Files
ik_llama.cpp/examples/server/server.cpp
firecoperana eea6cc4433 Server: Add --draft-params to set draft model parameter via command line args (#932)
* Add command line argument for draft model

* Remove second context of draft model

* Format print

* print usage if parsing -draft fails

---------

Co-authored-by: firecoperana <firecoperana>
2025-11-10 09:51:07 +02:00

5193 lines
209 KiB
C++

#pragma warning(disable : 4996)
#include "chat.h"
#include "utils.hpp"
#include "common.h"
#include "speculative.h"
#include "mtmd.h"
#include "sampling.h"
#include "json-schema-to-grammar.h"
#include "llama.h"
#include "grammar-parser.h"
#include "llama-vocab.h"
#ifndef NDEBUG
// crash the server in debug mode, otherwise send an http 500 error
#define CPPHTTPLIB_NO_EXCEPTIONS 1
#endif
#include <nlohmann/json.hpp>
#include "index.html.gz.hpp"
#include "index_llamacpp.html.gz.hpp"
#include "loading.html.hpp"
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <cstddef>
#include <set>
#include <mutex>
#include <thread>
#include <signal.h>
#include <memory>
#include <random>
#include <algorithm>
#include <src/llama-impl.h>
#ifdef SQLITE3_MODERN_CPP_SUPPORT
#include <sqlite_modern_cpp.h>
struct DatabaseHandle {
sqlite::database db;
DatabaseHandle(const std::string& path) : db(path) {
db << "CREATE TABLE IF NOT EXISTS sessions (key TEXT PRIMARY KEY, data TEXT)";
db << "CREATE TABLE IF NOT EXISTS templates (key TEXT PRIMARY KEY, data TEXT)";
db << "CREATE TABLE IF NOT EXISTS names (key TEXT PRIMARY KEY, data TEXT)";
}
};
#endif
using json = nlohmann::ordered_json;
bool server_verbose = false;
bool server_log_json = true;
enum stop_type {
STOP_TYPE_NONE,
STOP_TYPE_EOS,
STOP_TYPE_WORD,
STOP_TYPE_LIMIT,
};
enum slot_state {
SLOT_STATE_IDLE,
SLOT_STATE_PROCESSING,
};
enum slot_command {
SLOT_COMMAND_NONE,
SLOT_COMMAND_LOAD_PROMPT,
SLOT_COMMAND_RELEASE,
};
enum server_state {
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
SERVER_STATE_READY, // Server is ready and model is loaded
SERVER_STATE_ERROR // An error occurred, load_model failed
};
enum server_task_type {
SERVER_TASK_TYPE_COMPLETION,
SERVER_TASK_TYPE_EMBEDDING,
SERVER_TASK_TYPE_RERANK,
SERVER_TASK_TYPE_INFILL,
SERVER_TASK_TYPE_CANCEL,
SERVER_TASK_TYPE_NEXT_RESPONSE,
SERVER_TASK_TYPE_METRICS,
SERVER_TASK_TYPE_SLOT_SAVE,
SERVER_TASK_TYPE_SLOT_RESTORE,
SERVER_TASK_TYPE_SLOT_ERASE,
SERVER_TASK_TYPE_SET_LORA,
};
enum oaicompat_type {
OAICOMPAT_TYPE_NONE,
OAICOMPAT_TYPE_CHAT,
OAICOMPAT_TYPE_COMPLETION,
OAICOMPAT_TYPE_EMBEDDING,
};
struct result_timings {
int32_t prompt_n = -1;
double prompt_ms;
double prompt_per_token_ms;
double prompt_per_second;
int32_t predicted_n = -1;
double predicted_ms;
double predicted_per_token_ms;
double predicted_per_second;
// Optional speculative metrics - only included when > 0
int32_t draft_n = 0;
int32_t draft_n_accepted = 0;
json to_json() const {
json base = {
{"prompt_n", prompt_n},
{"prompt_ms", prompt_ms},
{"prompt_per_token_ms", prompt_per_token_ms},
{"prompt_per_second", prompt_per_second},
{"predicted_n", predicted_n},
{"predicted_ms", predicted_ms},
{"predicted_per_token_ms", predicted_per_token_ms},
{"predicted_per_second", predicted_per_second},
};
if (draft_n > 0) {
base["draft_n"] = draft_n;
base["draft_n_accepted"] = draft_n_accepted;
}
return base;
}
};
struct server_task {
int id = -1; // to be filled by server_queue
int id_multi = -1;
int id_target = -1;
// used by SERVER_TASK_TYPE_INFERENCE
server_tokens tokens;
server_task_type type;
json data;
bool infill = false;
bool embedding = false;
};
struct server_task_result {
int id = -1;
int id_multi = -1;
json data;
bool stop;
bool error;
bool final_result = false;
result_timings timings;
// OAI-compat fields
//bool verbose = false;
oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
std::string oaicompat_model;
std::string oaicompat_cmpl_id;
common_chat_format oaicompat_chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
common_chat_msg oaicompat_msg;
std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
int index = 0;
std::string content;
std::vector<llama_token> tokens;
bool stream;
bool include_usage;
std::string prompt;
//slot_params generation_params;
bool truncated;
int32_t n_decoded;
int32_t n_prompt_tokens;
int32_t n_tokens_cached;
bool has_new_line;
std::string stopping_word;
bool post_sampling_probs = false;
std::vector<completion_token_output> probs_output;
std::vector<std::string> response_fields;
//slot_params generation_params;
bool verbose = false;
int get_index() {
return index;
}
bool is_stop() {
return true; // in stream mode, final responses are considered stop
}
json to_json_final() {
switch (oaicompat) {
case OAICOMPAT_TYPE_NONE:
return to_json_non_oaicompat_final();
case OAICOMPAT_TYPE_COMPLETION:
return to_json_oaicompat_final();
case OAICOMPAT_TYPE_CHAT:
return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat_final();
default:
GGML_ASSERT(false && "Invalid oaicompat_type");
}
}
json to_json_partial() {
switch (oaicompat) {
case OAICOMPAT_TYPE_NONE:
return to_json_non_oaicompat_partial();
case OAICOMPAT_TYPE_COMPLETION:
return to_json_oaicompat_partial();
case OAICOMPAT_TYPE_CHAT:
return to_json_oaicompat_chat_partial();
default:
GGML_ASSERT(false && "Invalid oaicompat_type");
}
}
json to_json_non_oaicompat_partial() {
// non-OAI-compat JSON
json res = json{
{"index", index},
{"content", content},
{"tokens", tokens},
{"stop", false},
{"id_slot", id_multi},
{"tokens_predicted", n_decoded},
{"tokens_evaluated", n_prompt_tokens},
};
// populate the timings object when needed (usually for the last response or with timings_per_token enabled)
if (timings.prompt_n > 0) {
res.push_back({ "timings", timings.to_json() });
}
if (!probs_output.empty()) {
res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
}
return res;
}
json to_json_non_oaicompat_final() {
json res = json{
{"index", index},
{"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
{"tokens", stream ? std::vector<llama_token> {} : tokens},
{"id_slot", id_multi},
{"stop", true},
{"model", oaicompat_model},
{"tokens_predicted", n_decoded},
{"tokens_evaluated", n_prompt_tokens},
//{"generation_settings", default_generation_settings_for_props.to_json()},
{"prompt", prompt},
{"has_new_line", has_new_line},
{"truncated", truncated},
//{"stop_type", stop_type_to_str(STOP_TYPE_EOS)},
{"stopping_word", stopping_word},
{"tokens_cached", n_tokens_cached},
{"timings", timings.to_json()},
};
if (!stream && !probs_output.empty()) {
res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
}
return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
}
json to_json_oaicompat_partial() {
std::time_t t = std::time(0);
json logprobs = json(nullptr); // OAI default to null
if (probs_output.size() > 0) {
logprobs = json{
{"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
};
}
json res = json{
{"choices", json::array({
json{
{"text", content},
{"index", index},
{"logprobs", logprobs},
{"finish_reason", nullptr},
}
})},
{"created", t},
{"model", oaicompat_model},
{"object", "text_completion"},
{"usage", json {
{"completion_tokens", n_decoded},
{"prompt_tokens", n_prompt_tokens},
{"total_tokens", n_decoded + n_prompt_tokens}
}},
{"id", oaicompat_cmpl_id}
};
// extra fields for debugging purposes
if (verbose) {
res["__verbose"] = to_json_non_oaicompat_partial();
}
if (timings.prompt_n >= 0) {
res.push_back({ "timings", timings.to_json() });
}
return res;
}
json to_json_oaicompat_final() {
std::time_t t = std::time(0);
json logprobs = json(nullptr); // OAI default to null
if (!stream && probs_output.size() > 0) {
logprobs = json{
{"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
};
}
json finish_reason = "length";
if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
finish_reason = "stop";
}
json res = json{
{"choices", json::array({
json{
{"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
{"index", index},
{"logprobs", logprobs},
{"finish_reason", finish_reason},
}
})},
{"created", t},
{"model", oaicompat_model},
{"object", "text_completion"},
{"usage", json {
{"completion_tokens", n_decoded},
{"prompt_tokens", n_prompt_tokens},
{"total_tokens", n_decoded + n_prompt_tokens}
}},
{"id", oaicompat_cmpl_id}
};
// extra fields for debugging purposes
if (verbose) {
res["__verbose"] = to_json_non_oaicompat_final();
}
if (timings.prompt_n >= 0) {
res.push_back({ "timings", timings.to_json() });
}
return res;
}
json to_json_oaicompat_chat_partial() {
bool first = n_decoded == 1;
std::time_t t = std::time(0);
json choices;
std::vector<json> deltas;
auto add_delta = [&](const json& delta) {
deltas.push_back({
{"choices", json::array({
json {
{"finish_reason", nullptr},
{"index", 0},
{"delta", delta},
},
})},
{"created", t},
{"id", oaicompat_cmpl_id},
{"model", oaicompat_model},
{"object", "chat.completion.chunk"},
{"usage", json {
{"completion_tokens", n_decoded},
{"prompt_tokens", n_prompt_tokens},
{"total_tokens", n_decoded + n_prompt_tokens},
}},
});
};
// We have to send an initial update to conform to openai behavior
if (first) {
add_delta({
{"role", "assistant"},
{"content", nullptr},
});
}
for (const auto& diff : oaicompat_msg_diffs) {
add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
}
if (!deltas.empty()) {
GGML_ASSERT(deltas[deltas.size() - 1].at("choices").size() >= 1);
if (probs_output.size() > 0) {
deltas[deltas.size() - 1].at("choices").at(0)["logprobs"] = json{
{"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
};
}
if (timings.prompt_n >= 0) {
deltas[deltas.size() - 1].push_back({ "timings", timings.to_json() });
}
}
return deltas;
}
json to_json_oaicompat_chat_final() {
std::string finish_reason = "length";
common_chat_msg msg;
if (!oaicompat_msg.empty()) {
msg = oaicompat_msg;
}
else {
msg.role = "assistant";
msg.content = content;
}
if (stop) {
finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
}
json choice{
{"finish_reason", finish_reason},
{"index", 0},
{"message", msg.to_json_oaicompat<json>()},
};
if (!stream && probs_output.size() > 0) {
choice["logprobs"] = json{
{"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
};
}
std::time_t t = std::time(0);
json res = json{
{"choices", json::array({choice})},
{"created", t},
{"model", oaicompat_model},
{"object", "chat.completion"},
{"usage", json {
{"completion_tokens", n_decoded},
{"prompt_tokens", n_prompt_tokens},
{"total_tokens", n_decoded + n_prompt_tokens}
}},
{"id", oaicompat_cmpl_id}
};
// extra fields for debugging purposes
if (verbose) {
res["__verbose"] = to_json_non_oaicompat_final();
}
if (timings.prompt_n >= 0) {
res.push_back({ "timings", timings.to_json() });
}
return res;
}
json to_json_oaicompat_chat_stream() {
std::time_t t = std::time(0);
std::string finish_reason = "length";
if (stop) {
//if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
}
json deltas = json::array();
for (const auto& diff : oaicompat_msg_diffs) {
deltas.push_back({
{"choices", json::array({
json {
{"finish_reason", nullptr},
{"index", 0},
{"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
},
})},
{"created", t},
{"id", oaicompat_cmpl_id},
{"model", oaicompat_model},
{"object", "chat.completion.chunk"},
});
}
deltas.push_back({
{"choices", json::array({
json {
{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()},
},
})},
{"created", t},
{"id", oaicompat_cmpl_id},
{"model", oaicompat_model},
{"object", "chat.completion.chunk"},
});
if (include_usage) {
// OpenAI API spec for chat.completion.chunks specifies an empty `choices` array for the last chunk when including usage
// https://platform.openai.com/docs/api-reference/chat_streaming/streaming#chat_streaming/streaming-choices
deltas.push_back({
{"choices", json::array()},
{"created", t},
{"id", oaicompat_cmpl_id},
{"model", oaicompat_model},
{"object", "chat.completion.chunk"},
{"usage", json {
{"completion_tokens", n_decoded},
{"prompt_tokens", n_prompt_tokens},
{"total_tokens", n_decoded + n_prompt_tokens},
}},
});
}
if (timings.prompt_n >= 0) {
deltas.back().push_back({ "timings", timings.to_json() });
}
// extra fields for debugging purposes
if (verbose && !deltas.empty()) {
deltas.front()["__verbose"] = to_json_non_oaicompat_final();
}
return deltas;
}
};
inline std::string stop_type_to_str(stop_type type) {
switch (type) {
case STOP_TYPE_EOS: return "eos";
case STOP_TYPE_WORD: return "word";
case STOP_TYPE_LIMIT: return "limit";
default: return "none";
}
}
struct server_task_multi {
int id = -1;
std::set<int> subtasks_remaining;
std::vector<server_task_result> results;
};
struct slot_params {
bool stream = true;
bool include_usage = false;
bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
int32_t n_predict = -1; // new tokens to predict
std::vector<std::string> antiprompt;
bool timings_per_token = false;
bool post_sampling_probs = false;
json input_prefix;
json input_suffix;
// speculative decoding parameters
struct {
int n_max = 16; // max drafted tokens
int n_min = 0; // min drafted tokens to accept
float p_min = 0.75f; // min probability required to accept a token in the draft
} speculative;
// OAI-compat fields
oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
std::string oaicompat_model;
std::string oaicompat_cmpl_id;
common_chat_syntax oaicompat_chat_syntax;
};
struct server_slot {
int id;
int id_task = -1;
int id_multi = -1;
struct slot_params params;
slot_state state = SLOT_STATE_IDLE;
slot_command command = SLOT_COMMAND_NONE;
// used to determine the slot that has been used the longest
int64_t t_last_used = -1;
// generation props
int32_t n_ctx = 0; // context size per slot
int32_t n_past = 0;
int32_t n_decoded = 0;
int32_t n_remaining = -1;
int32_t i_batch = -1;
int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
int32_t n_prompt_tokens = 0;
int32_t n_prompt_tokens_processed = 0;
json prompt; // can be either a string, array of strings or array of token ids
// when a task is submitted, we first tokenize the prompt and store it here
server_tokens prompt_tokens;
server_tokens cache_tokens;
std::string generated_text;
std::vector<completion_token_output> generated_token_probs;
common_chat_msg chat_msg;
bool infill = false;
bool embedding = false;
bool has_next_token = true;
bool truncated = false;
bool stopped_eos = false;
bool stopped_word = false;
bool stopped_limit = false;
bool oaicompat = false;
std::string oaicompat_model;
std::string stopping_word;
stop_type stop;
// sampling
llama_token sampled;
struct llama_sampling_params sparams;
llama_sampling_context * ctx_sampling = nullptr;
json json_schema;
common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
std::vector<std::string> generated_tool_call_ids;
int32_t ga_i = 0; // group-attention state
int32_t ga_n = 1; // group-attention factor
int32_t ga_w = 512; // group-attention width
// multimodal
mtmd_context * mctx = nullptr;
// speculative decoding
struct llama_speculative * spec = nullptr;
llama_context * ctx_dft = nullptr;
llama_batch batch_spec = {};
// speculative decoding stats
int32_t n_draft_total = 0; // Total draft tokens generated
int32_t n_draft_accepted = 0; // Draft tokens actually accepted
int32_t n_past_se = 0; // self-extend
// stats
size_t n_sent_text = 0; // number of sent text character
size_t n_sent_token_probs = 0;
int64_t t_start_process_prompt;
int64_t t_start_generation;
double t_prompt_processing; // ms
double t_token_generation; // ms
void reset() {
n_prompt_tokens = 0;
generated_text = "";
truncated = false;
stopped_eos = false;
stopped_word = false;
stopped_limit = false;
stopping_word = "";
n_past = 0;
n_sent_text = 0;
n_sent_token_probs = 0;
infill = false;
ga_i = 0;
n_past_se = 0;
chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
generated_token_probs.clear();
// Reset speculative decoding stats
n_draft_total = 0;
n_draft_accepted = 0;
chat_msg = {};
json_schema = json();
generated_tool_call_ids.clear();
}
bool has_budget(gpt_params &global_params) {
if (params.n_predict == -1 && global_params.n_predict == -1) {
return true; // limitless
}
n_remaining = -1;
if (params.n_predict != -1) {
n_remaining = params.n_predict - n_decoded;
} else if (global_params.n_predict != -1) {
n_remaining = global_params.n_predict - n_decoded;
}
return n_remaining > 0; // no budget
}
bool available() const {
return state == SLOT_STATE_IDLE && command == SLOT_COMMAND_NONE;
}
bool is_processing() const {
return (state == SLOT_STATE_IDLE && command == SLOT_COMMAND_LOAD_PROMPT) || state == SLOT_STATE_PROCESSING;
}
void add_token_string(const completion_token_output & token) {
if (command == SLOT_COMMAND_RELEASE) {
return;
}
generated_token_probs.push_back(token);
}
void release() {
if (state == SLOT_STATE_PROCESSING) {
t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
command = SLOT_COMMAND_RELEASE;
}
}
json get_formated_timings() const {
return json {
{"prompt_n", n_prompt_tokens_processed},
{"prompt_ms", t_prompt_processing},
{"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed},
{"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed},
{"predicted_n", n_decoded},
{"predicted_ms", t_token_generation},
{"predicted_per_token_ms", t_token_generation / n_decoded},
{"predicted_per_second", 1e3 / t_token_generation * n_decoded},
};
}
result_timings get_timings() const {
result_timings timings;
timings.prompt_n = n_prompt_tokens_processed;
timings.prompt_ms = t_prompt_processing;
timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
timings.predicted_n = n_decoded;
timings.predicted_ms = t_token_generation;
timings.predicted_per_token_ms = t_token_generation / n_decoded;
timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
// Add speculative metrics
if (n_draft_total > 0) {
timings.draft_n = n_draft_total;
timings.draft_n_accepted = n_draft_accepted;
}
return timings;
}
const common_chat_msg& update_chat_msg(std::vector<common_chat_msg_diff>& diffs) {
auto previous_msg = chat_msg;
auto new_msg = common_chat_parse(
generated_text,
/* is_partial= */ stop != STOP_TYPE_EOS,
params.oaicompat_chat_syntax);
if (!new_msg.empty()) {
new_msg.ensure_tool_call_ids_set(generated_tool_call_ids, gen_tool_call_id);
