json result
|
|
std::vector<json> result_jsons;
|
|
for (const auto & subres : multitask.results) {
|
|
result_jsons.push_back(subres.data);
|
|
result.error = result.error && subres.error;
|
|
}
|
|
result.data = json {
|
|
{ "results", result_jsons }
|
|
};
|
|
|
|
queue_results.send(result);
|
|
}
|
|
|
|
void update_slots() {
|
|
if (system_need_update) {
|
|
system_prompt_update();
|
|
}
|
|
|
|
// release slots
|
|
for (auto & slot : slots) {
|
|
if (slot.command == SLOT_COMMAND_RELEASE) {
|
|
slot.state = SLOT_STATE_IDLE;
|
|
slot.command = SLOT_COMMAND_NONE;
|
|
slot.t_last_used = ggml_time_us();
|
|
|
|
LOG_INFO("slot released", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task},
|
|
{"n_ctx", n_ctx},
|
|
{"n_past", slot.n_past},
|
|
{"n_system_tokens", system_tokens.size()},
|
|
{"n_cache_tokens", slot.cache_tokens.size()},
|
|
{"truncated", slot.truncated}
|
|
});
|
|
|
|
queue_tasks.notify_slot_changed();
|
|
}
|
|
}
|
|
|
|
// check if all slots are idle
|
|
{
|
|
bool all_idle = true;
|
|
|
|
for (auto & slot : slots) {
|
|
if (slot.state != SLOT_STATE_IDLE || slot.command != SLOT_COMMAND_NONE) {
|
|
all_idle = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (all_idle) {
|
|
LOG_INFO("all slots are idle", {});
|
|
if (system_prompt.empty() && clean_kv_cache) {
|
|
kv_cache_clear();
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
{
|
|
LOG_VERBOSE("posting NEXT_RESPONSE", {});
|
|
|
|
server_task task;
|
|
task.type = SERVER_TASK_TYPE_NEXT_RESPONSE;
|
|
task.id_target = -1;
|
|
|
|
queue_tasks.post(task);
|
|
}
|
|
|
|
// apply context-shift if needed
|
|
// TODO: simplify and improve
|
|
for (server_slot & slot : slots) {
|
|
if (slot.ga_n == 1) {
|
|
if (slot.is_processing() && (int) system_tokens.size() + slot.n_past >= slot.n_ctx - 1) {
|
|
// Shift context
|
|
const int n_keep = slot.params.n_keep + add_bos_token;
|
|
const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
|
|
const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
|
|
|
|
LOG_INFO("slot context shift", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task},
|
|
{"n_keep", n_keep},
|
|
{"n_left", n_left},
|
|
{"n_discard", n_discard},
|
|
{"n_ctx", n_ctx},
|
|
{"n_past", slot.n_past},
|
|
{"n_system_tokens", system_tokens.size()},
|
|
{"n_cache_tokens", slot.cache_tokens.size()}
|
|
});
|
|
|
|
llama_kv_cache_seq_rm (ctx, slot.id + 1, n_keep , n_keep + n_discard);
|
|
llama_kv_cache_seq_add(ctx, slot.id + 1, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
|
|
|
|
if (slot.params.cache_prompt) {
|
|
for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
|
|
slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
|
|
}
|
|
|
|
slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
|
|
}
|
|
|
|
slot.n_past -= n_discard;
|
|
|
|
slot.truncated = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// start populating the batch for this iteration
|
|
llama_batch_clear(batch);
|
|
|
|
// frist, add sampled tokens from any ongoing sequences
|
|
for (auto & slot : slots) {
|
|
if (slot.state == SLOT_STATE_IDLE) {
|
|
continue;
|
|
}
|
|
|
|
slot.i_batch = batch.n_tokens;
|
|
|
|
const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
|
|
|
|
// TODO: we always have to take into account the "system_tokens"
|
|
// this is not great and needs to be improved somehow
|
|
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id + 1 }, true);
|
|
|
|
slot.n_past += 1;
|
|
|
|
if (slot.params.cache_prompt) {
|
|
slot.cache_tokens.push_back(slot.sampled);
|
|
}
|
|
|
|
LOG_VERBOSE("slot decode token", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task},
|
|
{"n_ctx", n_ctx},
|
|
{"n_past", slot.n_past},
|
|
{"n_system_tokens", system_tokens.size()},
|
|
{"n_cache_tokens", slot.cache_tokens.size()},
|
|
{"truncated", slot.truncated}
|
|
});
|
|
}
|
|
|
|
// process in chunks of params.n_batch
|
|
int32_t n_batch = llama_n_batch(ctx);
|
|
int32_t n_ubatch = llama_n_ubatch(ctx);
|
|
|
|
// track if this is an embedding or non-embedding batch
|
|
// if we've added sampled tokens above, we are in non-embedding mode
|
|
// -1: none, 0: non-embedding, 1: embedding
|
|
int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;
|
|
|
|
// next, batch any pending prompts without exceeding n_batch
|
|
if (params.cont_batching || batch.n_tokens == 0) {
|
|
for (auto & slot : slots) {
|
|
// this slot still has a prompt to be processed
|
|
if (slot.state == SLOT_STATE_IDLE && slot.command == SLOT_COMMAND_LOAD_PROMPT) {
|
|
auto & prompt_tokens = slot.prompt_tokens;
|
|
|
|
// we haven't tokenized the prompt yet - do it now:
|
|
if (prompt_tokens.empty()) {
|
|
LOG_VERBOSE("tokenizing prompt", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task}
|
|
});
|
|
|
|
slot.t_start_process_prompt = ggml_time_us();
|
|
slot.t_start_generation = 0;
|
|
|
|
if (slot.infill) {
|
|
const bool add_bos = llama_should_add_bos_token(model);
|
|
bool suff_rm_leading_spc = true;
|
|
if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) {
|
|
params.input_suffix.erase(0, 1);
|
|
suff_rm_leading_spc = false;
|
|
}
|
|
|
|
auto prefix_tokens = tokenize(slot.params.input_prefix, false);
|
|
auto suffix_tokens = tokenize(slot.params.input_suffix, false);
|
|
|
|
const int space_token = 29871; // TODO: this should not be hardcoded
|
|
if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
|
|
suffix_tokens.erase(suffix_tokens.begin());
|
|
}
|
|
|
|
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
|
|
suffix_tokens.insert(suffix_tokens.begin(), llama_token_suffix(model));
|
|
|
|
auto embd_inp = params.spm_infill ? suffix_tokens : prefix_tokens;
|
|
auto embd_end = params.spm_infill ? prefix_tokens : suffix_tokens;
|
|
if (add_bos) {
|
|
embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
|
|
}
|
|
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
|
|
|
|
const llama_token middle_token = llama_token_middle(model);
|
|
if (middle_token >= 0) {
|
|
embd_inp.push_back(middle_token);
|
|
}
|
|
|
|
prompt_tokens = embd_inp;
|
|
} else {
|
|
prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt
|
|
}
|
|
|
|
slot.n_past = 0;
|
|
slot.n_prompt_tokens = prompt_tokens.size();
|
|
|
|
LOG_VERBOSE("prompt tokenized", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task},
|
|
{"n_ctx", slot.n_ctx},
|
|
{"n_keep", slot.params.n_keep},
|
|
{"n_prompt_tokens", slot.n_prompt_tokens},
|
|
{"prompt_tokens", tokens_to_str(ctx, prompt_tokens.cbegin(), prompt_tokens.cend())},
|
|
});
|
|
|
|
// empty prompt passed -> release the slot and send empty response
|
|
if (prompt_tokens.empty()) {
|
|
LOG_INFO("empty prompt - releasing slot", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task}
|
|
});
|
|
|
|
slot.state = SLOT_STATE_PROCESSING;
|
|
slot.command = SLOT_COMMAND_NONE;
|
|
slot.release();
|
|
slot.print_timings();
|
|
send_final_response(slot);
|
|
continue;
|
|
}
|
|
|
|
if (slot.embedding) {
|
|
// this prompt is too large to process - discard it
|
|
if (slot.n_prompt_tokens > n_ubatch) {
|
|
slot.state = SLOT_STATE_PROCESSING;
|
|
slot.command = SLOT_COMMAND_NONE;
|
|
slot.release();
|
|
send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
|
|
continue;
|
|
}
|
|
} else {
|
|
if (slot.params.n_keep < 0) {
|
|
slot.params.n_keep = slot.n_prompt_tokens;
|
|
}
|
|
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
|
|
|
|
// if input prompt is too big, truncate it (if group attention self-extend is disabled)
|
|
if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx) {
|
|
const int n_left = slot.n_ctx - slot.params.n_keep;
|
|
|
|
const int n_block_size = n_left / 2;
|
|
const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
|
|
|
|
std::vector<llama_token> new_tokens(
|
|
prompt_tokens.begin(),
|
|
prompt_tokens.begin() + slot.params.n_keep);
|
|
|
|
new_tokens.insert(
|
|
new_tokens.end(),
|
|
prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
|
|
prompt_tokens.end());
|
|
|
|
prompt_tokens = std::move(new_tokens);
|
|
|
|
slot.truncated = true;
|
|
slot.n_prompt_tokens = prompt_tokens.size();
|
|
|
|
LOG_VERBOSE("input truncated", {
|
|
{"id_slot", slot.id},
|
|
{"id_task", slot.id_task},
|
|
{"n_ctx", slot.n_ctx},
|
|
{"n_keep", slot.params.n_keep},
|
|
{"n_left", n_left},
|
|
{"n_prompt_tokens", slot.n_prompt_tokens},
|
|
{"prompt_tokens", tokens_to_str(ctx, prompt_tokens.cbegin(), prompt_tokens.cend())},
|
|
});
|
|
|
|
GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
|
|
}
|
|
|
|
llama_sampling_reset(slot.ctx_sampling);
|
|
|
|
if (!slot.params.cache_prompt) {
|
|
slot.n_past_se = 0;
|
|
slot.ga_i = 0;
|
|
} else {
|
|
GGML_ASSERT(slot.ga_n == 1);
|
|
|
|
// reuse any previously computed tokens that are common with the new prompt
|
|
slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
|
|
|
|
// push the prompt into the sampling context (do not apply grammar)
|
|
for (int i = 0; i < slot.n_past; ++i) {
|
|
llama_sampling_accept(slot.ctx_sampling, ctx, slot.cache_tokens[i], false);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
|
|
// we have to evaluate at least 1 token to generate logits.