chat_msg = new_msg;
diffs = common_chat_msg_diff::compute_diffs(previous_msg, new_msg.empty() ? previous_msg : new_msg);
}
//LLAMA_LOG_DEBUG("Parsing chat message: %s\n", generated_text.c_str());
//LLAMA_LOG_DEBUG("Parsing chat message: %s\n", chat_msg.reasoning_content.c_str());
//LLAMA_LOG_DEBUG("Parsing chat message: %s\n", chat_msg.content.c_str());
return chat_msg;
}
size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
size_t stop_pos = std::string::npos;
for (const std::string & word : params.antiprompt) {
size_t pos;
if (is_full_stop) {
const size_t tmp = word.size() + last_token_size;
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
pos = text.find(word, from_pos);
} else {
pos = string_find_partial_stop(text, word);
}
if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
if (is_full_stop) {
stopped_word = true;
stopping_word = word;
has_next_token = false;
}
stop_pos = pos;
}
}
return stop_pos;
}
void print_timings() const {
char buffer[512];
double t_token = t_prompt_processing / n_prompt_tokens_processed;
double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
snprintf(buffer, 512, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
t_prompt_processing, n_prompt_tokens_processed,
t_token, n_tokens_second);
LOG_INFO(buffer, {
{"id_slot", id},
{"id_task", id_task},
{"t_prompt_processing", t_prompt_processing},
{"n_prompt_tokens_processed", n_prompt_tokens_processed},
{"t_token", t_token},
{"n_tokens_second", n_tokens_second},
});
t_token = t_token_generation / n_decoded;
n_tokens_second = 1e3 / t_token_generation * n_decoded;
snprintf(buffer, 512, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
t_token_generation, n_decoded,
t_token, n_tokens_second);
LOG_INFO(buffer, {
{"id_slot", id},
{"id_task", id_task},
{"t_token_generation", t_token_generation},
{"n_decoded", n_decoded},
{"t_token", t_token},
{"n_tokens_second", n_tokens_second},
});
snprintf(buffer, 512, " total time = %10.2f ms", t_prompt_processing + t_token_generation);
LOG_INFO(buffer, {
{"id_slot", id},
{"id_task", id_task},
{"t_prompt_processing", t_prompt_processing},
{"t_token_generation", t_token_generation},
{"t_total", t_prompt_processing + t_token_generation},
});
}
};
struct server_metrics {
int64_t t_start = 0;
uint64_t n_prompt_tokens_processed_total = 0;
uint64_t t_prompt_processing_total = 0;
uint64_t n_tokens_predicted_total = 0;
uint64_t t_tokens_generation_total = 0;
uint64_t n_prompt_tokens_processed = 0;
uint64_t t_prompt_processing = 0;
uint64_t n_tokens_predicted = 0;
uint64_t t_tokens_generation = 0;
void init() {
t_start = ggml_time_us();
}
void on_prompt_eval(const server_slot & slot) {
n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
t_prompt_processing += slot.t_prompt_processing;
t_prompt_processing_total += slot.t_prompt_processing;
}
void on_prediction(const server_slot & slot) {
n_tokens_predicted_total += slot.n_decoded;
n_tokens_predicted += slot.n_decoded;
t_tokens_generation += slot.t_token_generation;
t_tokens_generation_total += slot.t_token_generation;
}
void reset_bucket() {
n_prompt_tokens_processed = 0;
t_prompt_processing = 0;
n_tokens_predicted = 0;
t_tokens_generation = 0;
}
};
struct server_queue {
int id = 0;
bool running;
// queues
std::vector<server_task> queue_tasks;
std::vector<server_task> queue_tasks_deferred;
std::vector<server_task_multi> queue_multitasks;
std::mutex mutex_tasks;
std::condition_variable condition_tasks;
// callback functions
std::function<void(server_task &&)> callback_new_task;
std::function<void(server_task_multi &)> callback_finish_multitask;
std::function<void(void)> callback_update_slots;
// Add a new task to the end of the queue
int post(server_task task) {
std::unique_lock<std::mutex> lock(mutex_tasks);
if (task.id == -1) {
task.id = id++;
LOG_VERBOSE("new task id", {{"new_id", task.id}});
}
queue_tasks.push_back(std::move(task));
condition_tasks.notify_one();
return task.id;
}
// Add a new task, but defer until one slot is available
void defer(server_task && task) {
std::unique_lock<std::mutex> lock(mutex_tasks);
queue_tasks_deferred.push_back(std::move(task));
}
// Get the next id for creating anew task
int get_new_id() {
std::unique_lock<std::mutex> lock(mutex_tasks);
int new_id = id++;
LOG_VERBOSE("new task id", {{"new_id", new_id}});
return new_id;
}
// Register function to process a new task
void on_new_task(std::function<void(server_task &&)> callback) {
callback_new_task = std::move(callback);
}
// Register function to process a multitask when it is finished
void on_finish_multitask(std::function<void(server_task_multi&)> callback) {
callback_finish_multitask = std::move(callback);
}
// Register the function to be called when all slots data is ready to be processed
void on_update_slots(std::function<void(void)> callback) {
callback_update_slots = std::move(callback);
}
// Call when the state of one slot is changed
void notify_slot_changed() {
// move deferred tasks back to main loop
std::unique_lock<std::mutex> lock(mutex_tasks);
for (auto & task : queue_tasks_deferred) {
queue_tasks.push_back(std::move(task));
}
queue_tasks_deferred.clear();
}
// end the start_loop routine
void terminate() {
std::unique_lock<std::mutex> lock(mutex_tasks);
running = false;
condition_tasks.notify_all();
}
/**
* Main loop consists of these steps:
* - Wait until a new task arrives
* - Process the task (i.e. maybe copy data into slot)
* - Check if multitask is finished
* - Update all slots
*/
void start_loop() {
running = true;
while (true) {
LOG_VERBOSE("new task may arrive", {});
while (true) {
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
lock.unlock();
break;
}
server_task task = std::move(queue_tasks.front());
queue_tasks.erase(queue_tasks.begin());
lock.unlock();
LOG_VERBOSE("callback_new_task", {{"id_task", task.id}});
callback_new_task(std::move(task));
}
LOG_VERBOSE("update_multitasks", {});
// check if we have any finished multitasks
auto queue_iterator = queue_multitasks.begin();
while (queue_iterator != queue_multitasks.end()) {
if (queue_iterator->subtasks_remaining.empty()) {
// all subtasks done == multitask is done
server_task_multi current_multitask = *queue_iterator;
callback_finish_multitask(current_multitask);
// remove this multitask
queue_iterator = queue_multitasks.erase(queue_iterator);
} else {
++queue_iterator;
}
}
// all tasks in the current loop is processed, slots data is now ready
LOG_VERBOSE("callback_update_slots", {});
callback_update_slots();
LOG_VERBOSE("wait for new task", {});
{
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
if (!running) {
LOG_VERBOSE("ending start_loop", {});
return;
}
condition_tasks.wait(lock, [&]{
return (!queue_tasks.empty() || !running);
});
}
}
}
}
//
// functions to manage multitasks
//
// add a multitask by specifying the id of all subtask (subtask is a server_task)
void add_multitask(int id_multi, std::vector<int> & sub_ids) {
std::lock_guard<std::mutex> lock(mutex_tasks);
server_task_multi multi;
multi.id = id_multi;
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
queue_multitasks.push_back(multi);
}
// updatethe remaining subtasks, while appending results to multitask
void update_multitask(int id_multi, int id_sub, server_task_result & result) {
std::lock_guard<std::mutex> lock(mutex_tasks);
for (auto & multitask : queue_multitasks) {
if (multitask.id == id_multi) {
multitask.subtasks_remaining.erase(id_sub);
multitask.results.push_back(result);
}
}
}
};
struct server_response {
typedef std::function<void(int, int, server_task_result &)> callback_multitask_t;
callback_multitask_t callback_update_multitask;
// for keeping track of all tasks waiting for the result
std::set<int> waiting_task_ids;
// the main result queue
std::vector<server_task_result> queue_results;
std::mutex mutex_results;
std::condition_variable condition_results;
// add the id_task to the list of tasks waiting for response
void add_waiting_task_id(int id_task) {
LOG_VERBOSE("waiting for task id", {{"id_task", id_task}});
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.insert(id_task);
}
// when the request is finished, we can remove task associated with it
void remove_waiting_task_id(int id_task) {
LOG_VERBOSE("remove waiting for task id", {{"id_task", id_task}});
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.erase(id_task);
}
// This function blocks the thread until there is a response for this id_task
server_task_result recv(int id_task) {
while (true) {
std::unique_lock<std::mutex> lock(mutex_results);
condition_results.wait(lock, [&]{
return !queue_results.empty();
});
for (int i = 0; i < (int) queue_results.size(); i++) {
if (queue_results[i].id == id_task) {
assert(queue_results[i].id_multi == -1);
server_task_result res = queue_results[i];
queue_results.erase(queue_results.begin() + i);
return res;
}
}
}
// should never reach here
}
// Register the function to update multitask
void on_multitask_update(callback_multitask_t callback) {
callback_update_multitask = std::move(callback);
}
// Send a new result to a waiting id_task
void send(server_task_result result) {
LOG_VERBOSE("send new result", {{"id_task", result.id}});
std::unique_lock<std::mutex> lock(mutex_results);
for (const auto & id_task : waiting_task_ids) {
// LOG_TEE("waiting task id %i \n", id_task);
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
if (result.id_multi == id_task) {
LOG_VERBOSE("callback_update_multitask", {{"id_task", id_task}});
callback_update_multitask(id_task, result.id, result);
continue;
}
if (result.id == id_task) {
LOG_VERBOSE("queue_results.push_back", {{"id_task", id_task}});
queue_results.push_back(result);
condition_results.notify_all();
return;
}
}
}
};
struct server_context {
llama_model * model = nullptr;
llama_context * ctx = nullptr;
std::vector<llama_lora_adapter_container> lora_adapters;
gpt_params params;
llama_batch batch;
bool clean_kv_cache = true;
bool add_bos_token = true;
bool has_eos_token = false;
// multimodal
mtmd_context * mctx = nullptr;
// For speculative decoding
llama_model * model_draft = nullptr;
llama_context * ctx_draft = nullptr;
llama_context_params cparams_dft;
int32_t n_ctx; // total context for all clients / slots
// system prompt
bool system_need_update = false;
std::string system_prompt;
std::vector<llama_token> system_tokens;
// slots / clients
std::vector<server_slot> slots;
json default_generation_settings_for_props;
server_queue queue_tasks;
server_response queue_results;
server_metrics metrics;
common_chat_templates_ptr chat_templates;
oaicompat_parser_options oai_parser_opt;
// Necessary similarity of prompt for slot selection
float slot_prompt_similarity = 0.0f;
~server_context() {
if (ctx) {
llama_free(ctx);
ctx = nullptr;
}
if (model) {
llama_free_model(model);
model = nullptr;
}
// Free multimodal
mtmd_free(mctx);
// Free draft model and context if they exist
if (ctx_draft) {
llama_free(ctx_draft);
ctx_draft = nullptr;
}
if (model_draft) {
llama_free_model(model_draft);
model_draft = nullptr;
}
// Clear any sampling context
for (server_slot & slot : slots) {
if (slot.ctx_sampling != nullptr) {
llama_sampling_free(slot.ctx_sampling);
}
if (slot.ctx_dft) {
llama_free(slot.ctx_dft);
}
if (slot.spec) {
llama_speculative_free(slot.spec);
}
llama_batch_free(slot.batch_spec);
}
llama_batch_free(batch);
}
bool load_model(const gpt_params & params_) {
params = params_;
llama_init_result llama_init = llama_init_from_gpt_params(params);
model = llama_init.model;
ctx = llama_init.context;
lora_adapters = llama_init.lora_adapters;
if (model == nullptr) {
LOG_ERROR("unable to load model", {{"model", params.model}});
return false;
}
n_ctx = llama_n_ctx(ctx);
add_bos_token = llama_should_add_bos_token(model);
has_eos_token = llama_add_eos_token(model) != 1;
chat_templates = common_chat_templates_init(model, params.chat_template);
try {
common_chat_format_example(chat_templates.get(), params.use_jinja, {});
}
catch (const std::exception& e) {
LOG_WARNING("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
chat_templates = common_chat_templates_init(model, "chatml");
}
bool has_draft_model = !params.model_draft.empty() || !params.draft_params.empty();
std::string & mmproj_path = params.mmproj.path;
if (!mmproj_path.empty()) {
mtmd_context_params mparams = mtmd_context_params_default();
mparams.use_gpu = params.mmproj_use_gpu;
mparams.print_timings = false;
mparams.n_threads = params.n_threads;
mparams.verbosity = params.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO;
mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams);
if (mctx == nullptr) {
LOG_ERROR("failed to load multimodal model, '%s'\n", mmproj_path.c_str());
return false;
}
LOG_INFO("loaded multimodal model, '%s'\n", mmproj_path.c_str());
if (params.ctx_shift) {
params.ctx_shift = false;
LOG_WARNING("%s\n", "ctx_shift is not supported by multimodal, it will be disabled");
}
//if (params.n_cache_reuse) {
// params_base.n_cache_reuse = 0;
// SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
//}
if (has_draft_model) {
LOG_ERROR("%s\n", "err: speculative decode is not supported by multimodal");
return false;
}
}
// Load draft model for speculative decoding if specified
if (has_draft_model) {
LLAMA_LOG_INFO("\n\n==================================loading DRAFT model==================================\n\n");
gpt_params params_dft;
params_dft.devices = params.devices_draft;
params_dft.model = params.model_draft;
params_dft.n_gpu_layers = params.n_gpu_layers_draft;
params_dft.cache_type_k = params.cache_type_k_draft.empty() ? params.cache_type_k : params.cache_type_k_draft;
params_dft.cache_type_v = params.cache_type_v_draft.empty() ? params.cache_type_v : params.cache_type_v_draft;
params_dft.flash_attn = params.flash_attn;
if (!params.draft_params.empty()) {
auto [argc, argv] = parse_command_line("llama-server "+params.draft_params);
if (!gpt_params_parse(argc, argv, params_dft)) {
gpt_params_print_usage(argc, argv, params_dft);
free_command_line(argc, argv);
return false;
};
free_command_line(argc, argv);
}
LOG_INFO("", { {"model", params_dft.model} });
if (params_dft.n_ctx == 0) {
params_dft.n_ctx = params.n_ctx_draft;
}
params_dft.n_ctx = params_dft.n_ctx == 0 ? params.n_ctx / params.n_parallel : params_dft.n_ctx;
params_dft.n_parallel = 1;
llama_init_result llama_init_dft = llama_init_from_gpt_params(params_dft);
llama_model * model_dft = llama_init_dft.model;
if (model_dft == nullptr) {
LOG_ERROR("failed to load draft model", {{"model", params.model_draft}});
return false;
}
if (!llama_speculative_are_compatible(ctx, llama_init_dft.context)) {
LOG_INFO("the draft model is not compatible with the target model. tokens will be translated between the draft and target models.", {{}});
}
const int n_ctx_dft = llama_n_ctx(llama_init_dft.context);
cparams_dft = llama_context_params_from_gpt_params(params_dft);
cparams_dft.n_batch = n_ctx_dft;
model_draft = llama_init_dft.model;
ctx_draft = llama_init_dft.context;
}
return true;
}
void init() {
const int32_t n_ctx_slot = n_ctx / params.n_parallel;
LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}});
for (int i = 0; i < params.n_parallel; i++) {
server_slot slot;
slot.id = i;
slot.n_ctx = n_ctx_slot;
slot.n_predict = params.n_predict;
slot.mctx = mctx;
slot.cache_tokens.has_mtmd = mctx != nullptr;
LOG_INFO("new slot", {
{"id_slot", slot.id},
{"n_ctx_slot", slot.n_ctx}
});
const int ga_n = params.grp_attn_n;
const int ga_w = params.grp_attn_w;
if (ga_n != 1) {
GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
LOG_INFO("slot self-extend", {
{"id_slot", slot.id},
{"ga_n", ga_n},
{"ga_w", ga_w}
});
}
slot.ga_i = 0;
slot.ga_n = ga_n;
slot.ga_w = ga_w;
slot.sparams = params.sparams;
// Initialize speculative decoding if a draft model is loaded
if (ctx_draft) {
slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
// slot.ctx_dft = llama_new_context_with_model(model_draft, cparams_dft); // initialized twice
slot.ctx_dft = ctx_draft;
if (slot.ctx_dft == nullptr) {
LOG_ERROR("failed to create draft context", {});
return;
}
slot.spec = llama_speculative_init(ctx, slot.ctx_dft);
if (slot.spec == nullptr) {
LOG_ERROR("failed to create speculator", {});
return;
}
for (auto & pair : params.replacements_draft) {
llama_speculative_add_replacement_tgt_dft(slot.spec, pair.first.c_str(), pair.second.c_str());
}
}
slot.reset();
slots.push_back(std::move(slot));
}
default_generation_settings_for_props = get_formated_generation(slots.front());
default_generation_settings_for_props["seed"] = -1;
// the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
// note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
{
const int32_t n_batch = llama_n_batch(ctx);
// only a single seq_id per token is needed
batch = llama_batch_init(std::max(n_batch, params.n_parallel), 0, 1);
}
metrics.init();
// thinking is enabled if:
// 1. It's not explicitly disabled (reasoning_budget == 0)
// 2. The chat template supports it
const bool enable_thinking = params.use_jinja && params.reasoning_budget != 0 && common_chat_templates_support_enable_thinking(chat_templates.get());
//LLAMA_LOG_INFO("Enable thinking? %d\n", enable_thinking);
oai_parser_opt = {
/* use_jinja */ params.use_jinja,
/* prefill_assistant */ params.prefill_assistant,
/* reasoning_format */ params.reasoning_format,
/* chat_template_kwargs */ params.default_template_kwargs,
/* common_chat_templates */ chat_templates.get(),
/* allow_image */ mctx ? mtmd_support_vision(mctx) : false,
/* allow_audio */ mctx ? mtmd_support_audio(mctx) : false,
/* enable_thinking */ enable_thinking,
};
}
std::vector<llama_token> tokenize(const json & json_prompt, bool add_special) const {
// TODO: currently, we tokenize using special tokens by default
// this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
// but it's better compared to completely ignoring ChatML and other chat templates
const bool TMP_FORCE_SPECIAL = true;
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
// or the first element of the json_prompt array is a string.