|
|
LOG_INFO("we have to evaluate at least 1 token to generate logits", {
|
|
{ "id_slot", slot.id },
|
|
{ "id_task", slot.id_task }
|
|
});
|
|
|
|
slot.n_past--;
|
|
if (slot.ga_i > 0) {
|
|
slot.n_past_se--;
|
|
}
|
|
}
|
|
|
|
slot.n_prompt_tokens_processed = 0;
|
|
}
|
|
|
|
if (slot.embedding) {
|
|
// cannot fit the prompt in the current batch - will try next iter
|
|
if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// check that we are in the right batch_type, if not defer the slot
|
|
bool slot_type = slot.embedding ? 1 : 0;
|
|
if (batch_type == -1) {
|
|
batch_type = slot_type;
|
|
} else if (batch_type != slot_type) {
|
|
continue;
|
|
}
|
|
|
|
// keep only the common part
|
|
int p0 = (int) system_tokens.size() + slot.n_past;
|
|
if (!llama_kv_cache_seq_rm(ctx, slot.id + 1, p0, -1)) {
|
|
// could not partially delete (likely using a non-Transformer model)
|
|
llama_kv_cache_seq_rm(ctx, slot.id + 1, -1, -1);
|
|
|
|
p0 = (int) system_tokens.size();
|
|
if (p0 != 0) {
|
|
// copy over the system prompt when there is one
|
|
llama_kv_cache_seq_cp(ctx, 0, slot.id + 1, -1, -1);
|
|
}
|
|
|
|
// there is no common part left (except for the system prompt)
|
|
slot.n_past = 0;
|
|
slot.n_past_se = 0;
|
|
slot.ga_i = 0;
|
|
// TODO: is the system prompt ever in the sampling context?
|
|
llama_sampling_reset(slot.ctx_sampling);
|
|
}
|
|
|
|
// remove the non-common part from the cache
|
|
slot.cache_tokens.resize(slot.n_past);
|
|
|
|
LOG_INFO("kv cache rm [p0, end)", {
|
|
{ "id_slot", slot.id },
|
|
{ "id_task", slot.id_task },
|
|
{ "p0", p0 }
|
|
});
|
|
|
|
int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
|
|
|
|
int32_t ga_i = slot.ga_i;
|
|
int32_t ga_n = slot.ga_n;
|
|
int32_t ga_w = slot.ga_w;
|
|
|
|
// add prompt tokens for processing in the current batch
|
|
// TODO: the self-extend stuff here is a mess - simplify and/or abstract it somehow
|
|
for (; slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch; ++slot.n_past) {
|
|
if (slot.ga_n != 1) {
|
|
while (slot_npast >= ga_i + ga_w) {
|
|
const int bd = (ga_w/ga_n)*(ga_n - 1);
|
|
slot_npast -= bd;
|
|
ga_i += ga_w/ga_n;
|
|
}
|
|
}
|
|
|
|
llama_batch_add(batch, prompt_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id + 1 }, false);
|
|
|
|
if (slot.params.cache_prompt) {
|
|
slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
|
|
}
|
|
|
|
slot.n_prompt_tokens_processed++;
|
|
slot_npast++;
|
|
}
|
|
|
|
LOG_VERBOSE("prompt processing progress", {
|
|
{"id_slot", slot.id},
|
|
{"n_past", slot.n_past},
|
|
{"n_ctx", n_ctx},
|
|
{"n_tokens", batch.n_tokens},
|
|
{"progress", (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens},
|
|
});
|
|
|
|
// entire prompt has been processed - start decoding new tokens
|
|
if (slot.n_past == slot.n_prompt_tokens) {
|
|
slot.state = SLOT_STATE_PROCESSING;
|
|
slot.command = SLOT_COMMAND_NONE;
|
|
|
|
GGML_ASSERT(batch.n_tokens > 0);
|
|
|
|
// extract the logits only for the last token
|
|
batch.logits[batch.n_tokens - 1] = true;
|
|
|
|
slot.n_decoded = 0;
|
|
slot.i_batch = batch.n_tokens - 1;
|
|
|
|
LOG_VERBOSE("prompt done", {
|
|
{"id_slot", slot.id},
|
|
{"n_past", slot.n_past},
|
|
{"n_ctx", n_ctx},
|
|
{"n_tokens", batch.n_tokens},
|
|
});
|
|
}
|
|
}
|
|
|
|
if (batch.n_tokens >= n_batch) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (batch.n_tokens == 0) {
|
|
LOG_VERBOSE("no tokens to decode", {});
|
|
return;
|
|
}
|
|
|
|
LOG_VERBOSE("decoding batch", {
|
|
{"n_tokens", batch.n_tokens},
|
|
});
|
|
|
|
// make sure we're in the right embedding mode
|
|
llama_set_embeddings(ctx, batch_type == 1);
|
|
|
|
// process the created batch of tokens
|
|
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
|
|
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
|
|
|
|
for (auto & slot : slots) {
|
|
if (slot.ga_n != 1) {
|
|
// context extension via Self-Extend
|
|
// TODO: simplify and/or abstract this
|
|
while (slot.n_past_se >= slot.ga_i + slot.ga_w) {
|
|
const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w;
|
|
const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
|
|
const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
|
|
|
|
LOG_TEE("\n");
|
|
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
|
|
LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
|
|
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
|
|
|
|
llama_kv_cache_seq_add(ctx, slot.id + 1, slot.ga_i, slot.n_past_se, ib * bd);
|
|
llama_kv_cache_seq_div(ctx, slot.id + 1, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n);
|
|
llama_kv_cache_seq_add(ctx, slot.id + 1, slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd);
|
|
|
|
slot.n_past_se -= bd;
|
|
|
|
slot.ga_i += slot.ga_w / slot.ga_n;
|
|
|
|
LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
|
|
}
|
|
|
|
slot.n_past_se += n_tokens;
|
|
}
|
|
}
|
|
|
|
llama_batch batch_view = {
|
|
n_tokens,
|
|
batch.token + i,
|
|
nullptr,
|
|
batch.pos + i,
|
|
batch.n_seq_id + i,
|
|
batch.seq_id + i,
|
|
batch.logits + i,
|
|
0, 0, 0, // unused
|
|
};
|
|
|
|
const int ret = llama_decode(ctx, batch_view);
|
|
|
|
if (ret != 0) {
|
|
if (n_batch == 1 || ret < 0) {
|
|
// if you get here, it means the KV cache is full - try increasing it via the context size
|
|
LOG_ERROR("failed to decode the batch: KV cache is full - try increasing it via the context size", {
|
|
{"i", i},
|
|
{"n_batch", ret},
|
|
{"ret", ret},
|
|
});
|
|
for (auto & slot : slots) {
|
|
slot.state = SLOT_STATE_PROCESSING;
|
|
slot.command = SLOT_COMMAND_NONE;
|
|
slot.release();
|
|
send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
|
|
}
|
|
break; // break loop of n_batch
|
|
}
|
|
|
|
// retry with half the batch size to try to find a free slot in the KV cache
|
|
n_batch /= 2;
|
|
i -= n_batch;
|
|
|
|
LOG_WARNING("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation", {
|
|
{"i", i},
|
|
{"n_batch", n_batch},
|
|
{"ret", ret},
|
|
});
|
|
|
|
continue; // continue loop of n_batch
|
|
}
|
|
|
|
for (auto & slot : slots) {