std::vector<llama_token> prompt_tokens;
if (json_prompt.is_array()) {
bool first = true;
for (const auto & p : json_prompt) {
if (p.is_string()) {
auto s = p.template get<std::string>();
std::vector<llama_token> p;
if (first) {
p = ::llama_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
first = false;
} else {
p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
}
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
} else {
if (first) {
first = false;
}
prompt_tokens.push_back(p.template get<llama_token>());
}
}
} else {
auto s = json_prompt.template get<std::string>();
prompt_tokens = ::llama_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
}
return prompt_tokens;
}
server_slot * get_slot_by_id(int id) {
for (server_slot & slot : slots) {
if (slot.id == id) {
return &slot;
}
}
return nullptr;
}
server_slot * get_available_slot(const server_task & task) {
server_slot * ret = nullptr;
// find the slot that has at least n% prompt similarity
if (ret == nullptr && slot_prompt_similarity != 0.0f) {
int max_lcp_len = 0;
float similarity = 0;
for (server_slot & slot : slots) {
// skip the slot if it is not available
if (!slot.available()) {
continue;
}
const auto & cache_tokens = slot.cache_tokens;
// skip the slot if it does not contains prompt
if (cache_tokens.empty()) {
continue;
}
// length of the Longest Common Prefix between the current slot's prompt and the input prompt
int lcp_len = cache_tokens.get_common_prefix(task.tokens);
// fraction of the common substring length compared to the current slot's prompt length
const float similarity = float(lcp_len) / task.tokens.size();
// select the current slot if the criteria match
if (lcp_len > max_lcp_len && similarity > slot_prompt_similarity) {
max_lcp_len = lcp_len;
ret = &slot;
}
}
if (ret != nullptr) {
LOG_VERBOSE("selected slot by lcp similarity", {
{"id_slot", ret->id},
{"max_lcp_len", max_lcp_len},
{"similarity", similarity},
});
}
}
// find the slot that has been least recently used
if (ret == nullptr) {
int64_t t_last = ggml_time_us();
for (server_slot & slot : slots) {
// skip the slot if it is not available
if (!slot.available()) {
continue;
}
// select the current slot if the criteria match
if (slot.t_last_used < t_last) {
t_last = slot.t_last_used;
ret = &slot;
}
}
if (ret != nullptr) {
LOG_VERBOSE("selected slot by lru", {
{"id_slot", ret->id},
{"t_last", t_last},
});
}
}
return ret;
}
bool launch_slot_with_task(server_slot & slot, server_task & task) {
slot_params default_params;
// Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
llama_sampling_params default_sparams = params.sparams;
auto & data = task.data;
if (data.count("__oaicompat") != 0) {
slot.oaicompat = true;
slot.oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
} else {
slot.oaicompat = false;
slot.oaicompat_model = "";
}
slot.params.timings_per_token = json_value(data, "timings_per_token", false);
slot.params.stream = json_value(data, "stream", false);
auto stream_opt = json_value(data, "stream_options", json::object());
slot.params.include_usage = json_value(stream_opt, "include_usage", false);
slot.params.cache_prompt = json_value(data, "cache_prompt", true);
slot.params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", default_params.n_predict));
slot.sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
slot.sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
slot.sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot.sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot.sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
slot.sparams.temp = json_value(data, "temperature", default_sparams.temp);
slot.sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
slot.sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
slot.sparams.xtc_probability = json_value(data, "xtc_probability", default_sparams.xtc_probability);
slot.sparams.xtc_threshold = json_value(data, "xtc_threshold", default_sparams.xtc_threshold);
slot.sparams.top_n_sigma = json_value(data, "top_n_sigma", default_sparams.top_n_sigma);
slot.sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
slot.sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
slot.sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
slot.sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
slot.sparams.dry_multiplier = json_value(data, "dry_multiplier", default_sparams.dry_multiplier);
slot.sparams.dry_base = json_value(data, "dry_base", default_sparams.dry_base);
slot.sparams.dry_allowed_length = json_value(data, "dry_allowed_length", default_sparams.dry_allowed_length);
slot.sparams.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", default_sparams.dry_penalty_last_n);
slot.sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
slot.sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
slot.sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep);
slot.params.n_discard = json_value(data, "n_discard", default_params.n_discard);
slot.sparams.seed = json_value(data, "seed", default_sparams.seed);
slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
slot.params.post_sampling_probs = json_value(data, "post_sampling_probs", default_params.post_sampling_probs);
// speculative decoding parameters
slot.params.speculative.n_max = json_value(data, "speculative.n_max", params.n_draft);
slot.params.speculative.n_min = json_value(data, "speculative.n_min", params.n_draft_min);
slot.params.speculative.p_min = json_value(data, "speculative.p_min", params.p_draft_min);
// Clamp speculative parameters
slot.params.speculative.n_min = std::min(slot.params.speculative.n_max, slot.params.speculative.n_min);
slot.params.speculative.n_min = std::max(slot.params.speculative.n_min, 0);
slot.params.speculative.n_max = std::max(slot.params.speculative.n_max, 0);
if (slot.sparams.penalty_last_n < -1) {
throw std::runtime_error("Error: repeat_last_n must be >= -1");
}
if (slot.sparams.dry_penalty_last_n < -1) {
throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
}
if (slot.sparams.penalty_last_n == -1) {
// note: should be the slot's context and not the full context, but it's ok
slot.sparams.penalty_last_n = llama_n_ctx(ctx);
}
if (slot.sparams.dry_penalty_last_n == -1) {
slot.sparams.dry_penalty_last_n = llama_n_ctx(ctx);
}
if (slot.sparams.dry_base < 1.0f)
{
slot.sparams.dry_base = default_sparams.dry_base;
}
// sequence breakers for DRY
{
// Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
// Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
if (data.contains("dry_sequence_breakers")) {
slot.sparams.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
if (slot.sparams.dry_sequence_breakers.empty()) {
send_error(task, "Error: dry_sequence_breakers must be a non-empty array of strings", ERROR_TYPE_INVALID_REQUEST);
return false;
}
}
}
// process "json_schema" and "grammar"
if (data.contains("json_schema") && !data.contains("grammar")) {
try {
auto schema = json_value(data, "json_schema", json::object());
LLAMA_LOG_DEBUG("JSON schema: %s\n", schema.dump(2).c_str());
slot.sparams.grammar = json_schema_to_grammar(schema);
LLAMA_LOG_DEBUG("Converted grammar: %s\n", slot.sparams.grammar.c_str());
}
catch (const std::exception& e) {
throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
}
}
else {
slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
LLAMA_LOG_DEBUG("Grammar: %s\n", slot.sparams.grammar.c_str());
slot.sparams.grammar_lazy = json_value(data, "grammar_lazy", default_sparams.grammar_lazy);
LLAMA_LOG_DEBUG("Grammar lazy: %s\n", slot.sparams.grammar_lazy ? "true" : "false");
}
if (slot.params.cache_prompt && slot.ga_n != 1) {
LOG_WARNING("cache_prompt is not supported with group-attention", {});
slot.params.cache_prompt = false;
}
if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
// Might be better to reject the request with a 400 ?
LOG_WARNING("Max tokens to predict exceeds server configuration", {
{"params.n_predict", slot.params.n_predict},
{"slot.n_predict", slot.n_predict},
});
slot.params.n_predict = slot.n_predict;
}
// infill
slot.params.input_prefix = json_value(data, "input_prefix", default_params.input_prefix);
slot.params.input_suffix = json_value(data, "input_suffix", default_params.input_suffix);
// get prompt
if (!task.infill) {
// maybe not needed since prompt has been tokenized?
const auto & prompt = data.find("prompt");
if (!slot.prompt_tokens.validate(ctx)) {
send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
return false;
}
if (prompt == data.end()) {
send_error(task, "\"prompt\" must be provided", ERROR_TYPE_INVALID_REQUEST);
return false;
}
if ((prompt->is_string()) ||
(prompt->is_array() && prompt->size() == 1 && prompt->at(0).is_string()) ||
(prompt->is_array() && !prompt->empty() && prompt->at(0).is_number_integer())) {
slot.prompt = *prompt;
} else if (prompt->is_array() && prompt->size() == 1 && prompt->at(0).is_array()) {
slot.prompt = prompt->at(0);
} else {
send_error(task, "\"prompt\" must be a string or an array of integers", ERROR_TYPE_INVALID_REQUEST);
return false;
}
slot.prompt_tokens = std::move(task.tokens);
}
// penalize user-provided tokens
{
slot.sparams.penalty_prompt_tokens.clear();
slot.sparams.use_penalty_prompt_tokens = false;
const auto & penalty_prompt = data.find("penalty_prompt");
if (penalty_prompt != data.end()) {
if (penalty_prompt->is_string()) {
const auto penalty_prompt_string = penalty_prompt->get<std::string>();
slot.sparams.penalty_prompt_tokens = llama_tokenize(model, penalty_prompt_string, false);
if (slot.params.n_predict > 0) {
slot.sparams.penalty_prompt_tokens.reserve(slot.sparams.penalty_prompt_tokens.size() + slot.params.n_predict);
}
slot.sparams.use_penalty_prompt_tokens = true;
LOG_VERBOSE("penalty_prompt_tokens", {
{"id_slot", slot.id},
{"tokens", slot.sparams.penalty_prompt_tokens},
});
}
else if (penalty_prompt->is_array()) {
const auto n_tokens = penalty_prompt->size();
slot.sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot.params.n_predict));
const int n_vocab = llama_n_vocab(model);
for (const auto & penalty_token : *penalty_prompt) {
if (penalty_token.is_number_integer()) {
const auto tok = penalty_token.get<llama_token>();
if (tok >= 0 && tok < n_vocab) {
slot.sparams.penalty_prompt_tokens.push_back(tok);
}
}
}
slot.sparams.use_penalty_prompt_tokens = true;
LOG_VERBOSE("penalty_prompt_tokens", {
{"id_slot", slot.id},
{"tokens", slot.sparams.penalty_prompt_tokens},
});
}
}
}
{
auto it = data.find("chat_format");
if (it != data.end()) {
slot.params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
LLAMA_LOG_DEBUG("Chat format: %s\n", common_chat_format_name(slot.params.oaicompat_chat_syntax.format));
}
else {
slot.params.oaicompat_chat_syntax.format = default_params.oaicompat_chat_syntax.format;
}
common_reasoning_format reasoning_format = params.reasoning_format;
if (data.contains("reasoning_format")) {
reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get<std::string>());
}
slot.params.oaicompat_chat_syntax.reasoning_format = reasoning_format;
slot.params.oaicompat_chat_syntax.reasoning_in_content = slot.params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
slot.params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
slot.params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
}
{
const auto preserved_tokens = data.find("preserved_tokens");
if (preserved_tokens != data.end()) {
for (const auto& t : *preserved_tokens) {
auto ids = llama_tokenize(model, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
if (ids.size() == 1) {
LOG("Preserved token: %d\n", ids[0]);
slot.sparams.preserved_tokens.insert(ids[0]);
}
else {
// This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
LOG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
}
}
}
const auto grammar_triggers = data.find("grammar_triggers");
if (grammar_triggers != data.end()) {
for (const auto& t : *grammar_triggers) {
server_grammar_trigger ct(t);
if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
const auto& word = ct.value.value;
auto ids = llama_tokenize(model, word, /* add_special= */ false, /* parse_special= */ true);
if (ids.size() == 1) {
auto token = ids[0];
if (std::find(slot.sparams.preserved_tokens.begin(), slot.sparams.preserved_tokens.end(), (llama_token)token) == slot.sparams.preserved_tokens.end()) {
throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
}
LOG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
common_grammar_trigger trigger;
trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
trigger.value = word;
trigger.token = token;
slot.sparams.grammar_triggers.push_back(std::move(trigger));
}
else {
LOG("Grammar trigger word: `%s`\n", word.c_str());
slot.sparams.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word });
}
}
else {
//slot.sparams.grammar_triggers.push_back(ct);
if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
LLAMA_LOG_DEBUG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
}
else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
LLAMA_LOG_DEBUG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
}
else {
throw std::runtime_error("Unknown grammar trigger type");
}
slot.sparams.grammar_triggers.emplace_back(std::move(ct.value));
}
}
}
if (slot.sparams.grammar_lazy && slot.sparams.grammar_triggers.empty()) {
throw std::runtime_error("Error: no triggers set for lazy grammar!");
}
}
{
slot.sparams.logit_bias.clear();
if (json_value(data, "ignore_eos", false) && has_eos_token) {
slot.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
}
const auto & logit_bias = data.find("logit_bias");
if (logit_bias != data.end() && logit_bias->is_array()) {
const int n_vocab = llama_n_vocab(model);
for (const auto & el : *logit_bias) {
// TODO: we may want to throw errors here, in case "el" is incorrect
if (el.is_array() && el.size() == 2) {
float bias;
if (el[1].is_number()) {
bias = el[1].get<float>();
} else if (el[1].is_boolean() && !el[1].get<bool>()) {
bias = -INFINITY;
} else {
continue;
}
if (el[0].is_number_integer()) {
llama_token tok = el[0].get<llama_token>();
if (tok >= 0 && tok < n_vocab) {
slot.sparams.logit_bias[tok] = bias;
}
} else if (el[0].is_string()) {
auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
for (auto tok : toks) {
slot.sparams.logit_bias[tok] = bias;
}
}
}
}
}
}
{
slot.params.antiprompt.clear();
const auto & stop = data.find("stop");
if (stop != data.end() && stop->is_array()) {
for (const auto & word : *stop) {
if (!word.empty()) {
slot.params.antiprompt.push_back(word);
}
}
}
}
{
const auto samplers = data.find("samplers");
if (samplers != data.end()) {
if (samplers->is_array()) {
slot.sparams.samplers_sequence = llama_sampling_types_from_names(*samplers, false);
}
else if (samplers->is_string()) {
slot.sparams.samplers_sequence = llama_sampling_types_from_chars(samplers->get<std::string>());
}
else {
slot.sparams.samplers_sequence = default_sparams.samplers_sequence;
}
}
}
{
if (slot.ctx_sampling != nullptr) {
llama_sampling_free(slot.ctx_sampling);
}
slot.ctx_sampling = llama_sampling_init(llama_get_model_vocab(model),slot.sparams);
if (slot.ctx_sampling == nullptr) {
// for now, the only error that may happen here is invalid grammar
send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
return false;
}
}
slot.command = SLOT_COMMAND_LOAD_PROMPT;
// slot.prompt_tokens.clear();
LOG_INFO("slot is processing task", {
{"id_slot", slot.id},
{"id_task", slot.id_task},
});
return true;
}
void kv_cache_clear() {
LOG_VERBOSE("clearing KV cache", {});
// clear the entire KV cache
llama_kv_cache_clear(ctx);
clean_kv_cache = false;
}
void system_prompt_update() {
LOG_VERBOSE("system prompt update", {
{"system_prompt", system_prompt},
});
kv_cache_clear();
system_tokens.clear();
if (!system_prompt.empty()) {
system_tokens = ::llama_tokenize(ctx, system_prompt, true);
const int32_t n_batch = llama_n_batch(ctx);
const int32_t n_tokens_prompt = system_tokens.size();
for (int32_t i = 0; i < n_tokens_prompt; i += n_batch) {
const int32_t n_tokens = std::min(n_batch, n_tokens_prompt - i);
llama_batch_clear(batch);
for (int32_t j = 0; j < n_tokens; ++j) {
llama_batch_add(batch, system_tokens[i + j], i + j, { 0 }, false);
}
if (llama_decode(ctx, batch) != 0) {
LOG_ERROR("llama_decode() failed", {});
return;
}
}
// assign the system KV cache to all parallel sequences
for (int32_t i = 1; i <= params.n_parallel; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
}
}
system_need_update = false;
}
bool system_prompt_set(const std::string & sys_prompt) {
system_prompt = sys_prompt;
LOG_VERBOSE("system prompt process", {
{"system_prompt", system_prompt},
});
// release all slots
for (server_slot & slot : slots) {
slot.release();
}
system_need_update = true;
return true;
}
bool process_token(completion_token_output & result, server_slot & slot) {
// remember which tokens were sampled - used for repetition penalties during sampling
const std::string token_str = result.text_to_send;
slot.sampled = result.tok;
// search stop word and delete it
slot.generated_text += token_str;
slot.has_next_token = true;
if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1) {
// we can change penalty_prompt_tokens because it is always created from scratch each request
slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
}
// check if there is incomplete UTF-8 character at the end
bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
if (!incomplete) {
size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
const std::string str_test = slot.generated_text.substr(pos);
bool send_text = true;
size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
if (stop_pos != std::string::npos) {
slot.generated_text.erase(
slot.generated_text.begin() + pos + stop_pos,
slot.generated_text.end());
pos = std::min(slot.n_sent_text, slot.generated_text.size());
}
else if (slot.has_next_token && !llama_token_is_eog(model, result.tok)) {
stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
send_text = stop_pos == std::string::npos;
}
// check if there is any token to predict
if (send_text) {
// no send the stop word in the response
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
slot.n_sent_text += result.text_to_send.size();
// add the token to slot queue and cache
} else {
result.text_to_send = "";
}
slot.add_token_string(result);
if (slot.params.stream) {
send_partial_response(slot, result);
}
}
if (incomplete) {
slot.has_next_token = true;
}
// check the limits
if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params)) {
slot.stopped_limit = true;
slot.has_next_token = false;
LOG_VERBOSE("stopped by limit", {
{"id_slot", slot.id},
{"id_task", slot.id_task},
{"n_decoded", slot.n_decoded},
{"n_predict", slot.params.n_predict},
});
}
if (llama_token_is_eog(model, result.tok)) {
slot.stopped_eos = true;
slot.has_next_token = false;
LOG_VERBOSE("eos token found", {});
}
auto n_ctx_train = llama_n_ctx_train(model);
if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.ga_n == 1
&& slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
LOG_WARNING("n_predict is not set and self-context extend is disabled."