|
|
if (slot.state != SLOT_STATE_PROCESSING || slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
|
|
continue; // continue loop of slots
|
|
}
|
|
|
|
// prompt evaluated for embedding
|
|
if (slot.embedding) {
|
|
send_embedding(slot, batch_view);
|
|
slot.release();
|
|
slot.i_batch = -1;
|
|
continue; // continue loop of slots
|
|
}
|
|
|
|
completion_token_output result;
|
|
const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
|
|
|
|
llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
|
|
|
|
slot.n_decoded += 1;
|
|
if (slot.n_decoded == 1) {
|
|
slot.t_start_generation = ggml_time_us();
|
|
slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
|
|
metrics.on_prompt_eval(slot);
|
|
}
|
|
|
|
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
|
|
result.tok = id;
|
|
|
|
const size_t n_probs = std::min(cur_p.size, (size_t) slot.sparams.n_probs);
|
|
if (n_probs > 0) {
|
|
const size_t n_valid = slot.ctx_sampling->n_valid;
|
|
|
|
// Make sure at least n_probs top tokens are at the front of the vector:
|
|
if (slot.sparams.temp == 0.0f && n_probs > n_valid) {
|
|
llama_sample_top_k(ctx, &cur_p, n_probs, 0);
|
|
}
|
|
|
|
if (slot.sparams.temp == 0.0f) {
|
|
// With greedy sampling the probabilities have possibly not been calculated.
|
|
for (size_t i = 0; i < n_probs; ++i) {
|
|
result.probs.push_back({
|
|
cur_p.data[i].id,
|
|
i == 0 ? 1.0f : 0.0f
|
|
});
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < n_probs; ++i) {
|
|
result.probs.push_back({
|
|
cur_p.data[i].id,
|
|
i >= n_valid ? 0.0f : cur_p.data[i].p // Tokens filtered out due to e.g. top_k have 0 probability.
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!process_token(result, slot)) {
|
|
slot.release();
|
|
slot.print_timings();
|
|
send_final_response(slot);
|
|
metrics.on_prediction(slot);
|
|
}
|
|
|
|
slot.i_batch = -1;
|
|
}
|
|
}
|
|
|
|
LOG_VERBOSE("run slots completed", {});
|
|
}
|
|
|
|
json model_meta() const {
|
|
return json {
|
|
{"vocab_type", llama_vocab_type (model)},
|
|
{"n_vocab", llama_n_vocab (model)},
|
|
{"n_ctx_train", llama_n_ctx_train (model)},
|
|
{"n_embd", llama_n_embd (model)},
|
|
{"n_params", llama_model_n_params(model)},
|
|
{"size", llama_model_size (model)},
|
|
};
|
|
}
|
|
};
|
|
|
|
static json format_final_response_oaicompat(const json& request, json result, const std::string& completion_id, bool streaming = false) {
|
|
bool stopped_word = result.count("stopped_word") != 0;
|
|
bool stopped_eos = json_value(result, "stopped_eos", false);
|
|
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
|
|
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
|
|
std::string content = json_value(result, "content", std::string(""));
|
|
|
|
std::string finish_reason = "length";
|
|
if (stopped_word || stopped_eos) {
|
|
finish_reason = "stop";
|
|
}
|
|
|
|
json choices =
|
|
streaming ? json::array({ json{{"finish_reason", finish_reason},
|
|
{"index", 0},
|
|
{"delta", json::object()}} })
|
|
: json::array({ json{{"finish_reason", finish_reason},
|
|
{"index", 0},
|
|
{"message", json{{"content", content},
|
|
{"role", "assistant"}}}} });
|
|
|
|
std::time_t t = std::time(0);
|
|
|
|
json res = json{
|
|
{"choices", choices},
|
|
{"created", t},
|
|
{"model",
|
|
json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
|
|
{"object", streaming ? "chat.completion.chunk" : "chat.completion"},
|
|
{"usage", json {
|
|
{"completion_tokens", num_tokens_predicted},
|
|
{"prompt_tokens", num_prompt_tokens},
|
|
{"total_tokens", num_tokens_predicted + num_prompt_tokens}
|
|
}},
|
|
{"id", completion_id}
|
|
};
|
|
|
|
if (server_verbose) {
|
|
res["__verbose"] = result;
|
|
}
|
|
|
|
if (result.contains("completion_probabilities")) {
|
|
res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
// return value is vector as there is one case where we might need to generate two responses
|
|
static std::vector<json> format_partial_response_oaicompat(server_task_result task_result, const std::string& completion_id) {
|
|
json result = task_result.data;
|
|
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
|
|
return std::vector<json>({ result });
|
|
}
|
|
|
|
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
|
|
std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
|
|
|
|
bool stopped_word = json_value(result, "stopped_word", false);
|
|
bool stopped_eos = json_value(result, "stopped_eos", false);
|
|
bool stopped_limit = json_value(result, "stopped_limit", false);
|
|
std::string content = json_value(result, "content", std::string(""));
|
|
|
|
std::string finish_reason;
|
|
if (stopped_word || stopped_eos) {
|
|
finish_reason = "stop";
|
|
}
|
|
if (stopped_limit) {
|
|
finish_reason = "length";
|
|
}
|
|
|
|
std::time_t t = std::time(0);
|
|
|
|
json choices;
|
|
|
|
if (!finish_reason.empty()) {
|
|
choices = json::array({ json{{"finish_reason", finish_reason},
|
|
{"index", 0},
|
|
{"delta", json::object()}} });
|
|
}
|
|
else {
|
|
if (first) {
|
|
if (content.empty()) {
|
|
choices = json::array({ json{{"finish_reason", nullptr},
|
|
{"index", 0},
|
|
{"delta", json{{"role", "assistant"}}}} });
|
|
}
|
|
else {
|
|
// We have to send this as two updates to conform to openai behavior
|
|
json initial_ret = json{ {"choices", json::array({json{
|
|
{"finish_reason", nullptr},
|
|
{"index", 0},
|
|
{"delta", json{
|
|
{"role", "assistant"}
|
|
}}}})},
|
|
{"created", t},
|
|
{"id", completion_id},
|
|
{"model", modelname},
|
|
{"object", "chat.completion.chunk"} };
|
|
|
|
json second_ret = json{
|
|
{"choices", json::array({json{{"finish_reason", nullptr},
|
|
{"index", 0},
|
|
{"delta", json{
|
|
{"content", content}}}
|
|
}})},
|
|
{"created", t},
|
|
{"id", completion_id},
|
|
{"model", modelname},
|
|
{"object", "chat.completion.chunk"} };
|
|
|
|
return std::vector<json>({ initial_ret, second_ret });
|
|
}
|
|
}
|
|
else {
|
|
// Some idiosyncrasy in task processing logic makes several trailing calls
|
|
// with empty content, we ignore these at the calee site.