" Limiting generated tokens to n_ctx_train to avoid EOS-less generation infinite loop", {
{ "id_slot", slot.id },
{ "params.n_predict", slot.params.n_predict },
{ "slot.n_prompt_tokens", slot.n_prompt_tokens },
{ "slot.n_decoded", slot.n_decoded },
{ "slot.n_predict", slot.n_predict },
{ "n_slots", params.n_parallel },
{ "slot.n_ctx", slot.n_ctx },
{ "n_ctx", n_ctx },
{ "n_ctx_train", n_ctx_train },
{ "ga_n", slot.ga_n },
});
slot.truncated = true;
slot.stopped_limit = true;
slot.has_next_token = false; // stop prediction
}
LOG_VERBOSE("next token", {
{"id_slot", slot.id},
{"id_task", slot.id_task},
{"token", result.tok},
{"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
{"has_next_token", slot.has_next_token},
{"n_remain", slot.n_remaining},
{"n_decoded", slot.n_decoded},
{"stopped_eos", slot.stopped_eos},
{"stopped_word", slot.stopped_word},
{"stopped_limit", slot.stopped_limit},
{"stopping_word", slot.stopping_word},
});
return slot.has_next_token; // continue
}
void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
size_t n_probs = slot.sparams.n_probs;
size_t n_vocab = llama_n_vocab(llama_get_model(ctx));
if (post_sampling) {
const auto * cur_p = llama_sampling_get_candidates(slot.ctx_sampling);
const size_t max_probs = cur_p->size;
// set probability for sampled token
for (size_t i = 0; i < max_probs; i++) {
if (cur_p->data[i].id == result.tok) {
result.prob = cur_p->data[i].p;
break;
}
}
// set probability for top n_probs tokens
result.probs.reserve(max_probs);
for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
result.probs.push_back({
cur_p->data[i].id,
llama_detokenize(ctx, {cur_p->data[i].id}, special),
cur_p->data[i].p
});
}
} else {
auto&&[sampled_token_p, cur] = get_token_probabilities(ctx, idx, result.tok, n_probs);
// set probability for sampled token
result.prob = sampled_token_p;
// set probability for top n_probs tokens
result.probs.reserve(n_probs);
for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
result.probs.push_back({
cur[i].id,
llama_detokenize(ctx, {cur[i].id}, special),
cur[i].p
});
}
}
}
json get_formated_generation(const server_slot & slot) const {
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() && eos_bias->second < 0.0f && std::isinf(eos_bias->second);
std::vector<std::string> samplers_sequence;
samplers_sequence.reserve(slot.sparams.samplers_sequence.size());
for (const auto & sampler_type : slot.sparams.samplers_sequence) {
samplers_sequence.emplace_back(llama_sampling_type_to_str(sampler_type));
}
auto grammar_triggers = json::array();
for (const auto& trigger : slot.sparams.grammar_triggers) {
grammar_triggers.push_back(trigger.to_json<json>());
}
return json {
{"n_ctx", slot.n_ctx},
{"n_predict", slot.n_predict}, // Server configured n_predict
{"model", params.model_alias},
{"seed", slot.sparams.seed},
{"temperature", slot.sparams.temp},
{"dynatemp_range", slot.sparams.dynatemp_range},
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},
{"top_k", slot.sparams.top_k},
{"top_p", slot.sparams.top_p},
{"min_p", slot.sparams.min_p},
{"tfs_z", slot.sparams.tfs_z},
{"typical_p", slot.sparams.typical_p},
{"repeat_last_n", slot.sparams.penalty_last_n},
{"repeat_penalty", slot.sparams.penalty_repeat},
{"presence_penalty", slot.sparams.penalty_present},
{"frequency_penalty", slot.sparams.penalty_freq},
{"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
{"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
{"dry_multiplier", slot.sparams.dry_multiplier},
{"dry_base", slot.sparams.dry_base},
{"dry_allowed_length", slot.sparams.dry_allowed_length},
{"dry_penalty_last_n", slot.sparams.dry_penalty_last_n},
{"dry_sequence_breakers", slot.sparams.dry_sequence_breakers},
{"mirostat", slot.sparams.mirostat},
{"mirostat_tau", slot.sparams.mirostat_tau},
{"mirostat_eta", slot.sparams.mirostat_eta},
{"penalize_nl", slot.sparams.penalize_nl},
{"stop", slot.params.antiprompt},
{"max_tokens", slot.params.n_predict}, // User configured n_predict
{"n_keep", slot.params.n_keep},
{"n_discard", slot.params.n_discard},
{"ignore_eos", ignore_eos},
{"stream", slot.params.stream},
{"logit_bias", slot.sparams.logit_bias},
{"n_probs", slot.sparams.n_probs},
{"min_keep", slot.sparams.min_keep},
{"grammar", slot.sparams.grammar},
{"grammar_triggers", grammar_triggers},
{"preserved_tokens", slot.sparams.preserved_tokens},
{"chat_format", common_chat_format_name(slot.params.oaicompat_chat_syntax.format)},
{"reasoning_format", common_reasoning_format_name(slot.params.oaicompat_chat_syntax.reasoning_format)},
{"reasoning_in_content", slot.params.oaicompat_chat_syntax.reasoning_in_content},
{"thinking_forced_open", slot.params.oaicompat_chat_syntax.thinking_forced_open},
{"samplers", samplers_sequence}
};
}
void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
send_error(task.id, task.id_multi, error, type);
}
void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
send_error(slot.id_task, slot.id_multi, error, type);
}
void send_error(const int id_task, const int id_multi, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
LOG_ERROR("task error", {
{"id_multi", id_multi},
{"id_task", id_task},
{"error", error},
});
server_task_result res;
res.id = id_task;
res.id_multi = id_multi;
res.stop = false;
res.error = true;
res.data = format_error_response(error, type);
queue_results.send(res);
}
// if multimodal is enabled, send an error and return false
bool ensure_no_mtmd(const int id_task) {
if (mctx) {
int id_multi = 0;
send_error(id_task, id_multi, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED);
return false;
}
return true;
}
void send_partial_response(server_slot & slot, completion_token_output tkn) {
server_task_result res;
res.final_result = false;
res.id = slot.id_task;
res.id_multi = slot.id_multi;
res.error = false;
res.stop = false;
res.stream = slot.params.stream;
res.content = tkn.text_to_send;
res.post_sampling_probs = slot.params.post_sampling_probs;
res.oaicompat = slot.params.oaicompat;
res.oaicompat_model = slot.params.oaicompat_model;
res.oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
res.n_decoded = slot.n_decoded;
res.n_prompt_tokens = slot.n_prompt_tokens;
res.data = json {
{"content", tkn.text_to_send},
{"stop", false},
{"id_slot", slot.id},
{"multimodal", false}
};
slot.update_chat_msg(res.oaicompat_msg_diffs);
// populate res.probs_output
if (slot.sparams.n_probs > 0) {
res.probs_output = {tkn}; // copy the token probs
res.data["completion_probabilities"] = probs_vector_to_json(ctx, res.probs_output);
}
if (slot.oaicompat) {
res.data["oaicompat_token_ctr"] = slot.n_decoded;
res.data["model"] = slot.oaicompat_model;
}
// populate timings if this is final response or timings_per_token is enabled
if (slot.params.timings_per_token) {
res.timings = slot.get_timings();
}
queue_results.send(std::move(res));
}
void send_final_response(server_slot& slot) {
server_task_result res;
res.final_result = true;
res.id = slot.id_task;
res.id_multi = slot.id_multi;
res.error = false;
res.stop = true; // to do: set value
res.stream = slot.params.stream;
res.include_usage = slot.params.include_usage;
res.content = slot.generated_text;
res.timings = slot.get_timings();
res.post_sampling_probs = slot.params.post_sampling_probs;
res.oaicompat = slot.params.oaicompat;
res.oaicompat_model = slot.params.oaicompat_model;
res.oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
res.oaicompat_msg = slot.update_chat_msg(res.oaicompat_msg_diffs);
res.n_decoded = slot.n_decoded;
res.n_prompt_tokens = slot.n_prompt_tokens;
res.oaicompat_model = slot.oaicompat_model;
res.data = json {
{"content", !slot.params.stream ? slot.generated_text : ""},
{"generated_text", slot.generated_text}, // Always include full text for finish_reason logic
{"id_slot", slot.id},
{"stop", true},
{"model", params.model_alias},
{"tokens_predicted", slot.n_decoded},
{"tokens_evaluated", slot.n_prompt_tokens},
{"generation_settings", get_formated_generation(slot)},
{"prompt", slot.prompt},
{"truncated", slot.truncated},
{"stopped_eos", slot.stopped_eos},
{"stopped_word", slot.stopped_word},
{"stopped_limit", slot.stopped_limit},
{"stopping_word", slot.stopping_word},
{"tokens_cached", slot.n_past},
{"timings", slot.get_formated_timings()},
//{"oaicompat_chat_format", slot.params.oaicompat_chat_format},
};
// populate res.probs_output
if (slot.sparams.n_probs > 0) {
if (!slot.params.stream && slot.stopped_word) {
const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
res.probs_output = std::vector<completion_token_output>(
slot.generated_token_probs.begin(),
slot.generated_token_probs.end() - safe_offset);
} else {
res.probs_output = std::vector<completion_token_output>(
slot.generated_token_probs.begin(),
slot.generated_token_probs.end());
}
res.data["completion_probabilities"] = probs_vector_to_json(ctx, res.probs_output);
}
if (slot.oaicompat) {
res.data["oaicompat_token_ctr"] = slot.n_decoded;
res.data["model"] = slot.oaicompat_model;
}
queue_results.send(std::move(res));
}
void send_embedding(const server_slot & slot, const llama_batch & batch) {
server_task_result res;
res.id = slot.id_task;
res.id_multi = slot.id_multi;
res.error = false;
res.stop = true;
const int n_embd = llama_n_embd(model);
std::vector<float> embd_res(n_embd, 0.0f);
for (int i = 0; i < batch.n_tokens; ++i) {
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
continue;
}
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
if (embd == NULL) {
embd = llama_get_embeddings_ith(ctx, i);
}
if (embd == NULL) {
LOG_ERROR("failed to get embeddings", {
{"token", batch.token [i]},
{"seq_id", batch.seq_id[i][0]}
});
res.data = json {
{"embedding", std::vector<float>(n_embd, 0.0f)},
{"tokens_evaluated", slot.n_prompt_tokens},
};
continue;
}
llama_embd_normalize(embd, embd_res.data(), n_embd);
res.data = json {
{"embedding", embd_res},
{"tokens_evaluated", slot.n_prompt_tokens},
};
}
queue_results.send(res);
}
void request_completion(int id_task, int id_multi, json data, bool infill, bool embedding, server_tokens && inputs) {
server_task task;
task.id = id_task;
task.id_multi = id_multi;
task.id_target = 0;
task.data = std::move(data);
task.infill = infill;
task.embedding = embedding;
task.type = SERVER_TASK_TYPE_COMPLETION;
task.tokens = std::move(inputs);
// when a completion task's prompt array is not a singleton, we split it into multiple requests
// otherwise, it's a single-prompt task, we actually queue it
// if there's numbers in the prompt array it will be treated as an array of tokens
if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) {
bool numbers = false;
for (const auto & e : task.data.at("prompt")) {
if (e.is_number()) {
numbers = true;
break;
}
}
// NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
// it will completely stall the server. I don't know where the bug for this is.
//
// if there are numbers, it needs to be treated like a single prompt,
// queue_tasks handles a mix of strings and numbers just fine.
if (numbers) {
queue_tasks.post(std::move(task));
} else {
split_multiprompt_task(id_task, task);
}
} else {
queue_tasks.post(std::move(task));
}
}
void request_cancel(int id_task) {
server_task task;
task.type = SERVER_TASK_TYPE_CANCEL;
task.id_target = id_task;
queue_tasks.post(std::move(task));
}
void split_multiprompt_task(int id_multi, server_task & multiprompt_task) {
const int prompt_count = multiprompt_task.data.at("prompt").size();
if (prompt_count <= 1) {
send_error(multiprompt_task, "error while handling multiple prompts");
return;
}
// generate all the ID for subtask
std::vector<int> subtask_ids(prompt_count);
for (int i = 0; i < prompt_count; i++) {
subtask_ids[i] = queue_tasks.get_new_id();
}
// queue up the multitask so we can track its subtask progression
queue_tasks.add_multitask(id_multi, subtask_ids);
// add subtasks
for (int i = 0; i < prompt_count; i++) {
json subtask_data = multiprompt_task.data;
subtask_data["prompt"] = subtask_data.at("prompt")[i];
// subtasks inherit everything else (infill mode, embedding mode, etc.)