|
|
if (content.empty()) {
|
|
return std::vector<json>({ json::object() });
|
|
}
|
|
|
|
choices = json::array({ json{
|
|
{"finish_reason", nullptr},
|
|
{"index", 0},
|
|
{"delta",
|
|
json{
|
|
{"content", content},
|
|
}},
|
|
} });
|
|
}
|
|
}
|
|
|
|
json ret = json{
|
|
{"choices", choices},
|
|
{"created", t},
|
|
{"id", completion_id},
|
|
{"model", modelname},
|
|
{"object", "chat.completion.chunk"}
|
|
};
|
|
if (server_task_result_dict.count(task_result.id) > 0)
|
|
{
|
|
ret.push_back({ "timings", server_task_result_dict[task_result.id].timings.to_json() });
|
|
}
|
|
|
|
//
|
|
if (!finish_reason.empty()) {
|
|
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
|
|
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
|
|
ret.push_back({ "usage", json {
|
|
{"completion_tokens", num_tokens_predicted},
|
|
{"prompt_tokens", num_prompt_tokens},
|
|
{"total_tokens", num_tokens_predicted + num_prompt_tokens}
|
|
} });
|
|
}
|
|
|
|
return std::vector<json>({ ret });
|
|
}
|
|
|
|
|
|
static json format_embeddings_response_oaicompat(const json& request, const json& embeddings) {
|
|
json data = json::array();
|
|
int i = 0;
|
|
for (auto& elem : embeddings) {
|
|
data.push_back(json{
|
|
{"embedding", json_value(elem, "embedding", json::array())},
|
|
{"index", i++},
|
|
{"object", "embedding"}
|
|
});
|
|
}
|
|
|
|
json res = json{
|
|
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
|
|
{"object", "list"},
|
|
{"usage", json {
|
|
{"prompt_tokens", 0},
|
|
{"total_tokens", 0}
|
|
}},
|
|
{"data", data}
|
|
};
|
|
|
|
return res;
|
|
}
|
|
static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
|
|
// skip GH copilot requests when using default port
|
|
if (req.path == "/v1/health" || req.path == "/v1/completions") {
|
|
return;
|
|
}
|
|
|
|
LOG_INFO("request", {
|
|
{"remote_addr", req.remote_addr},
|
|
{"remote_port", req.remote_port},
|
|
{"status", res.status},
|
|
{"method", req.method},
|
|
{"path", req.path},
|
|
{"params", req.params},
|
|
});
|
|
|
|
LOG_VERBOSE("request", {
|
|
{"request", req.body},
|
|
{"response", res.body},
|
|
});
|
|
}
|
|
|
|
std::function<void(int)> shutdown_handler;
|
|
std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
|
|
|
|
inline void signal_handler(int signal) {
|
|
if (is_terminating.test_and_set()) {
|
|
// in case it hangs, we can force terminate the server by hitting Ctrl+C twice
|
|
// this is for better developer experience, we can remove when the server is stable enough
|
|
fprintf(stderr, "Received second interrupt, terminating immediately.\n");
|
|
exit(1);
|
|
}
|
|
|
|
shutdown_handler(signal);
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
#if SERVER_VERBOSE != 1
|
|
log_disable();
|
|
#endif
|
|
// own arguments required by this example
|
|
gpt_params params;
|
|
|
|
if (!gpt_params_parse(argc, argv, params)) {
|
|
gpt_params_print_usage(argc, argv, params);
|
|
return 1;
|
|
}
|
|
|
|
// TODO: not great to use extern vars
|
|
server_log_json = params.log_json;
|
|
server_verbose = params.verbosity > 0;
|
|
|
|
// struct that contains llama context and inference
|
|
server_context ctx_server;
|
|
|
|
if (!params.system_prompt.empty()) {
|
|
ctx_server.system_prompt_set(params.system_prompt);
|
|
}
|
|
|
|
if (params.model_alias == "unknown") {
|
|
params.model_alias = params.model;
|
|
}
|
|
|
|
llama_backend_init();
|
|
llama_numa_init(params.numa);
|
|
|
|
LOG_INFO("build info", {
|
|
{"build", LLAMA_BUILD_NUMBER},
|
|
{"commit", LLAMA_COMMIT}
|
|
});
|
|
|
|
LOG_INFO("system info", {
|
|
{"n_threads", params.n_threads},
|
|
{"n_threads_batch", params.n_threads_batch},
|
|
{"total_threads", std::thread::hardware_concurrency()},
|
|
{"system_info", llama_print_system_info()},
|
|
});
|
|
|
|
std::unique_ptr<httplib::Server> svr;
|
|
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
|
|
if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
|
|
LOG_INFO("Running with SSL", {{"key", params.ssl_file_key}, {"cert", params.ssl_file_cert}});
|
|
svr.reset(
|
|
new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
|
|
);
|
|
} else {
|
|
LOG_INFO("Running without SSL", {});
|
|
svr.reset(new httplib::Server());
|
|
}
|
|
#else
|
|
svr.reset(new httplib::Server());
|
|
#endif
|
|
|
|
std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
|
|
|
|
svr->set_default_headers({{"Server", "llama.cpp"}});
|
|
|
|
// CORS preflight
|
|
svr->Options(R"(.*)", [](const httplib::Request & req, httplib::Response & res) {
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
res.set_header("Access-Control-Allow-Credentials", "true");
|
|
res.set_header("Access-Control-Allow-Methods", "POST");
|
|
res.set_header("Access-Control-Allow-Headers", "*");
|
|
return res.set_content("", "application/json; charset=utf-8");
|
|
});
|
|
|
|
svr->set_logger(log_server_request);
|
|
|
|
auto res_error = [](httplib::Response & res, json error_data) {
|
|
json final_response {{"error", error_data}};
|
|
res.set_content(final_response.dump(), "application/json; charset=utf-8");
|
|
res.status = json_value(error_data, "code", 500);
|
|
};
|
|
|
|
svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, std::exception_ptr ep) {
|
|
std::string message;
|
|
try {
|
|
std::rethrow_exception(std::move(ep));
|
|
} catch (std::exception & e) {
|
|
message = e.what();
|
|
} catch (...) {
|
|
message = "Unknown Exception";
|
|
}
|
|
|
|
json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
|
|
LOG_VERBOSE("Got exception", formatted_error);
|
|
res_error(res, formatted_error);
|
|
});
|
|
|
|
svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
|
|
if (res.status == 404) {
|
|
res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
|
|
}
|
|
// for other error codes, we skip processing here because it's already done by res_error()
|
|
});
|
|
|
|
// set timeouts and change hostname and port
|
|
svr->set_read_timeout (params.timeout_read);
|
|
svr->set_write_timeout(params.timeout_write);
|
|
|
|
if (!svr->bind_to_port(params.hostname, params.port)) {
|
|
fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", params.hostname.c_str(), params.port);
|
|
return 1;
|
|
}
|
|
|
|
std::unordered_map<std::string, std::string> log_data;
|
|
|
|
log_data["hostname"] = params.hostname;
|
|
log_data["port"] = std::to_string(params.port);
|
|
|
|
if (params.api_keys.size() == 1) {
|
|
auto key = params.api_keys[0];
|
|
log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
|
|
} else if (params.api_keys.size() > 1) {
|
|
log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
|
|
}
|
|
|
|
// Necessary similarity of prompt for slot selection
|
|
ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
|
|
|
|
// load the model
|
|
if (!ctx_server.load_model(params)) {
|
|
state.store(SERVER_STATE_ERROR);
|
|
return 1;
|
|
} else {
|
|
ctx_server.init();
|
|
state.store(SERVER_STATE_READY);
|
|
}
|
|
|
|
LOG_INFO("model loaded", {});
|
|
|
|
const auto model_meta = ctx_server.model_meta();
|
|
|
|
// if a custom chat template is not supplied, we will use the one that comes with the model (if any)
|
|
if (params.chat_template.empty()) {
|
|
if (!ctx_server.validate_model_chat_template()) {
|
|
LOG_WARNING("The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
|
|
params.chat_template = "chatml";
|
|
}
|
|
}
|
|
|
|
// print sample chat example to make it clear which template is used
|
|
{
|
|
LOG_INFO("chat template", {
|
|
{"chat_example", llama_chat_format_example(ctx_server.model, params.chat_template)},
|
|
{"built_in", params.chat_template.empty()},
|
|
});
|
|
}
|
|
|
|
//
|
|
// Middlewares
|
|
//
|
|
|
|
auto middleware_validate_api_key = [¶ms, &res_error](const httplib::Request & req, httplib::Response & res) {
|
|
// TODO: should we apply API key to all endpoints, including "/health" and "/models"?