request_completion(subtask_ids[i], id_multi, subtask_data, multiprompt_task.infill, multiprompt_task.embedding,
std::move(multiprompt_task.tokens));
}
}
void process_single_task(server_task && task) {
switch (task.type) {
case SERVER_TASK_TYPE_COMPLETION:
{
const int id_slot = json_value(task.data, "id_slot", -1);
server_slot * slot;
if (id_slot != -1) {
slot = get_slot_by_id(id_slot);
} else {
slot = get_available_slot(task);
}
if (slot == nullptr) {
// if no slot is available, we defer this task for processing later
LOG_VERBOSE("no slot is available", {{"id_task", task.id}});
queue_tasks.defer(std::move(task));
break;
}
if (!slot->available()) {
// if requested slot is unavailable, we defer this task for processing later
LOG_VERBOSE("requested slot is unavailable", {{"id_task", task.id}});
queue_tasks.defer(std::move(task));
break;
}
if (task.data.contains("system_prompt")) {
std::string sys_prompt = json_value(task.data, "system_prompt", std::string());
system_prompt_set(sys_prompt);
for (server_slot & slot : slots) {
slot.n_past = 0;
slot.n_past_se = 0;
}
}
slot->reset();
slot->id_task = task.id;
slot->id_multi = task.id_multi;
slot->infill = task.infill;
slot->embedding = task.embedding;
if (!launch_slot_with_task(*slot, task)) {
LOG_ERROR("error while launching slot", task.data);
break;
}
} break;
case SERVER_TASK_TYPE_CANCEL:
{
// release slot linked with the task id
for (auto & slot : slots) {
if (slot.id_task == task.id_target) {
slot.release();
break;
}
}
} break;
case SERVER_TASK_TYPE_NEXT_RESPONSE:
{
// do nothing
} break;
case SERVER_TASK_TYPE_METRICS:
{
json slots_data = json::array();
int n_idle_slots = 0;
int n_processing_slots = 0;
for (server_slot & slot : slots) {
json slot_data = get_formated_generation(slot);
slot_data["id"] = slot.id;
slot_data["id_task"] = slot.id_task;
slot_data["state"] = slot.state;
slot_data["prompt"] = slot.prompt;
slot_data["next_token"] = {
{"has_next_token", slot.has_next_token},
{"n_remain", slot.n_remaining},
{"n_decoded", slot.n_decoded},
{"stopped_eos", slot.stopped_eos},
{"stopped_word", slot.stopped_word},
{"stopped_limit", slot.stopped_limit},
{"stopping_word", slot.stopping_word},
};
if (slot_data["state"] == SLOT_STATE_IDLE) {
n_idle_slots++;
} else {
n_processing_slots++;
}
slots_data.push_back(slot_data);
}
LOG_INFO("slot data", {
{"id_task", task.id},
{"n_idle_slots", n_idle_slots},
{"n_processing_slots", n_processing_slots}
});
LOG_VERBOSE("slot data", {
{"id_task", task.id},
{"n_idle_slots", n_idle_slots},
{"n_processing_slots", n_processing_slots},
{"slots", slots_data}
});
server_task_result res;
res.id = task.id;
res.id_multi = task.id_multi;
res.stop = true;
res.error = false;
res.data = {
{ "idle", n_idle_slots },
{ "processing", n_processing_slots },
{ "deferred", queue_tasks.queue_tasks_deferred.size() },
{ "t_start", metrics.t_start},
{ "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total},
{ "t_tokens_generation_total", metrics.t_tokens_generation_total},
{ "n_tokens_predicted_total", metrics.n_tokens_predicted_total},
{ "t_prompt_processing_total", metrics.t_prompt_processing_total},
{ "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed},
{ "t_prompt_processing", metrics.t_prompt_processing},
{ "n_tokens_predicted", metrics.n_tokens_predicted},
{ "t_tokens_generation", metrics.t_tokens_generation},
{ "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)},
{ "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)},
{ "slots", slots_data },
};
if (json_value(task.data, "reset_bucket", false)) {
metrics.reset_bucket();
}
queue_results.send(res);
} break;
case SERVER_TASK_TYPE_SLOT_SAVE:
{
if (!ensure_no_mtmd(task.id)) {
break;
}
int id_slot = task.data.at("id_slot");
server_slot * slot = get_slot_by_id(id_slot);
if (slot == nullptr) {
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
break;
}
if (!slot->available()) {
// if requested slot is unavailable, we defer this task for processing later
LOG_VERBOSE("requested slot is unavailable", {{"id_task", task.id}});
queue_tasks.defer(std::move(task));
break;
}
const size_t token_count = slot->cache_tokens.size();
const int64_t t_start = ggml_time_us();
std::string filename = task.data.at("filename");
std::string filepath = task.data.at("filepath");
const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
const int64_t t_end = ggml_time_us();
const double t_save_ms = (t_end - t_start) / 1000.0;
server_task_result result;
result.id = task.id;
result.stop = true;
result.error = false;
result.data = json {
{ "id_slot", id_slot },
{ "filename", filename },
{ "n_saved", token_count }, // tokens saved
{ "n_written", nwrite }, // bytes written
{ "timings", {
{ "save_ms", t_save_ms }
} }
};
queue_results.send(result);
} break;
case SERVER_TASK_TYPE_SLOT_RESTORE:
{
if (!ensure_no_mtmd(task.id)) break;
int id_slot = task.data.at("id_slot");
server_slot * slot = get_slot_by_id(id_slot);
if (slot == nullptr) {
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
break;
}
if (!slot->available()) {
// if requested slot is unavailable, we defer this task for processing later
LOG_VERBOSE("requested slot is unavailable", {{"id_task", task.id}});
queue_tasks.defer(std::move(task));
break;
}
const int64_t t_start = ggml_time_us();
std::string filename = task.data.at("filename");
std::string filepath = task.data.at("filepath");
slot->cache_tokens.resize(slot->n_ctx);
size_t token_count = 0;
size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
if (nread == 0) {
slot->cache_tokens.resize(0);
send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
break;
}
slot->cache_tokens.resize(token_count);
const int64_t t_end = ggml_time_us();
const double t_restore_ms = (t_end - t_start) / 1000.0;
server_task_result result;
result.id = task.id;
result.stop = true;
result.error = false;
result.data = json {
{ "id_slot", id_slot },
{ "filename", filename },
{ "n_restored", token_count }, // tokens restored
{ "n_read", nread }, // bytes read
{ "timings", {
{ "restore_ms", t_restore_ms }
} }
};
queue_results.send(result);
} break;
case SERVER_TASK_TYPE_SLOT_ERASE:
{
if (!ensure_no_mtmd(task.id)) break;
int id_slot = task.data.at("id_slot");
server_slot * slot = get_slot_by_id(id_slot);
if (slot == nullptr) {
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
break;
}
if (!slot->available()) {
// if requested slot is unavailable, we defer this task for processing later
LOG_VERBOSE("requested slot is unavailable", {{"id_task", task.id}});
queue_tasks.defer(std::move(task));
break;
}
// Erase token cache
const size_t n_erased = slot->cache_tokens.size();
llama_kv_cache_seq_rm(ctx, slot->id + 1, -1, -1);
slot->cache_tokens.clear();
server_task_result result;
result.id = task.id;
result.stop = true;
result.error = false;
result.data = json {
{ "id_slot", id_slot },
{ "n_erased", n_erased }
};
queue_results.send(result);
} break;
case SERVER_TASK_TYPE_SET_LORA:
{
llama_lora_adapters_apply(ctx, lora_adapters);
server_task_result result;
result.id = task.id;
result.stop = true;
result.error = false;
result.data = json{{ "success", true }};
queue_results.send(result);
} break;
}
}
void on_finish_multitask(const server_task_multi & multitask) {
// all subtasks done == multitask is done
server_task_result result;
result.id = multitask.id;
result.stop = true;
result.error = false;
// collect json results into one json result
std::vector<json> result_jsons;
for (const auto & subres : multitask.results) {
result_jsons.push_back(subres.data);
result.error = result.error && subres.error;
}
result.data = json {
{ "results", result_jsons }
};
queue_results.send(result);
}
void update_slots() {
if (system_need_update) {
system_prompt_update();
}
// release slots
for (auto & slot : slots) {
if (slot.command == SLOT_COMMAND_RELEASE) {
slot.state = SLOT_STATE_IDLE;
slot.command = SLOT_COMMAND_NONE;
slot.t_last_used = ggml_time_us();
LOG_INFO("slot released", {
{"id_slot", slot.id},
{"id_task", slot.id_task},
{"n_ctx", n_ctx},
{"n_past", slot.n_past},
{"n_system_tokens", system_tokens.size()},
{"n_cache_tokens", slot.cache_tokens.size()},
{"truncated", slot.truncated}
});
queue_tasks.notify_slot_changed();
}
}
// check if all slots are idle
{
bool all_idle = true;
for (auto & slot : slots) {
if (slot.state != SLOT_STATE_IDLE || slot.command != SLOT_COMMAND_NONE) {
all_idle = false;
break;
}
}
if (all_idle) {
LOG_INFO("all slots are idle", {});
if (system_prompt.empty() && clean_kv_cache) {
kv_cache_clear();
}
return;
}
}
{
LOG_VERBOSE("posting NEXT_RESPONSE", {});
server_task task;
task.type = SERVER_TASK_TYPE_NEXT_RESPONSE;
task.id_target = -1;
queue_tasks.post(std::move(task));
}
// apply context-shift if needed
// TODO: simplify and improve
for (server_slot & slot : slots) {
if (slot.ga_n == 1) {
if (slot.is_processing() && (int) system_tokens.size() + slot.n_past >= slot.n_ctx - 1) {
if (!params.ctx_shift) {
// this check is redundant (for good)
// we should never get here, because generation should already stopped in process_token()
send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
slot.release();
continue;
}
if (mctx) {
// we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded
// we don't support ctx_shift because an image chunk may contains multiple tokens
GGML_ABORT("not supported by multimodal");
}
// Shift context
const int n_keep = slot.params.n_keep + add_bos_token;
const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
LOG_INFO("slot context shift", {
{"id_slot", slot.id},
{"id_task", slot.id_task},
{"n_keep", n_keep},
{"n_left", n_left},
{"n_discard", n_discard},
{"n_ctx", n_ctx},
{"n_past", slot.n_past},
{"n_system_tokens", system_tokens.size()},
{"n_cache_tokens", slot.cache_tokens.size()}
});
llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
if (slot.params.cache_prompt) {
llama_tokens new_tokens = slot.cache_tokens.get_text_tokens(); // copy
for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
new_tokens[i - n_discard] = new_tokens[i];
}
new_tokens.resize(slot.cache_tokens.size() - n_discard);
slot.cache_tokens.clear();
slot.cache_tokens.insert(new_tokens);
}
slot.n_past -= n_discard;
slot.truncated = true;
}
}
}
// start populating the batch for this iteration
llama_batch_clear(batch);
auto accept_special_token = [&](server_slot& slot, llama_token token) {
return params.special || slot.sparams.preserved_tokens.find(token) != slot.sparams.preserved_tokens.end();
};
// frist, add sampled tokens from any ongoing sequences
for (auto & slot : slots) {
if (slot.state == SLOT_STATE_IDLE) {
continue;
}
slot.i_batch = batch.n_tokens;
const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
// TODO: we always have to take into account the "system_tokens"
// this is not great and needs to be improved somehow
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
slot.n_past += 1;
if (slot.params.cache_prompt) {
slot.cache_tokens.push_back(slot.sampled);
}
LOG_VERBOSE("slot decode token", {
{"id_slot", slot.id},
{"id_task", slot.id_task},
{"n_ctx", n_ctx},
{"n_past", slot.n_past},
{"n_system_tokens", system_tokens.size()},
{"n_cache_tokens", slot.cache_tokens.size()},
{"truncated", slot.truncated}
});
}
// process in chunks of params.n_batch
int32_t n_batch = llama_n_batch(ctx);
int32_t n_ubatch = llama_n_ubatch(ctx);
// track if this is an embedding or non-embedding batch
// if we've added sampled tokens above, we are in non-embedding mode
// -1: none, 0: non-embedding, 1: embedding
int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;
// next, batch any pending prompts without exceeding n_batch
if (params.cont_batching || batch.n_tokens == 0) {
for (auto & slot : slots) {
// this slot still has a prompt to be processed
if (slot.state == SLOT_STATE_IDLE && slot.command == SLOT_COMMAND_LOAD_PROMPT) {
auto & prompt_tokens = slot.prompt_tokens;
// we haven't tokenized the prompt yet - do it now:
if (prompt_tokens.empty() || slot.n_prompt_tokens==0 ) {
LOG_VERBOSE("tokenizing prompt", {
{"id_slot", slot.id},
{"id_task", slot.id_task}
});
slot.t_start_process_prompt = ggml_time_us();
slot.t_start_generation = 0;
if (slot.infill) {
const bool add_bos = llama_should_add_bos_token(model);
bool suff_rm_leading_spc = true;
if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) {
params.input_suffix.erase(0, 1);
suff_rm_leading_spc = false;
}
auto prefix_tokens = tokenize(slot.params.input_prefix, false);
auto suffix_tokens = tokenize(slot.params.input_suffix, false);
const int space_token = 29871; // TODO: this should not be hardcoded
if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
suffix_tokens.erase(suffix_tokens.begin());
}
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
suffix_tokens.insert(suffix_tokens.begin(), llama_token_suffix(model));
auto embd_inp = params.spm_infill ? suffix_tokens : prefix_tokens;
auto embd_end = params.spm_infill ? prefix_tokens : suffix_tokens;
if (add_bos) {
embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
}
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
const llama_token middle_token = llama_token_middle(model);
if (middle_token >= 0) {
embd_inp.push_back(middle_token);
}
prompt_tokens = server_tokens(embd_inp, false);
} else {
// prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt
}
slot.n_past = 0;
slot.n_prompt_tokens = prompt_tokens.size();
LOG_VERBOSE("prompt tokenized", {
{"id_slot", slot.id},
{"id_task", slot.id_task},
{"n_ctx", slot.n_ctx},
{"n_keep", slot.params.n_keep},
{"n_prompt_tokens", slot.n_prompt_tokens},
{"prompt_tokens", prompt_tokens.detokenize(ctx, true)},
});
// empty prompt passed -> release the slot and send empty response
if (prompt_tokens.empty()) {
LOG_INFO("empty prompt - releasing slot", {
{"id_slot", slot.id},
{"id_task", slot.id_task}
});
slot.state = SLOT_STATE_PROCESSING;
slot.command = SLOT_COMMAND_NONE;
slot.release();
slot.print_timings();
send_final_response(slot);
continue;
}
if (slot.embedding) {
// this prompt is too large to process - discard it
if (slot.n_prompt_tokens > n_ubatch) {
slot.state = SLOT_STATE_PROCESSING;
slot.command = SLOT_COMMAND_NONE;
slot.release();
send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
continue;
}
} else {
// if input prompt is too big, truncate it (if group attention self-extend is disabled)
if (slot.params.n_keep < 0) {
slot.params.n_keep = slot.n_prompt_tokens;
}
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx) {
if (!params.ctx_shift) {
send_error(slot, "the request exceeds the available context size, try increasing it", ERROR_TYPE_SERVER);
slot.release();
continue;
}
const int n_left = slot.n_ctx - slot.params.n_keep;
const int n_block_size = n_left / 2;
const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
int n_keep = slot.params.n_keep;
int n_discard = erased_blocks * n_block_size;
llama_tokens new_tokens = prompt_tokens.get_text_tokens(); // copy
for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
new_tokens[i - n_discard] = new_tokens[i];
}
new_tokens.resize(prompt_tokens.size() - n_discard);
prompt_tokens.clear();
prompt_tokens.insert(new_tokens);
slot.truncated = true;
slot.n_prompt_tokens = prompt_tokens.size();
LOG_VERBOSE("input truncated", {
{"id_slot", slot.id},
{"id_task", slot.id_task},
{"n_ctx", slot.n_ctx},
{"n_keep", slot.params.n_keep},
{"n_left", n_left},
{"n_prompt_tokens", slot.n_prompt_tokens},
{"prompt_tokens", prompt_tokens.detokenize(ctx, true)},
});
GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
}
llama_sampling_reset(llama_get_model_vocab(model), slot.ctx_sampling);
if (!slot.params.cache_prompt) {
slot.n_past_se = 0;
slot.ga_i = 0;
} else {
GGML_ASSERT(slot.ga_n == 1);
// reuse any previously computed tokens that are common with the new prompt
slot.n_past = slot.cache_tokens.get_common_prefix(prompt_tokens);
// push the prompt into the sampling context (do not apply grammar)
for (int i = 0; i < slot.n_past; ++i) {
llama_sampling_accept(slot.ctx_sampling, ctx, slot.cache_tokens[i], false);
}
}
}
if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
// we have to evaluate at least 1 token to generate logits.
LOG_INFO("we have to evaluate at least 1 token to generate logits", {
{ "id_slot", slot.id },
{ "id_task", slot.id_task }
});
slot.n_past--;
if (slot.ga_i > 0) {
slot.n_past_se--;
}
}
slot.n_prompt_tokens_processed = 0;
}
if (slot.embedding) {
// cannot fit the prompt in the current batch - will try next iter
if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
continue;
}
}
// check that we are in the right batch_type, if not defer the slot
bool slot_type = slot.embedding ? 1 : 0;
if (batch_type == -1) {
batch_type = slot_type;
} else if (batch_type != slot_type) {
continue;
}
// keep only the common part
int p0 = (int) system_tokens.size() + slot.n_past;
if (!llama_kv_cache_seq_rm(ctx, slot.id, p0, -1)) {
// could not partially delete (likely using a non-Transformer model)
llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
p0 = (int) system_tokens.size();
if (p0 != 0) {
// copy over the system prompt when there is one
llama_kv_cache_seq_cp(ctx, 0, slot.id, -1, -1);
}
// there is no common part left (except for the system prompt)
slot.n_past = 0;
slot.n_past_se = 0;
slot.ga_i = 0;
// TODO: is the system prompt ever in the sampling context?