|
|
static const std::set<std::string> protected_endpoints = {
|
|
"/props",
|
|
"/completion",
|
|
"/completions",
|
|
"/v1/completions",
|
|
"/chat/completions",
|
|
"/v1/chat/completions",
|
|
"/infill",
|
|
"/tokenize",
|
|
"/detokenize",
|
|
"/embedding",
|
|
"/embeddings",
|
|
"/v1/embeddings",
|
|
};
|
|
|
|
// If API key is not set, skip validation
|
|
if (params.api_keys.empty()) {
|
|
return true;
|
|
}
|
|
|
|
// If path is not in protected_endpoints list, skip validation
|
|
if (protected_endpoints.find(req.path) == protected_endpoints.end()) {
|
|
return true;
|
|
}
|
|
|
|
// Check for API key in the header
|
|
auto auth_header = req.get_header_value("Authorization");
|
|
|
|
std::string prefix = "Bearer ";
|
|
if (auth_header.substr(0, prefix.size()) == prefix) {
|
|
std::string received_api_key = auth_header.substr(prefix.size());
|
|
if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
|
|
return true; // API key is valid
|
|
}
|
|
}
|
|
|
|
// API key is invalid or not provided
|
|
// TODO: make another middleware for CORS related logic
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
|
|
|
|
LOG_WARNING("Unauthorized: Invalid API Key", {});
|
|
|
|
return false;
|
|
};
|
|
|
|
// register server middlewares
|
|
svr->set_pre_routing_handler([&middleware_validate_api_key](const httplib::Request & req, httplib::Response & res) {
|
|
if (!middleware_validate_api_key(req, res)) {
|
|
return httplib::Server::HandlerResponse::Handled;
|
|
}
|
|
return httplib::Server::HandlerResponse::Unhandled;
|
|
});
|
|
|
|
//
|
|
// Route handlers (or controllers)
|
|
//
|
|
|
|
const auto handle_health = [&](const httplib::Request & req, httplib::Response & res) {
|
|
server_state current_state = state.load();
|
|
switch (current_state) {
|
|
case SERVER_STATE_READY:
|
|
{
|
|
// request slots data using task queue
|
|
server_task task;
|
|
task.id = ctx_server.queue_tasks.get_new_id();
|
|
task.type = SERVER_TASK_TYPE_METRICS;
|
|
task.id_target = -1;
|
|
|
|
ctx_server.queue_results.add_waiting_task_id(task.id);
|
|
ctx_server.queue_tasks.post(task);
|
|
|
|
// get the result
|
|
server_task_result result = ctx_server.queue_results.recv(task.id);
|
|
ctx_server.queue_results.remove_waiting_task_id(task.id);
|
|
|
|
const int n_idle_slots = result.data.at("idle");
|
|
const int n_processing_slots = result.data.at("processing");
|
|
|
|
json health = {
|
|
{"status", "ok"},
|
|
{"slots_idle", n_idle_slots},
|
|
{"slots_processing", n_processing_slots}
|
|
};
|
|
|
|
res.status = 200; // HTTP OK
|
|
if (params.endpoint_slots && req.has_param("include_slots")) {
|
|
health["slots"] = result.data.at("slots");
|
|
}
|
|
|
|
if (n_idle_slots == 0) {
|
|
health["status"] = "no slot available";
|
|
if (req.has_param("fail_on_no_slot")) {
|
|
res.status = 503; // HTTP Service Unavailable
|
|
}
|
|
}
|
|
|
|
res.set_content(health.dump(), "application/json");
|
|
break;
|
|
}
|
|
case SERVER_STATE_LOADING_MODEL:
|
|
{
|
|
res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
|
|
} break;
|
|
case SERVER_STATE_ERROR:
|
|
{
|
|
res_error(res, format_error_response("Model failed to load", ERROR_TYPE_SERVER));
|
|
} break;
|
|
}
|
|
};
|
|
|
|
const auto handle_slots = [&](const httplib::Request &, httplib::Response & res) {
|
|
if (!params.endpoint_slots) {
|
|
res_error(res, format_error_response("This server does not support slots endpoint.", ERROR_TYPE_NOT_SUPPORTED));
|
|
return;
|
|
}
|
|
|
|
// request slots data using task queue
|
|
server_task task;
|
|
task.id = ctx_server.queue_tasks.get_new_id();
|
|
task.id_multi = -1;
|
|
task.id_target = -1;
|
|
task.type = SERVER_TASK_TYPE_METRICS;
|
|
|
|
ctx_server.queue_results.add_waiting_task_id(task.id);
|
|
ctx_server.queue_tasks.post(task);
|
|
|
|
// get the result
|
|
server_task_result result = ctx_server.queue_results.recv(task.id);
|
|
ctx_server.queue_results.remove_waiting_task_id(task.id);
|
|
|
|
res.set_content(result.data.at("slots").dump(), "application/json");
|
|
res.status = 200; // HTTP OK
|
|
};
|
|
|
|
const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
|
|
if (!params.endpoint_metrics) {
|
|
res_error(res, format_error_response("This server does not support metrics endpoint.", ERROR_TYPE_NOT_SUPPORTED));
|
|
return;
|
|
}
|
|
|
|
// request slots data using task queue
|
|
server_task task;
|
|
task.id = ctx_server.queue_tasks.get_new_id();
|
|
task.id_multi = -1;
|
|
task.id_target = -1;
|
|
task.type = SERVER_TASK_TYPE_METRICS;
|
|
task.data.push_back({{"reset_bucket", true}});
|
|
|
|
ctx_server.queue_results.add_waiting_task_id(task.id);
|
|
ctx_server.queue_tasks.post(task);
|
|
|
|
// get the result
|
|
server_task_result result = ctx_server.queue_results.recv(task.id);
|
|
ctx_server.queue_results.remove_waiting_task_id(task.id);
|
|
|
|
json data = result.data;
|
|
|
|
const uint64_t n_prompt_tokens_processed = data.at("n_prompt_tokens_processed");
|
|
const uint64_t t_prompt_processing = data.at("t_prompt_processing");
|
|
|
|
const uint64_t n_tokens_predicted = data.at("n_tokens_predicted");
|
|
const uint64_t t_tokens_generation = data.at("t_tokens_generation");
|
|
|
|
const int32_t kv_cache_used_cells = data.at("kv_cache_used_cells");
|
|
|
|
// metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
|
|
json all_metrics_def = json {
|
|
{"counter", {{
|
|
{"name", "prompt_tokens_total"},
|
|
{"help", "Number of prompt tokens processed."},
|
|
{"value", (uint64_t) data.at("n_prompt_tokens_processed_total")}
|
|
}, {
|
|
{"name", "prompt_seconds_total"},
|
|
{"help", "Prompt process time"},
|
|
{"value", (uint64_t) data.at("t_prompt_processing_total") / 1.e3}
|
|
}, {
|
|
{"name", "tokens_predicted_total"},
|
|
{"help", "Number of generation tokens processed."},
|
|
{"value", (uint64_t) data.at("n_tokens_predicted_total")}
|
|
}, {
|
|
{"name", "tokens_predicted_seconds_total"},
|
|
{"help", "Predict process time"},
|
|
{"value", (uint64_t) data.at("t_tokens_generation_total") / 1.e3}
|
|
}}},
|
|
{"gauge", {{
|
|
{"name", "prompt_tokens_seconds"},
|
|
{"help", "Average prompt throughput in tokens/s."},
|
|
{"value", n_prompt_tokens_processed ? 1.e3 / t_prompt_processing * n_prompt_tokens_processed : 0.}
|
|
},{
|
|
{"name", "predicted_tokens_seconds"},
|
|
{"help", "Average generation throughput in tokens/s."},
|
|
{"value", n_tokens_predicted ? 1.e3 / t_tokens_generation * n_tokens_predicted : 0.}
|
|
},{
|
|
{"name", "kv_cache_usage_ratio"},
|
|
{"help", "KV-cache usage. 1 means 100 percent usage."},
|
|
{"value", 1. * kv_cache_used_cells / params.n_ctx}
|
|
},{
|
|
{"name", "kv_cache_tokens"},
|
|
{"help", "KV-cache tokens."},
|
|
{"value", (uint64_t) data.at("kv_cache_tokens_count")}
|
|
},{
|
|
{"name", "requests_processing"},
|
|
{"help", "Number of request processing."},
|
|
{"value", (uint64_t) data.at("processing")}
|
|
},{
|
|
{"name", "requests_deferred"},
|
|
{"help", "Number of request deferred."},
|
|
{"value", (uint64_t) data.at("deferred")}
|
|
}}}
|
|
};
|
|
|
|
std::stringstream prometheus;
|
|
|
|
for (const auto & el : all_metrics_def.items()) {
|
|
const auto & type = el.key();
|
|
const auto & metrics_def = el.value();
|
|
|
|
for (const auto & metric_def : metrics_def) {
|
|
const std::string name = metric_def.at("name");
|
|
const std::string help = metric_def.at("help");
|
|
|
|
auto value = json_value(metric_def, "value", 0.);
|
|
prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
|
|
<< "# TYPE llamacpp:" << name << " " << type << "\n"
|
|
<< "llamacpp:" << name << " " << value << "\n";
|
|
}
|
|
}
|
|
|
|
const int64_t t_start = data.at("t_start");
|
|
res.set_header("Process-Start-Time-Unix", std::to_string(t_start));
|
|
|
|
res.set_content(prometheus.str(), "text/plain; version=0.0.4");
|
|
res.status = 200; // HTTP OK
|
|
};
|
|
|
|
const auto handle_slots_save = [&ctx_server, &res_error, ¶ms](const httplib::Request & req, httplib::Response & res, int id_slot) {
|
|
json request_data = json::parse(req.body);
|
|
std::string filename = request_data.at("filename");
|
|
if (!fs_validate_filename(filename)) {
|
|
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
|
|
return;
|
|
}
|
|
std::string filepath = params.slot_save_path + filename;
|
|
|
|
server_task task;
|
|
task.type = SERVER_TASK_TYPE_SLOT_SAVE;
|
|
task.data = {
|
|
{ "id_slot", id_slot },
|
|
{ "filename", filename },
|
|
{ "filepath", filepath }
|
|
};
|
|
|
|
const int id_task = ctx_server.queue_tasks.post(task);
|
|
ctx_server.queue_results.add_waiting_task_id(id_task);
|
|
|
|
server_task_result result = ctx_server.queue_results.recv(id_task);
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
|
|
if (result.error) {
|
|
res_error(res, result.data);
|
|
} else {
|
|
res.set_content(result.data.dump(), "application/json");
|
|
}
|
|
};
|
|
|
|
const auto handle_slots_restore = [&ctx_server, &res_error, ¶ms](const httplib::Request & req, httplib::Response & res, int id_slot) {
|
|
json request_data = json::parse(req.body);
|
|
std::string filename = request_data.at("filename");
|
|
if (!fs_validate_filename(filename)) {
|
|
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
|
|
return;
|
|
}
|
|
std::string filepath = params.slot_save_path + filename;
|
|
|
|
server_task task;
|
|
task.type = SERVER_TASK_TYPE_SLOT_RESTORE;
|
|
task.data = {
|
|
{ "id_slot", id_slot },
|
|
{ "filename", filename },
|
|
{ "filepath", filepath }
|
|
};
|
|
|
|
const int id_task = ctx_server.queue_tasks.post(task);
|
|
ctx_server.queue_results.add_waiting_task_id(id_task);
|
|
|
|
server_task_result result = ctx_server.queue_results.recv(id_task);
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
|
|
if (result.error) {
|
|
res_error(res, result.data);
|
|
} else {
|
|
res.set_content(result.data.dump(), "application/json");
|
|
}
|
|
};
|
|
|
|
const auto handle_slots_erase = [&ctx_server, &res_error](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
|
|
server_task task;
|
|
task.type = SERVER_TASK_TYPE_SLOT_ERASE;
|
|
task.data = {
|
|
{ "id_slot", id_slot },
|
|
};
|
|
|
|
const int id_task = ctx_server.queue_tasks.post(task);
|
|
ctx_server.queue_results.add_waiting_task_id(id_task);
|
|
|
|
server_task_result result = ctx_server.queue_results.recv(id_task);
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
|
|
if (result.error) {
|
|
res_error(res, result.data);
|
|
} else {
|
|
res.set_content(result.data.dump(), "application/json");
|
|
}
|
|
};
|
|
|
|
const auto handle_slots_action = [&res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
|
|
std::string id_slot_str = req.path_params.at("id_slot");
|
|
int id_slot;
|
|
|
|
try {
|
|
id_slot = std::stoi(id_slot_str);
|
|
} catch (const std::exception &) {
|
|
res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
|
|
return;
|
|
}
|
|
|
|
std::string action = req.get_param_value("action");
|
|
|
|
if (action == "save") {
|
|
handle_slots_save(req, res, id_slot);
|
|
} else if (action == "restore") {
|
|
handle_slots_restore(req, res, id_slot);
|
|
} else if (action == "erase") {
|
|
handle_slots_erase(req, res, id_slot);
|
|
} else {
|
|
res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
|
|
}
|
|
};
|
|
|
|
const auto handle_props = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
|
|
std::string template_key = "tokenizer.chat_template", curr_tmpl;
|
|
int32_t tlen = llama_model_meta_val_str(ctx_server.model, template_key.c_str(), nullptr, 0);
|
|
if (tlen > 0) {
|
|
std::vector<char> curr_tmpl_buf(tlen + 1, 0);
|
|
if (llama_model_meta_val_str(ctx_server.model, template_key.c_str(), curr_tmpl_buf.data(), curr_tmpl_buf.size()) == tlen) {
|
|
curr_tmpl = std::string(curr_tmpl_buf.data(), tlen);
|
|
}
|
|
}
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
json data = {
|
|
{ "system_prompt", ctx_server.system_prompt.c_str() },
|
|
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
|
|
{ "total_slots", ctx_server.params.n_parallel },
|
|
{ "chat_template", curr_tmpl.c_str() }
|
|
};
|
|
|
|
res.set_content(data.dump(), "application/json; charset=utf-8");
|
|
};
|
|
|
|
const auto handle_completions = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) {
|
|
if (ctx_server.params.embedding) {
|
|
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
|
|
return;
|
|
}
|
|
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
|
|
json data = json::parse(req.body);
|
|
|
|
const int id_task = ctx_server.queue_tasks.get_new_id();
|
|
|
|
ctx_server.queue_results.add_waiting_task_id(id_task);
|
|
ctx_server.request_completion(id_task, -1, data, false, false);
|
|
|
|
if (!json_value(data, "stream", false)) {
|
|
server_task_result result = ctx_server.queue_results.recv(id_task);
|
|
if (!result.error && result.stop) {
|
|
res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
|
|
} else {
|
|
res_error(res, result.data);
|
|
}
|
|
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
} else {
|
|
const auto chunked_content_provider = [id_task, &ctx_server](size_t, httplib::DataSink & sink) {
|
|
while (true) {
|
|
server_task_result result = ctx_server.queue_results.recv(id_task);
|
|
if (!result.error) {
|
|
const std::string str =
|
|
"data: " +
|
|
result.data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
|
|
LOG_VERBOSE("data stream", {
|
|
{ "to_send", str }
|
|
});
|
|
|
|
if (!sink.write(str.c_str(), str.size())) {
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
return false;
|
|
}
|
|
|
|
if (result.stop) {
|
|
break;
|
|
}
|
|
} else {
|
|
const std::string str =
|
|
"error: " +
|
|
result.data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
|
|
LOG_VERBOSE("data stream", {
|
|
{ "to_send", str }
|
|
});
|
|
|
|
if (!sink.write(str.c_str(), str.size())) {
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
return false;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
sink.done();
|
|
|
|
return true;
|
|
};
|
|
|
|
auto on_complete = [id_task, &ctx_server] (bool) {
|
|
// cancel
|
|
ctx_server.request_cancel(id_task);
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
};
|
|
|
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
|
}
|
|
};
|
|
|
|
const auto handle_models = [¶ms, &model_meta](const httplib::Request & req, httplib::Response & res) {
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
|
|
json models = {
|
|
{"object", "list"},
|
|
{"data", {
|
|
{
|
|
{"id", params.model_alias},
|
|
{"object", "model"},
|
|
{"created", std::time(0)},
|
|
{"owned_by", "llamacpp"},
|
|
{"meta", model_meta}
|
|
},
|
|
}}
|