llama_sampling_reset(llama_get_model_vocab(model), slot.ctx_sampling);
}
// remove the non-common part from the cache
slot.cache_tokens.keep_first(slot.n_past);
LOG_INFO("kv cache rm [p0, end)", {
{ "id_slot", slot.id },
{ "id_task", slot.id_task },
{ "p0", p0 }
});
// check if we should process the image
if (slot.n_past < slot.n_prompt_tokens
&& slot.prompt_tokens[slot.n_past] == LLAMA_TOKEN_NULL) {
// process the image
int32_t new_n_past;
size_t new_n_tokens;
int32_t res = slot.prompt_tokens.process_chunk(ctx, mctx, slot.n_past, slot.id, new_n_past, new_n_tokens);
int32_t n_pos = new_n_past - slot.n_past;
if (res != 0) {
LLAMA_LOG_ERROR("failed to process image, res = %d\n", res);
slot.release();
send_error(slot, "failed to process image", ERROR_TYPE_SERVER);
continue;
}
// add the image chunk to cache
{
const auto& chunk = slot.prompt_tokens.find_chunk(slot.n_past);
slot.cache_tokens.push_back(chunk.get()); // copy
}
slot.n_past += n_pos;
slot.n_prompt_tokens_processed += new_n_tokens;
}
int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
int32_t ga_i = slot.ga_i;
int32_t ga_n = slot.ga_n;
int32_t ga_w = slot.ga_w;
// add prompt tokens for processing in the current batch
// TODO: the self-extend stuff here is a mess - simplify and/or abstract it somehow
while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
// get next token to process
llama_token cur_tok = slot.prompt_tokens[slot.n_past];
if (cur_tok == LLAMA_TOKEN_NULL) {
break; // end of text chunk
}
if (slot.ga_n != 1) {
while (slot_npast >= ga_i + ga_w) {
const int bd = (ga_w/ga_n)*(ga_n - 1);
slot_npast -= bd;
ga_i += ga_w/ga_n;
}
}
llama_batch_add(batch, cur_tok, system_tokens.size() + slot_npast, { slot.id }, false);
{
slot.cache_tokens.push_back(cur_tok);
}
slot.n_prompt_tokens_processed++;
slot_npast++;
slot.n_past++;
}
LOG_VERBOSE("prompt processing progress", {
{"id_slot", slot.id},
{"n_past", slot.n_past},
{"n_ctx", n_ctx},
{"n_tokens", batch.n_tokens},
{"progress", (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens},
});
// entire prompt has been processed - start decoding new tokens
if (slot.n_past == slot.n_prompt_tokens) {
slot.state = SLOT_STATE_PROCESSING;
slot.command = SLOT_COMMAND_NONE;
GGML_ASSERT(batch.n_tokens > 0);
GGML_ASSERT((size_t)slot.n_prompt_tokens == slot.prompt_tokens.size());
llama_sampling_reset(llama_get_model_vocab(model), slot.ctx_sampling);
for (int i = 0; i < slot.n_prompt_tokens; ++i) {
llama_token id = slot.prompt_tokens[i];
if (id != LLAMA_TOKEN_NULL) {
llama_sampling_accept(slot.ctx_sampling, ctx, id, false);
}
}
// extract the logits only for the last token
batch.logits[batch.n_tokens - 1] = true;
slot.n_decoded = 0;
slot.i_batch = batch.n_tokens - 1;
LOG_VERBOSE("prompt done", {
{"id_slot", slot.id},
{"n_past", slot.n_past},
{"n_ctx", n_ctx},
{"n_tokens", batch.n_tokens},
});
}
}
if (batch.n_tokens >= n_batch) {
break;
}
}
}
if (batch.n_tokens == 0) {
LOG_VERBOSE("no tokens to decode", {});
return;
}
LOG_VERBOSE("decoding batch", {
{"n_tokens", batch.n_tokens},
});
// make sure we're in the right embedding mode
llama_set_embeddings(ctx, batch_type == 1);
// process the created batch of tokens
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
for (auto & slot : slots) {
if (slot.ga_n != 1) {
// context extension via Self-Extend
// TODO: simplify and/or abstract this
while (slot.n_past_se >= slot.ga_i + slot.ga_w) {
const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w;
const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
LOG_TEE("\n");
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd);
llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n);
llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd);
slot.n_past_se -= bd;
slot.ga_i += slot.ga_w / slot.ga_n;
LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
}
slot.n_past_se += n_tokens;
}
}
llama_batch batch_view = {
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};
const int ret = llama_decode(ctx, batch_view);
if (ret != 0) {
if (n_batch == 1 || ret < 0) {
// if you get here, it means the KV cache is full - try increasing it via the context size
LOG_ERROR("failed to decode the batch: KV cache is full - try increasing it via the context size", {
{"i", i},
{"n_batch", ret},
{"ret", ret},
});
for (auto & slot : slots) {
slot.state = SLOT_STATE_PROCESSING;
slot.command = SLOT_COMMAND_NONE;
slot.release();
send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
}
break; // break loop of n_batch
}
// retry with half the batch size to try to find a free slot in the KV cache
n_batch /= 2;
i -= n_batch;
LOG_WARNING("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation", {
{"i", i},
{"n_batch", n_batch},
{"ret", ret},
});
continue; // continue loop of n_batch
}
for (auto & slot : slots) {
if (slot.state != SLOT_STATE_PROCESSING || slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
continue; // continue loop of slots
}
// prompt evaluated for embedding
if (slot.embedding) {
send_embedding(slot, batch_view);
slot.release();
slot.i_batch = -1;
continue; // continue loop of slots
}
completion_token_output result;
const int tok_idx = slot.i_batch - i;
const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, tok_idx);
llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
slot.n_decoded += 1;
const int64_t t_current = ggml_time_us();
if (slot.n_decoded == 1) {
slot.t_start_generation = ggml_time_us();
slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
metrics.on_prompt_eval(slot);
}
slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
result.tok = id;
result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
result.text_to_send = llama_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
if (slot.sparams.n_probs > 0) {
populate_token_probs(slot, result, slot.params.post_sampling_probs, params.special, tok_idx);
}
if (!process_token(result, slot)) {
slot.release();
slot.print_timings();
send_final_response(slot);
metrics.on_prediction(slot);
}
slot.i_batch = -1;
}
// Do speculative decoding
for (auto & slot : slots) {
if (!slot.is_processing() || !slot.spec) {
continue;
}
if (slot.state != SLOT_STATE_PROCESSING) {
continue;
}
if (mctx) {
// we should never reach this, as speculative is automatically disabled if mmproj is loaded
GGML_ABORT("not supported by multimodal");
}
// determine the max draft that fits the current slot state
int n_draft_max = slot.params.speculative.n_max;
// note: n_past is not yet increased for the `id` token sampled above
// also, need to leave space for 1 extra token to allow context shifts
n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
if (slot.n_predict > 0) {
n_draft_max = std::min(n_draft_max, slot.n_predict - slot.n_decoded - 1);
}
LOG_VERBOSE("max possible draft", {
{"id_slot", slot.id},
{"n_draft_max", n_draft_max}
});
if (n_draft_max < slot.params.speculative.n_min) {
LOG_VERBOSE("the max possible draft is too small", {
{"id_slot", slot.id},
{"n_draft_max", n_draft_max},
{"n_min", slot.params.speculative.n_min}
});
continue;
}
llama_token id = slot.sampled;
struct llama_speculative_params params_spec;
params_spec.n_draft = n_draft_max;
params_spec.n_reuse = cparams_dft.n_ctx - slot.params.speculative.n_max;
params_spec.p_min = slot.params.speculative.p_min;
const std::vector<llama_token> & cached_text_tokens = slot.cache_tokens.tokens_data();
std::vector<llama_token> draft = llama_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id);
// ignore small drafts
if (slot.params.speculative.n_min > (int) draft.size()) {
LOG_VERBOSE("ignoring small draft", {
{"id_slot", slot.id},
{"draft_size", (int) draft.size()},
{"n_min", slot.params.speculative.n_min}
});
continue;
}
// keep track of total number of drafted tokens tested
slot.n_draft_total += draft.size();
// construct the speculation batch
llama_batch_clear(slot.batch_spec);
llama_batch_add(slot.batch_spec, id, slot.n_past, { slot.id }, true);
for (size_t i = 0; i < draft.size(); ++i) {
llama_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
}
LOG_VERBOSE("decoding speculative batch", {
{"id_slot", slot.id},
{"size", slot.batch_spec.n_tokens}
});
llama_decode(ctx, slot.batch_spec);
// the accepted tokens from the speculation
std::vector<llama_token> ids = llama_sampling_sample_and_accept_n(slot.ctx_sampling, ctx, draft);
slot.n_past += ids.size();
slot.n_decoded += ids.size();
// update how many tokens out of those tested were accepted
slot.n_draft_accepted += ids.size() - 1;
slot.cache_tokens.push_back(id);
slot.cache_tokens.insert({ ids.begin(), ids.end() - 1 });
llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
for (size_t i = 0; i < ids.size(); ++i) {
completion_token_output result;
result.tok = ids[i];
result.text_to_send = llama_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
result.prob = 1.0f; // set later
if (slot.sparams.n_probs > 0) {
populate_token_probs(slot, result, slot.params.post_sampling_probs, params.special, i);
}
if (!process_token(result, slot)) {
// release slot because of stop condition
slot.release();
slot.print_timings();
send_final_response(slot);
metrics.on_prediction(slot);
break;
}
}
LOG_VERBOSE("speculative decoding result", {
{"id_slot", slot.id},
{"accepted", (int) ids.size() - 1},
{"total", (int) draft.size()},
{"new_n_past", slot.n_past}
});
}
}
LOG_VERBOSE("run slots completed", {});
}
json model_meta() const {
return json {
{"vocab_type", llama_vocab_type (model)},
{"n_vocab", llama_n_vocab (model)},
{"n_ctx_train", llama_n_ctx_train (model)},
{"n_embd", llama_n_embd (model)},
{"n_params", llama_model_n_params(model)},
{"size", llama_model_size (model)},
};
}
};
static json format_final_response_oaicompat(const json& request, json result, const std::string& completion_id, bool streaming = false) {
bool stopped_word = result.count("stopped_word") != 0;
bool stopped_eos = json_value(result, "stopped_eos", false);
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason = "length";
if (stopped_word || stopped_eos) {
finish_reason = "stop";
}
json choices =
streaming ? json::array({ json{{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()}} })
: json::array({ json{{"finish_reason", finish_reason},
{"index", 0},
{"message", json{{"content", content},
{"role", "assistant"}}}} });
std::time_t t = std::time(0);
json res = json{
{"choices", choices},
{"created", t},
{"model",
json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", streaming ? "chat.completion.chunk" : "chat.completion"},
{"usage", json {
{"completion_tokens", num_tokens_predicted},
{"prompt_tokens", num_prompt_tokens},
{"total_tokens", num_tokens_predicted + num_prompt_tokens}
}},
{"id", completion_id}
};
if (server_verbose) {
res["__verbose"] = result;
}
if (result.contains("completion_probabilities")) {
res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
}
return res;
}
// return value is vector as there is one case where we might need to generate two responses
static std::vector<json> format_partial_response_oaicompat(server_task_result task_result, const std::string& completion_id) {
json result = task_result.data;
std::cout << result.dump(4) << std::endl;
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
return std::vector<json>({ result });
}
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
bool stopped_word = json_value(result, "stopped_word", false);
bool stopped_eos = json_value(result, "stopped_eos", false);
bool stopped_limit = json_value(result, "stopped_limit", false);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason;
if (stopped_word || stopped_eos) {
finish_reason = "stop";
}
if (stopped_limit) {
finish_reason = "length";
}
std::time_t t = std::time(0);
json choices;
if (!finish_reason.empty()) {
choices = json::array({ json{{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()}} });
}
else {
if (first) {
if (content.empty()) {
choices = json::array({ json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{{"role", "assistant"}}}} });
}
else {
// We have to send this as two updates to conform to openai behavior
json initial_ret = json{ {"choices", json::array({json{
{"finish_reason", nullptr},
{"index", 0},
{"delta", json{
{"role", "assistant"}
}}}})},
{"created", t},
{"id", completion_id},
{"model", modelname},
{"object", "chat.completion.chunk"} };
json second_ret = json{
{"choices", json::array({json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{
{"content", content}}}
}})},
{"created", t},
{"id", completion_id},
{"model", modelname},
{"object", "chat.completion.chunk"} };
return std::vector<json>({ initial_ret, second_ret });
}
}
else {
// Some idiosyncrasy in task processing logic makes several trailing calls
// with empty content, we ignore these at the calee site.
if (content.empty()) {
return std::vector<json>({ json::object() });
}
choices = json::array({ json{
{"finish_reason", nullptr},
{"index", 0},
{"delta",
json{
{"content", content},
}},
} });
}
}
json ret = json{
{"choices", choices},
{"created", t},
{"id", completion_id},
{"model", modelname},
{"object", "chat.completion.chunk"}
};
if (task_result.timings.prompt_n != -1) {
ret.push_back({ "timings", task_result.timings.to_json() });
}
//
if (!finish_reason.empty()) {
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
ret.push_back({ "usage", json {
{"completion_tokens", num_tokens_predicted},
{"prompt_tokens", num_prompt_tokens},
{"total_tokens", num_tokens_predicted + num_prompt_tokens}
} });
}
return std::vector<json>({ ret });
}
//static json format_embeddings_response_oaicompat(const json& request, const json& embeddings) {
// json data = json::array();
// int32_t n_tokens = 0;
// int i = 0;
// for (auto& elem : embeddings) {
// data.push_back(json{
// {"embedding", json_value(elem, "embedding", json::array())},
// {"index", i++},
// {"object", "embedding"}
// });
// }
//
// json res = json{
// {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
// {"object", "list"},
// {"usage", json {
// {"prompt_tokens", n_tokens},
// {"total_tokens", n_tokens}
// }},
// {"data", data}
// };
//
// return res;
//}
static json format_embeddings_response_oaicompat(const json& request, const json& embeddings, bool use_base64 = false) {
json data = json::array();
int32_t n_tokens = 0;
int i = 0;
for (const auto& elem : embeddings) {
json embedding_obj;
if (use_base64) {
const auto& vec = json_value(elem, "embedding", json::array()).get<std::vector<float>>();
const char* data_ptr = reinterpret_cast<const char*>(vec.data());
size_t data_size = vec.size() * sizeof(float);
embedding_obj = {
{"embedding", base64::encode(data_ptr, data_size)},
{"index", i++},
{"object", "embedding"},
{"encoding_format", "base64"}
};
}
else {
embedding_obj = {
{"embedding", json_value(elem, "embedding", json::array())},
{"index", i++},
{"object", "embedding"}
};
}
data.push_back(embedding_obj);
n_tokens += json_value(elem, "tokens_evaluated", 0);
}
json res = json{
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", "list"},
{"usage", json {
{"prompt_tokens", n_tokens},
{"total_tokens", n_tokens}
}},
{"data", data}
};
return res;
}
static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
// skip GH copilot requests when using default port
if (req.path == "/v1/health" || req.path == "/v1/completions") {
return;
}
LOG_INFO("request", {
{"remote_addr", req.remote_addr},
{"remote_port", req.remote_port},
{"status", res.status},
{"method", req.method},
{"path", req.path},
{"params", req.params},
});
LOG_VERBOSE("request", {
{"request", req.body},
{"response", res.body},
});
}
std::function<void(int)> shutdown_handler;
std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
inline void signal_handler(int signal) {
if (is_terminating.test_and_set()) {
// in case it hangs, we can force terminate the server by hitting Ctrl+C twice
// this is for better developer experience, we can remove when the server is stable enough
fprintf(stderr, "Received second interrupt, terminating immediately.\n");
exit(1);
}
shutdown_handler(signal);
}
int main(int argc, char ** argv) {
#if SERVER_VERBOSE != 1
log_disable();
#endif
// own arguments required by this example
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}
// parse arguments from environment variables
gpt_params_parse_from_env(params);
// TODO: not great to use extern vars
server_log_json = params.log_json;
server_verbose = params.verbosity > 0;
// struct that contains llama context and inference
server_context ctx_server;
if (!params.system_prompt.empty()) {
ctx_server.system_prompt_set(params.system_prompt);
}
if (params.model_alias == "unknown") {
params.model_alias = params.model;
}
llama_backend_init();
llama_numa_init(params.numa);
LOG_INFO("build info", {
{"build", LLAMA_BUILD_NUMBER},
{"commit", LLAMA_COMMIT}
});
LOG_INFO("system info", {
{"n_threads", params.n_threads},
{"n_threads_batch", params.n_threads_batch},
{"total_threads", std::thread::hardware_concurrency()},
{"system_info", llama_print_system_info()},
});
std::unique_ptr<httplib::Server> svr;
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
LOG_INFO("Running with SSL", {{"key", params.ssl_file_key}, {"cert", params.ssl_file_cert}});
svr.reset(
new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
);
} else {
LOG_INFO("Running without SSL", {});
svr.reset(new httplib::Server());
}
#else
svr.reset(new httplib::Server());
#endif
std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
svr->set_default_headers({{"Server", "ik_llama.cpp"}});
svr->set_logger(log_server_request);
auto res_error = [](httplib::Response & res, json error_data) {
json final_response {{"error", error_data}};
res.set_content(final_response.dump(), "application/json; charset=utf-8");
res.status = json_value(error_data, "code", 500);
};
auto res_ok = [](httplib::Response& res, const json& data) {
res.set_content(data.dump(), "application/json; charset=utf-8");
res.status = 200;
};
svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, std::exception_ptr ep) {
std::string message;
try {
std::rethrow_exception(std::move(ep));
} catch (std::exception & e) {
message = e.what();
} catch (...) {
message = "Unknown Exception";
}
json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
LOG_VERBOSE("Got exception", formatted_error);
res_error(res, formatted_error);
});
svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
if (res.status == 404) {
res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
}
// for other error codes, we skip processing here because it's already done by res_error()
});
// set timeouts and change hostname and port
svr->set_read_timeout (params.timeout_read);
svr->set_write_timeout(params.timeout_write);
if (!svr->bind_to_port(params.hostname, params.port)) {
fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", params.hostname.c_str(), params.port);
return 1;
}
std::unordered_map<std::string, std::string> log_data;
log_data["hostname"] = params.hostname;
log_data["port"] = std::to_string(params.port);
if (params.api_keys.size() == 1) {
auto key = params.api_keys[0];
log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
} else if (params.api_keys.size() > 1) {
log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
}
// Necessary similarity of prompt for slot selection
ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
#ifdef SQLITE3_MODERN_CPP_SUPPORT
auto db_handle = std::make_shared<DatabaseHandle>(params.sql_save_file);
bool sqlite_extension_loaded = false;
if (!params.sqlite_zstd_ext_file.empty()) {
auto* conn = db_handle->db.connection().get();
sqlite3_enable_load_extension(conn, 1);
char* errmsg = nullptr;
const int rc = sqlite3_load_extension(
conn,
params.sqlite_zstd_ext_file.c_str(),
nullptr,
&errmsg
);
if(rc != SQLITE_OK) {
const std::string err = errmsg ? errmsg : "Unknown extension error";
sqlite3_free(errmsg);
LOG_WARNING("Failed to load extension", {{"err", err}});
}
else {
sqlite_extension_loaded = true;
}
sqlite3_enable_load_extension(conn, 0);
}
#else
auto db_handle = false;
#endif
// load the model
if (!ctx_server.load_model(params)) {
state.store(SERVER_STATE_ERROR);
return 1;
} else {
ctx_server.init();
state.store(SERVER_STATE_READY);
}
LOG_INFO("model loaded", {});
const auto model_meta = ctx_server.model_meta();
// print sample chat example to make it clear which template is used
LOG_INFO("chat template", {
{"chat_template", common_chat_templates_source(ctx_server.chat_templates.get())},
});
LOG_INFO("chat template", {
{"chat_example", common_chat_format_example(ctx_server.chat_templates.get(), ctx_server.params.use_jinja, {}).c_str()
},
{"built_in", params.chat_template.empty()},
});
//
// Middlewares
//
auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
// TODO: should we apply API key to all endpoints, including "/health" and "/models"?