|
};
|
|
|
|
res.set_content(models.dump(), "application/json; charset=utf-8");
|
|
};
|
|
|
|
|
|
const auto handle_chat_completions = [&ctx_server, ¶ms, &res_error](const httplib::Request & req, httplib::Response & res) {
|
|
if (ctx_server.params.embedding) {
|
|
res_error(res, format_error_response("This server does not support chat completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
|
|
return;
|
|
}
|
|
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
|
|
|
|
const int id_task = ctx_server.queue_tasks.get_new_id();
|
|
|
|
ctx_server.queue_results.add_waiting_task_id(id_task);
|
|
ctx_server.request_completion(id_task, -1, data, false, false);
|
|
|
|
const auto completion_id = gen_chatcmplid();
|
|
if (!json_value(data, "stream", false)) {
|
|
server_task_result result = ctx_server.queue_results.recv(id_task);
|
|
|
|
if (!result.error && result.stop) {
|
|
json result_oai = format_final_response_oaicompat(data, result.data, completion_id);
|
|
|
|
res.set_content(result_oai.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
|
|
} else {
|
|
res_error(res, result.data);
|
|
}
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
} else {
|
|
const auto chunked_content_provider = [id_task, &ctx_server, completion_id](size_t, httplib::DataSink & sink) {
|
|
while (true) {
|
|
server_task_result result = ctx_server.queue_results.recv(id_task);
|
|
if (!result.error) {
|
|
std::vector<json> result_array = format_partial_response_oaicompat(result, completion_id);
|
|
|
|
for (auto it = result_array.begin(); it != result_array.end(); ++it) {
|
|
if (!it->empty()) {
|
|
const std::string str =
|
|
"data: " +
|
|
it->dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
LOG_VERBOSE("data stream", {{"to_send", str}});
|
|
if (!sink.write(str.c_str(), str.size())) {
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
if (result.stop) {
|
|
break;
|
|
}
|
|
} else {
|
|
const std::string str =
|
|
"error: " +
|
|
result.data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
LOG_VERBOSE("data stream", {{"to_send", str}});
|
|
if (!sink.write(str.c_str(), str.size())) {
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
sink.done();
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
return true;
|
|
};
|
|
|
|
auto on_complete = [id_task, &ctx_server](bool) {
|
|
// cancel request
|
|
ctx_server.request_cancel(id_task);
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
};
|
|
|
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
|
}
|
|
};
|
|
|
|
const auto handle_infill = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) {
|
|
if (ctx_server.params.embedding) {
|
|
res_error(res, format_error_response("This server does not support infill. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
|
|
return;
|
|
}
|
|
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
|
|
json data = json::parse(req.body);
|
|
|
|
const int id_task = ctx_server.queue_tasks.get_new_id();
|
|
|
|
ctx_server.queue_results.add_waiting_task_id(id_task);
|
|
ctx_server.request_completion(id_task, -1, data, true, false);
|
|
|
|
if (!json_value(data, "stream", false)) {
|
|
server_task_result result = ctx_server.queue_results.recv(id_task);
|
|
if (!result.error && result.stop) {
|
|
res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
|
|
} else {
|
|
res_error(res, result.data);
|
|
}
|
|
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
} else {
|
|
const auto chunked_content_provider = [id_task, &ctx_server](size_t, httplib::DataSink & sink) {
|
|
while (true) {
|
|
server_task_result result = ctx_server.queue_results.recv(id_task);
|
|
if (!result.error) {
|
|
const std::string str =
|
|
"data: " +
|
|
result.data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
|
|
LOG_VERBOSE("data stream", {
|
|
{ "to_send", str }
|
|
});
|
|
|
|
if (!sink.write(str.c_str(), str.size())) {
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
return false;
|
|
}
|
|
|
|
if (result.stop) {
|
|
break;
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
sink.done();
|
|
|
|
return true;
|
|
};
|
|
|
|
auto on_complete = [id_task, &ctx_server] (bool) {
|
|
ctx_server.request_cancel(id_task);
|
|
};
|
|
|
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
|
}
|
|
};
|
|
|
|
const auto handle_tokenize = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
const json body = json::parse(req.body);
|
|
|
|
std::vector<llama_token> tokens;
|
|
if (body.count("content") != 0) {
|
|
const bool add_special = json_value(body, "add_special", false);
|
|
tokens = ctx_server.tokenize(body.at("content"), add_special);
|
|
}
|
|
const json data = format_tokenizer_response(tokens);
|
|
return res.set_content(data.dump(), "application/json; charset=utf-8");
|
|
};
|
|
|
|
const auto handle_detokenize = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
const json body = json::parse(req.body);
|
|
|
|
std::string content;
|
|
if (body.count("tokens") != 0) {
|
|
const std::vector<llama_token> tokens = body.at("tokens");
|
|
content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
|
|
}
|
|
|
|
const json data = format_detokenized_response(content);
|
|
return res.set_content(data.dump(), "application/json; charset=utf-8");
|
|
};
|
|
|
|
const auto handle_embeddings = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) {
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
|
|
const json body = json::parse(req.body);
|
|
bool is_openai = false;
|
|
|
|
// an input prompt can be a string or a list of tokens (integer)
|
|
json prompt;
|
|
if (body.count("input") != 0) {
|
|
is_openai = true;
|
|
prompt = body.at("input");
|
|
} else if (body.count("content") != 0) {
|
|
// with "content", we only support single prompt
|
|
prompt = std::vector<std::string>{body.at("content")};
|
|
} else {
|
|
res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
|
|
return;
|
|
}
|
|
|
|
// create and queue the task
|
|
json responses;
|
|
{
|
|
const int id_task = ctx_server.queue_tasks.get_new_id();
|
|
ctx_server.queue_results.add_waiting_task_id(id_task);
|
|
ctx_server.request_completion(id_task, -1, {{"prompt", prompt}}, false, true);
|
|
|
|
// get the result
|
|
server_task_result result = ctx_server.queue_results.recv(id_task);
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
if (!result.error) {
|
|
if (result.data.count("results")) {
|
|
// result for multi-task
|
|
responses = result.data.at("results");
|
|
} else {
|
|
// result for single task
|
|
responses = std::vector<json>{result.data};
|
|
}
|
|
} else {
|
|
// error received, ignore everything else
|
|
res_error(res, result.data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// write JSON response
|
|
json root = is_openai
|
|
? format_embeddings_response_oaicompat(body, responses)
|
|
: responses[0];
|
|
return res.set_content(root.dump(), "application/json; charset=utf-8");
|
|
};
|
|
|
|
const auto handle_lora_adapters_list = [&](const httplib::Request & req, httplib::Response & res) {
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
json result = json::array();
|
|
for (size_t i = 0; i < ctx_server.lora_adapters.size(); ++i) {
|
|
auto & la = ctx_server.lora_adapters[i];
|
|
result.push_back({
|
|
{"id", i},
|
|
{"path", la.path},
|
|