static const std::set<std::string> protected_endpoints = {
"/props",
"/completion",
"/completions",
"/v1/completions",
"/chat/completions",
"/v1/chat/completions",
"/infill",
"/tokenize",
"/detokenize",
"/embedding",
"/embeddings",
"/v1/embeddings",
};
// If API key is not set, skip validation
if (params.api_keys.empty()) {
return true;
}
// If path is not in protected_endpoints list, skip validation
if (protected_endpoints.find(req.path) == protected_endpoints.end()) {
return true;
}
// Check for API key in the header
auto auth_header = req.get_header_value("Authorization");
std::string prefix = "Bearer ";
if (auth_header.substr(0, prefix.size()) == prefix) {
std::string received_api_key = auth_header.substr(prefix.size());
if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
return true; // API key is valid
}
}
// API key is invalid or not provided
res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
LOG_WARNING("Unauthorized: Invalid API Key", {});
return false;
};
auto middleware_server_state = [&res_error, &state](const httplib::Request& req, httplib::Response& res) {
server_state current_state = state.load();
if (current_state == SERVER_STATE_LOADING_MODEL) {
auto tmp = string_split<std::string>(req.path, '.');
if (req.path == "/" || tmp.back() == "html") {
res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
res.status = 503;
}
else if (req.path == "/models" || req.path == "/v1/models" || req.path == "/api/tags") {
// allow the models endpoint to be accessed during loading
return true;
}
else {
res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
}
return false;
}
return true;
};
// register server middlewares
svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request& req, httplib::Response& res) {
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
// If this is OPTIONS request, skip validation because browsers don't include Authorization header
if (req.method == "OPTIONS") {
res.set_header("Access-Control-Allow-Credentials", "true");
res.set_header("Access-Control-Allow-Methods", "GET, POST");
res.set_header("Access-Control-Allow-Headers", "*");
res.set_content("", "text/html"); // blank response, no data
return httplib::Server::HandlerResponse::Handled; // skip further processing
}
if (!middleware_server_state(req, res)) {
return httplib::Server::HandlerResponse::Handled;
}
if (!middleware_validate_api_key(req, res)) {
return httplib::Server::HandlerResponse::Handled;
}
return httplib::Server::HandlerResponse::Unhandled;
});
//
// Route handlers (or controllers)
//
const auto handle_health = [&](const httplib::Request & req, httplib::Response & res) {
server_state current_state = state.load();
switch (current_state) {
case SERVER_STATE_READY:
{
// request slots data using task queue
server_task task;
task.id = ctx_server.queue_tasks.get_new_id();
task.type = SERVER_TASK_TYPE_METRICS;
task.id_target = -1;
ctx_server.queue_results.add_waiting_task_id(task.id);
ctx_server.queue_tasks.post(std::move(task));
// get the result
server_task_result result = ctx_server.queue_results.recv(task.id);
ctx_server.queue_results.remove_waiting_task_id(task.id);
const int n_idle_slots = result.data.at("idle");
const int n_processing_slots = result.data.at("processing");
json health = {
{"status", "ok"},
{"slots_idle", n_idle_slots},
{"slots_processing", n_processing_slots}
};
res.status = 200; // HTTP OK
if (params.endpoint_slots && req.has_param("include_slots")) {
health["slots"] = result.data.at("slots");
}
if (n_idle_slots == 0) {
health["status"] = "no slot available";
if (req.has_param("fail_on_no_slot")) {
res.status = 503; // HTTP Service Unavailable
}
}
res.set_content(health.dump(), "application/json");
break;
}
case SERVER_STATE_LOADING_MODEL:
{
res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
} break;
case SERVER_STATE_ERROR:
{
res_error(res, format_error_response("Model failed to load", ERROR_TYPE_SERVER));
} break;
}
};
const auto handle_slots = [&](const httplib::Request &, httplib::Response & res) {
if (!params.endpoint_slots) {
res_error(res, format_error_response("This server does not support slots endpoint.", ERROR_TYPE_NOT_SUPPORTED));
return;
}
// request slots data using task queue
server_task task;
task.id = ctx_server.queue_tasks.get_new_id();
task.id_multi = -1;
task.id_target = -1;
task.type = SERVER_TASK_TYPE_METRICS;
ctx_server.queue_results.add_waiting_task_id(task.id);
ctx_server.queue_tasks.post(std::move(task));
// get the result
server_task_result result = ctx_server.queue_results.recv(task.id);
ctx_server.queue_results.remove_waiting_task_id(task.id);
res.set_content(result.data.at("slots").dump(), "application/json");
res.status = 200; // HTTP OK
};
const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
if (!params.endpoint_metrics) {
res_error(res, format_error_response("This server does not support metrics endpoint.", ERROR_TYPE_NOT_SUPPORTED));
return;
}
// request slots data using task queue
server_task task;
task.id = ctx_server.queue_tasks.get_new_id();
task.id_multi = -1;
task.id_target = -1;
task.type = SERVER_TASK_TYPE_METRICS;
task.data.push_back({{"reset_bucket", true}});
ctx_server.queue_results.add_waiting_task_id(task.id);
ctx_server.queue_tasks.post(std::move(task));
// get the result
server_task_result result = ctx_server.queue_results.recv(task.id);
ctx_server.queue_results.remove_waiting_task_id(task.id);
json data = result.data;
const uint64_t n_prompt_tokens_processed = data.at("n_prompt_tokens_processed");
const uint64_t t_prompt_processing = data.at("t_prompt_processing");
const uint64_t n_tokens_predicted = data.at("n_tokens_predicted");
const uint64_t t_tokens_generation = data.at("t_tokens_generation");
const int32_t kv_cache_used_cells = data.at("kv_cache_used_cells");
// metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
json all_metrics_def = json {
{"counter", {{
{"name", "prompt_tokens_total"},
{"help", "Number of prompt tokens processed."},
{"value", (uint64_t) data.at("n_prompt_tokens_processed_total")}
}, {
{"name", "prompt_seconds_total"},
{"help", "Prompt process time"},
{"value", (uint64_t) data.at("t_prompt_processing_total") / 1.e3}
}, {
{"name", "tokens_predicted_total"},
{"help", "Number of generation tokens processed."},
{"value", (uint64_t) data.at("n_tokens_predicted_total")}
}, {
{"name", "tokens_predicted_seconds_total"},
{"help", "Predict process time"},
{"value", (uint64_t) data.at("t_tokens_generation_total") / 1.e3}
}}},
{"gauge", {{
{"name", "prompt_tokens_seconds"},
{"help", "Average prompt throughput in tokens/s."},
{"value", n_prompt_tokens_processed ? 1.e3 / t_prompt_processing * n_prompt_tokens_processed : 0.}
},{
{"name", "predicted_tokens_seconds"},
{"help", "Average generation throughput in tokens/s."},
{"value", n_tokens_predicted ? 1.e3 / t_tokens_generation * n_tokens_predicted : 0.}
},{
{"name", "kv_cache_usage_ratio"},
{"help", "KV-cache usage. 1 means 100 percent usage."},
{"value", 1. * kv_cache_used_cells / params.n_ctx}
},{
{"name", "kv_cache_tokens"},
{"help", "KV-cache tokens."},
{"value", (uint64_t) data.at("kv_cache_tokens_count")}
},{
{"name", "requests_processing"},
{"help", "Number of request processing."},
{"value", (uint64_t) data.at("processing")}
},{
{"name", "requests_deferred"},
{"help", "Number of request deferred."},
{"value", (uint64_t) data.at("deferred")}
}}}
};
std::stringstream prometheus;
for (const auto & el : all_metrics_def.items()) {
const auto & type = el.key();
const auto & metrics_def = el.value();
for (const auto & metric_def : metrics_def) {
const std::string name = metric_def.at("name");
const std::string help = metric_def.at("help");
auto value = json_value(metric_def, "value", 0.);
prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
<< "# TYPE llamacpp:" << name << " " << type << "\n"
<< "llamacpp:" << name << " " << value << "\n";
}
}
const int64_t t_start = data.at("t_start");
res.set_header("Process-Start-Time-Unix", std::to_string(t_start));
res.set_content(prometheus.str(), "text/plain; version=0.0.4");
res.status = 200; // HTTP OK
};
const auto handle_slots_save = [&ctx_server, &res_error, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
json request_data = json::parse(req.body);
std::string filename = request_data.at("filename");
if (!fs_validate_filename(filename)) {
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
return;
}
std::string filepath = params.slot_save_path + filename;
server_task task;
task.type = SERVER_TASK_TYPE_SLOT_SAVE;
task.data = {
{ "id_slot", id_slot },
{ "filename", filename },
{ "filepath", filepath }
};
const int id_task = ctx_server.queue_tasks.post(std::move(task));
ctx_server.queue_results.add_waiting_task_id(id_task);
server_task_result result = ctx_server.queue_results.recv(id_task);
ctx_server.queue_results.remove_waiting_task_id(id_task);
if (result.error) {
res_error(res, result.data);
} else {
res.set_content(result.data.dump(), "application/json");
}
};
const auto handle_slots_restore = [&ctx_server, &res_error, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
json request_data = json::parse(req.body);
std::string filename = request_data.at("filename");
if (!fs_validate_filename(filename)) {
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
return;
}
std::string filepath = params.slot_save_path + filename;
server_task task;
task.type = SERVER_TASK_TYPE_SLOT_RESTORE;
task.data = {
{ "id_slot", id_slot },
{ "filename", filename },
{ "filepath", filepath }
};
const int id_task = ctx_server.queue_tasks.post(std::move(task));
ctx_server.queue_results.add_waiting_task_id(id_task);
server_task_result result = ctx_server.queue_results.recv(id_task);
ctx_server.queue_results.remove_waiting_task_id(id_task);
if (result.error) {
res_error(res, result.data);
} else {
res.set_content(result.data.dump(), "application/json");
}
};
const auto handle_slots_erase = [&ctx_server, &res_error](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
server_task task;
task.type = SERVER_TASK_TYPE_SLOT_ERASE;
task.data = {
{ "id_slot", id_slot },
};
const int id_task = ctx_server.queue_tasks.post(std::move(task));
ctx_server.queue_results.add_waiting_task_id(id_task);
server_task_result result = ctx_server.queue_results.recv(id_task);
ctx_server.queue_results.remove_waiting_task_id(id_task);
if (result.error) {
res_error(res, result.data);
} else {
res.set_content(result.data.dump(), "application/json");
}
};
const auto handle_slots_action = [&res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
std::string id_slot_str = req.path_params.at("id_slot");
int id_slot;
try {
id_slot = std::stoi(id_slot_str);
} catch (const std::exception &) {
res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
return;
}
std::string action = req.get_param_value("action");
if (action == "save") {
handle_slots_save(req, res, id_slot);
} else if (action == "restore") {
handle_slots_restore(req, res, id_slot);
} else if (action == "erase") {
handle_slots_erase(req, res, id_slot);
} else {
res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
}
};
const auto handle_props = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
std::string template_key = "tokenizer.chat_template", curr_tmpl;
int32_t tlen = llama_model_meta_val_str(ctx_server.model, template_key.c_str(), nullptr, 0);
if (tlen > 0) {
std::vector<char> curr_tmpl_buf(tlen + 1, 0);
if (llama_model_meta_val_str(ctx_server.model, template_key.c_str(), curr_tmpl_buf.data(), curr_tmpl_buf.size()) == tlen) {
curr_tmpl = std::string(curr_tmpl_buf.data(), tlen);
}
}
json data = {
{ "system_prompt", ctx_server.system_prompt.c_str() },
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
{ "total_slots", ctx_server.params.n_parallel },
{ "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
{ "bos_token", llama_token_to_piece(ctx_server.ctx, llama_token_bos(ctx_server.model), /* special= */ true)},
{ "eos_token", llama_token_to_piece(ctx_server.ctx, llama_token_eos(ctx_server.model), /* special= */ true)},
{ "model_path", ctx_server.params.model },
{ "modalities", json {
{"vision", ctx_server.oai_parser_opt.allow_image},
{"audio", ctx_server.oai_parser_opt.allow_audio},
} },
{ "n_ctx", ctx_server.n_ctx }
};
if (ctx_server.params.use_jinja) {
if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
data["chat_template_tool_use"] = tool_use_src;
}
}
res.set_content(data.dump(), "application/json; charset=utf-8");
};
// handle completion-like requests (completion, chat, infill)
// we can optionally provide a custom format for partial results and final results
const auto handle_completions_impl = [&ctx_server, &params, &res_error, &res_ok](
server_task_type type,
json& data,
const std::vector<raw_buffer>& files,
httplib::Response& res,
oaicompat_type oaicompat) -> void {
GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION);
if (ctx_server.params.embedding) {
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
return;
}
const auto& prompt = data.at("prompt");
// process prompt
std::vector<server_tokens> inputs;
if (oaicompat && ctx_server.mctx != nullptr) {
// This is the case used by OAI compatible chat path with MTMD. TODO It can be moved to the path below.
#ifndef NDEBUG
print_files_info(files);
#endif // !NDEBUG
inputs.push_back(process_mtmd_prompt(ctx_server.mctx, prompt.get<std::string>(), files));
}
else {
// Everything else, including multimodal completions.
inputs = tokenize_input_prompts(llama_get_vocab(ctx_server.ctx), ctx_server.mctx, prompt, true, true);
}
const auto completion_id = gen_chatcmplid();
const int id_task = ctx_server.queue_tasks.get_new_id();
ctx_server.queue_results.add_waiting_task_id(id_task);
ctx_server.request_completion(id_task, -1, data, false, false, std::move(inputs[0]));
bool stream = json_value(data, "stream", false);
if (!stream) {
server_task_result result = ctx_server.queue_results.recv(id_task);
result.oaicompat = oaicompat;
result.oaicompat_cmpl_id = completion_id;
json result_oai;
if (oaicompat) {
if (result.final_result) {
result_oai = result.to_json_final();
}
else {
result_oai = result.to_json_partial();
}
}
else {
// legacy completions
result_oai = result.data;
}
if (!result.error && result.stop) {
res.set_content(result_oai.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
}
else {
res_error(res, result_oai);
}
ctx_server.queue_results.remove_waiting_task_id(id_task);
}
else {
const auto chunked_content_provider = [id_task, &ctx_server, completion_id, oaicompat, send_done = params.send_done](size_t, httplib::DataSink& sink) {
bool successful_completion = false;
while (true) {
server_task_result result = ctx_server.queue_results.recv(id_task);
if (!result.error) {
result.oaicompat = oaicompat;
result.oaicompat_cmpl_id = completion_id;
json res_json;
if (oaicompat) {
if (result.final_result) {
res_json = result.to_json_final();
}
else {
res_json = result.to_json_partial();
}
}
else {
// legacy completions
res_json = result.data;
}
if (res_json.is_array()) {
// chat completions and oai completions
for (const auto& res : res_json) {
if (!server_sent_event(sink, res)) {
// sending failed (HTTP connection closed), cancel the generation
ctx_server.queue_results.remove_waiting_task_id(id_task);
return false;
}
}
if (result.stop) {
successful_completion = true;
break;
}
}
else {
// legacy completions
if (!server_sent_event(sink, res_json)) {
ctx_server.queue_results.remove_waiting_task_id(id_task);
return false;
}
if (result.stop) {
break;
}
}
}
else {
if (!server_sent_event(sink, result.data)) {
ctx_server.queue_results.remove_waiting_task_id(id_task);
return false;
}
break;
}
}
bool ok = true;
if (successful_completion) {
static const std::string done_message = "data: [DONE]\n\n";
LOG_VERBOSE("data stream", { {"to_send", done_message} });
if (!sink.write(done_message.c_str(), done_message.size())) {
// If writing [DONE] fails, the stream is likely already problematic.