{"scale", la.scale},
|
|
});
|
|
}
|
|
res.set_content(result.dump(), "application/json");
|
|
res.status = 200; // HTTP OK
|
|
};
|
|
|
|
const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
|
|
const std::vector<json> body = json::parse(req.body);
|
|
int max_idx = ctx_server.lora_adapters.size();
|
|
|
|
// clear existing value
|
|
for (auto & la : ctx_server.lora_adapters) {
|
|
la.scale = 0.0f;
|
|
}
|
|
|
|
// set value
|
|
for (auto entry : body) {
|
|
int id = entry.at("id");
|
|
float scale = entry.at("scale");
|
|
if (0 <= id && id < max_idx) {
|
|
ctx_server.lora_adapters[id].scale = scale;
|
|
} else {
|
|
throw std::runtime_error("invalid adapter id");
|
|
}
|
|
}
|
|
|
|
server_task task;
|
|
task.type = SERVER_TASK_TYPE_SET_LORA;
|
|
const int id_task = ctx_server.queue_tasks.post(task);
|
|
ctx_server.queue_results.add_waiting_task_id(id_task);
|
|
|
|
server_task_result result = ctx_server.queue_results.recv(id_task);
|
|
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
|
|
|
res.set_content(result.data.dump(), "application/json");
|
|
res.status = 200; // HTTP OK
|
|
};
|
|
|
|
const auto list_saved_prompts = [&ctx_server, ¶ms](const httplib::Request& req, httplib::Response& res) {
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
json response = json::array();
|
|
namespace fs = std::filesystem;
|
|
|
|
try {
|
|
for (const auto& entry : fs::directory_iterator(params.slot_save_path)) {
|
|
if (!entry.is_regular_file() || entry.file_size() < 12) {
|
|
continue;
|
|
}
|
|
|
|
std::ifstream file(entry.path(), std::ios::binary);
|
|
if (!file) continue;
|
|
|
|
uint32_t magic, version, n_token_count;
|
|
file.read(reinterpret_cast<char*>(&magic), sizeof(magic));
|
|
file.read(reinterpret_cast<char*>(&version), sizeof(version));
|
|
file.read(reinterpret_cast<char*>(&n_token_count), sizeof(n_token_count));
|
|
|
|
if (magic != LLAMA_STATE_SEQ_MAGIC ||
|
|
version != LLAMA_STATE_SEQ_VERSION ||
|
|
entry.file_size() < (12 + (n_token_count * sizeof(llama_token)))) {
|
|
continue;
|
|
}
|
|
|
|
std::vector<llama_token> tokens(n_token_count);
|
|
file.read(reinterpret_cast<char*>(tokens.data()), tokens.size() * sizeof(llama_token));
|
|
|
|
response.push_back({
|
|
{"filename", entry.path().filename().string()},
|
|
{"filesize", entry.file_size()},
|
|
{"token_count", n_token_count},
|
|
{"prompt", tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend())}
|
|
});
|
|
}
|
|
} catch (const std::exception& e) {
|
|
res.status = 500;
|
|
response = {{"error", e.what()}};
|
|
}
|
|
res.set_content(response.dump(), "application/json; charset=utf-8");
|
|
};
|
|
|
|
auto handle_static_file = [](unsigned char * content, size_t len, const char * mime_type) {
|
|
return [content, len, mime_type](const httplib::Request &, httplib::Response & res) {
|
|
res.set_content(reinterpret_cast<const char*>(content), len, mime_type);
|
|
return false;
|
|
};
|
|
};
|
|
|
|
//
|
|
// Router
|
|
//
|
|
|
|
// register static assets routes
|
|
if (!params.public_path.empty()) {
|
|
// Set the base directory for serving static files
|
|
svr->set_base_dir(params.public_path);
|
|
}
|
|
|
|
{
|
|
// register static assets routes
|
|
if (!params.public_path.empty()) {
|
|
// Set the base directory for serving static files
|
|
bool is_found = svr->set_mount_point("/", params.public_path);
|
|
if (!is_found) {
|
|
GGML_ABORT("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
|
|
return 1;
|
|
}
|
|
}
|
|
else {
|
|
// using embedded static index.html
|
|
svr->Get("/", [](const httplib::Request& req, httplib::Response& res) {
|
|
if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
|
|
res.set_content("Error: gzip is not supported by this browser", "text/plain");
|
|
}
|
|
else {
|
|
res.set_header("Content-Encoding", "gzip");
|
|
// COEP and COOP headers, required by pyodide (python interpreter)
|
|
res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
|
|
res.set_header("Cross-Origin-Opener-Policy", "same-origin");
|
|
res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
|
|
}
|
|
return false;
|
|
});
|
|
}
|
|
}
|
|
// register API routes
|
|
svr->Get ("/health", handle_health);
|
|
svr->Get ("/metrics", handle_metrics);
|
|
svr->Get ("/props", handle_props);
|
|
svr->Get ("/v1/models", handle_models);
|
|
svr->Post("/completion", handle_completions); // legacy
|
|
svr->Post("/completions", handle_completions);
|
|
svr->Post("/v1/completions", handle_completions);
|
|
svr->Post("/chat/completions", handle_chat_completions);
|
|
svr->Post("/v1/chat/completions", handle_chat_completions);
|
|
svr->Post("/infill", handle_infill);
|
|
svr->Post("/embedding", handle_embeddings); // legacy
|
|
svr->Post("/embeddings", handle_embeddings);
|
|
svr->Post("/v1/embeddings", handle_embeddings);
|
|
svr->Post("/tokenize", handle_tokenize);
|
|
svr->Post("/detokenize", handle_detokenize);
|
|
// LoRA adapters hotswap
|
|
svr->Get ("/lora-adapters", handle_lora_adapters_list);
|
|
svr->Post("/lora-adapters", handle_lora_adapters_apply);
|
|
// Save & load slots
|
|
svr->Get ("/slots", handle_slots);
|
|
if (!params.slot_save_path.empty()) {
|
|
// these endpoints rely on slot_save_path existing
|
|
svr->Post("/slots/:id_slot", handle_slots_action);
|
|
svr->Get ("/list", list_saved_prompts);
|
|
}
|
|
|
|
//
|
|
// Start the server
|
|
//
|
|
if (params.n_threads_http < 1) {
|
|
// +2 threads for monitoring endpoints
|
|
params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
|
|
}
|
|
log_data["n_threads_http"] = std::to_string(params.n_threads_http);
|
|
svr->new_task_queue = [¶ms] { return new httplib::ThreadPool(params.n_threads_http); };
|
|
|
|
LOG_INFO("HTTP server listening", log_data);
|
|
|
|
// run the HTTP server in a thread - see comment below
|
|
std::thread t([&]() {
|
|
if (!svr->listen_after_bind()) {
|
|
state.store(SERVER_STATE_ERROR);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
});
|
|
|
|
ctx_server.queue_tasks.on_new_task(std::bind(
|
|
&server_context::process_single_task, &ctx_server, std::placeholders::_1));
|
|
ctx_server.queue_tasks.on_finish_multitask(std::bind(
|
|
&server_context::on_finish_multitask, &ctx_server, std::placeholders::_1));
|
|
ctx_server.queue_tasks.on_update_slots(std::bind(
|
|
&server_context::update_slots, &ctx_server));
|
|
ctx_server.queue_results.on_multitask_update(std::bind(
|
|
&server_queue::update_multitask,
|
|
&ctx_server.queue_tasks,
|
|
std::placeholders::_1,
|
|
std::placeholders::_2,
|
|
std::placeholders::_3
|
|
));
|
|
|
|
shutdown_handler = [&](int) {
|
|
ctx_server.queue_tasks.terminate();
|
|
};
|
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
|
struct sigaction sigint_action;
|
|
sigint_action.sa_handler = signal_handler;
|
|
sigemptyset (&sigint_action.sa_mask);
|
|
sigint_action.sa_flags = 0;
|
|
sigaction(SIGINT, &sigint_action, NULL);
|
|
sigaction(SIGTERM, &sigint_action, NULL);
|
|
#elif defined (_WIN32)
|
|
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
|
|
return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
|
|
};
|
|
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
|
#endif
|
|
|
|
ctx_server.queue_tasks.start_loop();
|
|
|
|
svr->stop();
|
|
t.join();
|
|
|
|
llama_backend_free();
|
|
|
|
return 0;
|
|
}
|