ok = false;
}
}
sink.done();
ctx_server.queue_results.remove_waiting_task_id(id_task);
return ok;
};
auto on_complete = [id_task, &ctx_server](bool) {
// cancel request
ctx_server.request_cancel(id_task);
ctx_server.queue_results.remove_waiting_task_id(id_task);
};
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
}
};
const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
auto data = json::parse(req.body);
std::vector<raw_buffer> files; // dummy
handle_completions_impl(
SERVER_TASK_TYPE_COMPLETION,
data,
files,
res,
OAICOMPAT_TYPE_NONE);
};
const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request& req, httplib::Response& res) {
auto body = json::parse(req.body);
json data = oaicompat_chat_params_parse(body);
std::vector<raw_buffer> files; // dummy
handle_completions_impl(
SERVER_TASK_TYPE_COMPLETION,
data,
files,
res,
OAICOMPAT_TYPE_COMPLETION);
};
const auto handle_models = [&params, &model_meta](const httplib::Request & req, httplib::Response & res) {
json models = {
{"object", "list"},
{"data", {
{
{"id", params.model_alias},
{"object", "model"},
{"created", std::time(0)},
{"owned_by", "llamacpp"},
{"meta", model_meta}
},
}}
};
res.set_content(models.dump(), "application/json; charset=utf-8");
};
const auto handle_chat_completions = [&ctx_server, &params, &handle_completions_impl, &res_error](const httplib::Request & req, httplib::Response & res) {
auto body = json::parse(req.body);
std::vector<raw_buffer> files;
json data = oaicompat_chat_params_parse(ctx_server.model, body, ctx_server.oai_parser_opt, files);
handle_completions_impl(
SERVER_TASK_TYPE_COMPLETION,
data,
files,
res,
OAICOMPAT_TYPE_CHAT);
};
// same with handle_chat_completions, but without inference part
const auto handle_apply_template = [&ctx_server, &params, &res_ok](const httplib::Request& req, httplib::Response& res) {
auto body = json::parse(req.body);
std::vector<raw_buffer> files; // dummy, unused
json data = oaicompat_chat_params_parse(ctx_server.model, body,ctx_server.oai_parser_opt, files);
res_ok(res, { { "prompt", std::move(data.at("prompt")) } });
};
const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
json data = json::parse(req.body);
const int id_task = ctx_server.queue_tasks.get_new_id();
server_tokens token; // dummy tokens
ctx_server.queue_results.add_waiting_task_id(id_task);
ctx_server.request_completion(id_task, -1, data, true, false, std::move(token));
std::vector<raw_buffer> files; // dummy
handle_completions_impl(
SERVER_TASK_TYPE_INFILL,
data,
files,
res,
OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
};
const auto handle_tokenize = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
const json body = json::parse(req.body);
std::vector<llama_token> tokens;
if (body.count("content") != 0) {
const bool add_special = json_value(body, "add_special", false);
tokens = ctx_server.tokenize(body.at("content"), add_special);
}
const json data = format_tokenizer_response(tokens);
return res.set_content(data.dump(), "application/json; charset=utf-8");
};
const auto handle_detokenize = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
const json body = json::parse(req.body);
std::string content;
if (body.count("tokens") != 0) {
const std::vector<llama_token> tokens = body.at("tokens");
content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
}
const json data = format_detokenized_response(content);
return res.set_content(data.dump(), "application/json; charset=utf-8");
};
const auto handle_embeddings = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) {
const json body = json::parse(req.body);
bool is_openai = false;
// an input prompt can be a string or a list of tokens (integer)
json prompt;
if (body.count("input") != 0) {
is_openai = true;
prompt = body.at("input");
} else if (body.count("content") != 0) {
// with "content", we only support single prompt
prompt = std::vector<std::string>{body.at("content")};
} else {
res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
return;
}
// create and queue the task
json responses;
{
const int id_task = ctx_server.queue_tasks.get_new_id();
ctx_server.queue_results.add_waiting_task_id(id_task);
std::vector<server_tokens> inputs;
inputs = tokenize_input_prompts(llama_get_vocab(ctx_server.ctx), ctx_server.mctx, prompt, true, true);
ctx_server.request_completion(id_task, -1, {{"prompt", prompt}}, false, true, std::move(inputs[0]));
// get the result
server_task_result result = ctx_server.queue_results.recv(id_task);
ctx_server.queue_results.remove_waiting_task_id(id_task);
if (!result.error) {
if (result.data.count("results")) {
// result for multi-task
responses = result.data.at("results");
} else {
// result for single task
responses = std::vector<json>{ result.data };
}
} else {
// error received, ignore everything else
res_error(res, result.data);
return;
}
}
// write JSON response
json root = is_openai
? format_embeddings_response_oaicompat(body, responses, false)
: responses[0];
return res.set_content(root.dump(), "application/json; charset=utf-8");
};
const auto handle_lora_adapters_list = [&](const httplib::Request & req, httplib::Response & res) {
json result = json::array();
for (size_t i = 0; i < ctx_server.lora_adapters.size(); ++i) {
auto & la = ctx_server.lora_adapters[i];
result.push_back({
{"id", i},
{"path", la.path},
{"scale", la.scale},
});
}
res.set_content(result.dump(), "application/json");
res.status = 200; // HTTP OK
};
const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
const std::vector<json> body = json::parse(req.body);
int max_idx = ctx_server.lora_adapters.size();
// clear existing value
for (auto & la : ctx_server.lora_adapters) {
la.scale = 0.0f;
}
// set value
for (auto entry : body) {
int id = entry.at("id");
float scale = entry.at("scale");
if (0 <= id && id < max_idx) {
ctx_server.lora_adapters[id].scale = scale;
} else {
throw std::runtime_error("invalid adapter id");
}
}
server_task task;
task.type = SERVER_TASK_TYPE_SET_LORA;
const int id_task = ctx_server.queue_tasks.post(std::move(task));
ctx_server.queue_results.add_waiting_task_id(id_task);
server_task_result result = ctx_server.queue_results.recv(id_task);
ctx_server.queue_results.remove_waiting_task_id(id_task);
res.set_content(result.data.dump(), "application/json");
res.status = 200; // HTTP OK
};
const auto list_saved_prompts = [&ctx_server, &params](const httplib::Request& req, httplib::Response& res) {
json response = json::array();
namespace fs = std::filesystem;
try {
for (const auto& entry : fs::directory_iterator(params.slot_save_path)) {
if (!entry.is_regular_file() || entry.file_size() < 12) {
continue;
}
std::ifstream file(entry.path(), std::ios::binary);
if (!file) continue;
uint32_t magic, version, n_token_count;
file.read(reinterpret_cast<char*>(&magic), sizeof(magic));
file.read(reinterpret_cast<char*>(&version), sizeof(version));
file.read(reinterpret_cast<char*>(&n_token_count), sizeof(n_token_count));
if (magic != LLAMA_STATE_SEQ_MAGIC ||
version != LLAMA_STATE_SEQ_VERSION ||
entry.file_size() < (12 + (n_token_count * sizeof(llama_token)))) {
continue;
}
std::vector<llama_token> tokens(n_token_count);
file.read(reinterpret_cast<char*>(tokens.data()), tokens.size() * sizeof(llama_token));
//C++17 is not modern enough to have a nice and portable way to get the mtime of a file
//so the following seems to be needed
auto ftime = fs::last_write_time(entry.path());
auto system_time = std::chrono::time_point_cast<std::chrono::system_clock::duration>(
ftime - fs::file_time_type::clock::now() + std::chrono::system_clock::now()
);
std::time_t c_time = std::chrono::system_clock::to_time_t(system_time);
std::tm tm_struct;
#if defined(_WIN32)
localtime_s(&tm_struct, &c_time);
#else
localtime_r(&c_time, &tm_struct);
#endif
std::ostringstream oss;
oss << std::put_time(&tm_struct, "%Y-%m-%d %H:%M:%S");
auto str_time = oss.str();
response.push_back({
{"filename", entry.path().filename().string()},
{"filesize", entry.file_size()},
{"mtime", str_time},
{"token_count", n_token_count},
{"prompt", tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend())}
});
}
} catch (const std::exception& e) {
res.status = 500;
response = {{"error", e.what()}};
}
res.set_content(response.dump(), "application/json; charset=utf-8");
};
const auto list_slot_prompts = [&ctx_server, &params](const httplib::Request& req, httplib::Response& res) {
json response = json::array();
for (server_slot & slot : ctx_server.slots) {
response.push_back({
{"slot_id", slot.id},
{"token_count", slot.cache_tokens.size()},
{"prompt", slot.cache_tokens.detokenize(ctx_server.ctx, true) }
});
}
res.set_content(response.dump(), "application/json; charset=utf-8");
};
const auto delete_saved_prompt = [&ctx_server, &params](const httplib::Request& req, httplib::Response& res)-> void {
json response;
namespace fs = std::filesystem;
try {
const json body = json::parse(req.body);
const std::string filename_str = body.at("filename");
// prevent directory traversal attacks
if (filename_str.find("..") != std::string::npos || filename_str.find('/') != std::string::npos || filename_str.find('\\') != std::string::npos) {
res.status = 400;
response = {{"error", "Invalid filename format."}};
res.set_content(response.dump(), "application/json; charset=utf-8");
return;
}
const fs::path file_to_delete = fs::path(params.slot_save_path) / fs::path(filename_str);
if (!fs::exists(file_to_delete) || !fs::is_regular_file(file_to_delete)) {
res.status = 404;
response = {{"error", "File not found."}};
res.set_content(response.dump(), "application/json; charset=utf-8");
return;
}
if (fs::remove(file_to_delete)) {
response = {
{"status", "deleted"},
{"filename", filename_str}
};
} else {
res.status = 500;
response = {{"error", "Failed to delete the file."}};
}
} catch (const json::parse_error& e) {
res.status = 400;
response = {{"error", "Invalid JSON request body."}};
} catch (const json::out_of_range& e) {
res.status = 400;
response = {{"error", "Missing 'filename' key in request body."}};
} catch (const std::exception& e) {
res.status = 500;
response = {{"error", e.what()}};
}
res.set_content(response.dump(), "application/json; charset=utf-8");
};
const auto rename_saved_prompt = [&ctx_server, &params](const httplib::Request& req, httplib::Response& res)-> void {
json response;
namespace fs = std::filesystem;
try {
const json body = json::parse(req.body);
const std::string old_filename_str = body.at("old_filename");
const std::string new_filename_str = body.at("new_filename");
if (old_filename_str.find("..") != std::string::npos || old_filename_str.find_first_of("/\\") != std::string::npos ||
new_filename_str.find("..") != std::string::npos || new_filename_str.find_first_of("/\\") != std::string::npos) {
res.status = 400;
response = {{"error", "Invalid filename format."}};
res.set_content(response.dump(), "application/json; charset=utf-8");
return;
}
const fs::path old_path = fs::path(params.slot_save_path) / old_filename_str;
const fs::path new_path = fs::path(params.slot_save_path) / new_filename_str;
if (!fs::exists(old_path) || !fs::is_regular_file(old_path)) {
res.status = 404;
response = {{"error", "Source file not found."}};
res.set_content(response.dump(), "application/json; charset=utf-8");
return;
}
if (fs::exists(new_path)) {
res.status = 409;
response = {{"error", "Destination filename already exists."}};
res.set_content(response.dump(), "application/json; charset=utf-8");
return;
}
std::error_code ec;
fs::rename(old_path, new_path, ec);
if (ec) {
res.status = 500;
response = {{"error", "Failed to rename file: " + ec.message()}};
} else {
response = {
{"status", "renamed"},
{"old_filename", old_filename_str},
{"new_filename", new_filename_str}
};
}
} catch (const json::parse_error& e) {
res.status = 400;
response = {{"error", "Invalid JSON request body."}};
} catch (const json::out_of_range& e) {
res.status = 400;
response = {{"error", "Missing 'old_filename' or 'new_filename' in request body."}};
} catch (const std::exception& e) {
res.status = 500;
response = {{"error", e.what()}};
}
res.set_content(response.dump(), "application/json; charset=utf-8");
};
auto handle_static_file = [](unsigned char * content, size_t len, const char * mime_type) {
return [content, len, mime_type](const httplib::Request &, httplib::Response & res) {
res.set_content(reinterpret_cast<const char*>(content), len, mime_type);
return false;
};
};
#ifdef SQLITE3_MODERN_CPP_SUPPORT
const auto handle_version = [&params, sqlite_extension_loaded](const httplib::Request&, httplib::Response& res) {
res.set_content(
json{{"version", 4},
{"features", {{"sql", !params.sql_save_file.empty()}, {"zstd_compression", sqlite_extension_loaded}}}}.dump(),
"application/json"
);
};
#else
const auto handle_version = [](const httplib::Request&, httplib::Response& res)-> void {
res.set_content(
json{{"version", 4},
{"features", {{"sql", false}, {"zstd_compression", false}}}}.dump(),
"application/json"
);
};
#endif
#ifdef SQLITE3_MODERN_CPP_SUPPORT
auto db_handler = [db_handle](auto func) {
return [func, db_handle](const httplib::Request& req, httplib::Response& res) {
res.set_header("Access-Control-Allow-Origin", "*");
try {
const json body = !req.body.empty() ? json::parse(req.body) : json::object();
func(*db_handle, body, req, res);
} catch(const std::exception& e) {
res.status = 500;
res.set_content(
json{{"ok", false}, {"message", e.what()}}.dump(),
"application/json"
);
}
};
};
#else
auto db_handler = [db_handle](auto func) {
return [func, db_handle](const httplib::Request& req, httplib::Response& res) {
res.set_header("Access-Control-Allow-Origin", "*");
res.status = 500;
res.set_content(
json{{"ok", false}, {"message", "Sqlite3 support was not enabled. Recompile with '-DLLAMA_SERVER_SQLITE3=ON'"}}.dump(),
"application/json"
);
};
};
#endif
const auto normalize_store_name = [](const std::string& storeName) {
if(storeName.empty()) return std::string("sessions");
std::string normalized;
normalized.reserve(storeName.size());
for(char c : storeName) {
if(std::isalpha(static_cast<unsigned char>(c))) {
normalized.push_back(std::tolower(static_cast<unsigned char>(c)));
}
}
return normalized.empty() ? "sessions" : normalized;
};
const auto get_key_string = [](const json& j) {
return j.is_string() ? j.get<std::string>() : j.dump();
};
const auto handle_load = db_handler([normalize_store_name, get_key_string](auto& db, const json& body, auto&, auto& res) {
std::string data;
const std::string store = normalize_store_name(body["storeName"]);
db.db << "SELECT data FROM " + store + " WHERE key = ?" << get_key_string(body["key"]) >> data;
if(data.empty()) {
res.status = 404;
res.set_content(json{{"ok", false}, {"message", "Key not found"}}.dump(), "application/json");
} else {
json response{{"ok", true}};
response["result"] = (store == "names") ? json(data) : json::parse(data);
res.set_content(response.dump(), "application/json");
}
});
const auto handle_save = db_handler([normalize_store_name, get_key_string](auto& db, const json& body, auto&, auto& res) {
const std::string store = normalize_store_name(body["storeName"]);
const std::string data = (store == "names") ? body["data"].get<std::string>() : body["data"].dump();
db.db << "INSERT OR REPLACE INTO " + store + " (key, data) VALUES (?, ?)" << get_key_string(body["key"]) << data;
res.set_content(json{{"ok", true}, {"result", "Data saved successfully"}}.dump(), "application/json");
});
const auto handle_rename = db_handler([get_key_string](auto& db, const json& body, auto&, auto& res) {
db.db << "UPDATE names SET data = ? WHERE key = ?"
<< body["newName"].get<std::string>()
<< get_key_string(body["key"]);
res.set_content(json{{"ok", true}, {"result", "Session renamed successfully"}}.dump(), "application/json");
});
const auto handle_all = db_handler([normalize_store_name](auto& db, const json& body, auto&, auto& res) {
json result = json::object();
db.db << "SELECT key, data FROM " + normalize_store_name(body["storeName"]) >>
[&](const std::string& key, const std::string& data) {
result[key] = json::parse(data);
};
res.set_content(json{{"ok", true}, {"result", result}}.dump(), "application/json");
});
const auto handle_sessions = db_handler([](auto& db, const json& body, auto&, auto& res) {
json result = json::object();
db.db << "SELECT key, data FROM names" >> [&](const std::string& key, const std::string& data) {
result[key] = data;
};
res.set_content(json{{"ok", true}, {"result", result}}.dump(), "application/json");
});
const auto handle_delete = db_handler([normalize_store_name, get_key_string](auto& db, const json& body, auto&, auto& res) {
db.db << "DELETE FROM " + normalize_store_name(body["storeName"]) + " WHERE key = ?"
<< get_key_string(body["key"]);
res.set_content(json{{"ok", true}, {"result", "Session deleted successfully"}}.dump(), "application/json");
});
const auto handle_vacuum = db_handler([](auto& db, const json& body, auto&, auto& res) {
json result = json::object();
db.db << "VACUUM";
res.set_content(json{"ok", true}.dump(), "application/json");
});
const auto handle_zstd_get_configs = db_handler([](auto& db, const json& body, auto&, auto& res) {
json result = json::object();
db.db << "SELECT id, config FROM _zstd_configs" >> [&](const std::string id, const std::string& config) {
result[id] = config;
};
res.set_content(json{{"ok", true}, {"configs", result}}.dump(), "application/json");
});
const auto handle_zstd_maintenance = db_handler([](auto& db, const json& body, auto&, auto& res) {
std::string data;
if (body["duration"].is_null()) {
db.db << "select zstd_incremental_maintenance(?, ?)" << nullptr << body["db_load"].get<double>() >> data;
}
else {
db.db << "select zstd_incremental_maintenance(?, ?)" << body["duration"].get<double>() << body["db_load"].get<double>() >> data;
}
json response{{"ok", true}};
response["result"] = json::parse(data);
res.set_content(response.dump(), "application/json");
});
const auto handle_zstd_enable = db_handler([](auto& db, const json& body, auto&, auto& res) {
db.db << "select zstd_enable_transparent('{\"table\": \"" + body["table"].get<std::string>() + "\",\"column\": \"" + body["column"].get<std::string>() + "\", \"compression_level\": " + std::to_string(body["compression_level"].get<int>()) + ", \"dict_chooser\": \"''a''\", \"train_dict_samples_ratio\": " + std::to_string(body["train_dict_samples_ratio"].get<int>()) + "}')";
res.set_content(json{"ok", true}.dump(), "application/json");
});
const auto handle_zstd_config_update = db_handler([](auto& db, const json& body, auto&, auto& res) {
std::string patch_json = "{\"compression_level\": " + std::to_string(body["compression_level"].get<int>()) + ", \"train_dict_samples_ratio\": " + std::to_string(body["train_dict_samples_ratio"].get<int>()) + "}";
db.db << "update _zstd_configs set config = json_patch(config, '" + patch_json + "')";
res.set_content(json{{"ok", true}}.dump(), "application/json");
});
//
// Router
//
if (params.webui == COMMON_WEBUI_NONE) {
LLAMA_LOG_INFO("Web UI is disabled\n");
}
else {
// register static assets routes
if (!params.public_path.empty()) {
// Set the base directory for serving static files
svr->set_base_dir(params.public_path);
}
{
// register static assets routes
if (!params.public_path.empty()) {
// Set the base directory for serving static files
bool is_found = svr->set_mount_point("/", params.public_path);
if (!is_found) {
GGML_ABORT("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
return 1;
}
}
else {
// using embedded static index.html
svr->Get("/", [params](const httplib::Request& req, httplib::Response& res) {
if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
res.set_content("Error: gzip is not supported by this browser", "text/plain");
}
else {
res.set_header("Content-Encoding", "gzip");
// COEP and COOP headers, required by pyodide (python interpreter)
res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
res.set_header("Cross-Origin-Opener-Policy", "same-origin");
if (params.webui == COMMON_WEBUI_AUTO) {
res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
}
else if (params.webui == COMMON_WEBUI_LLAMACPP) {
res.set_content(reinterpret_cast<const char*>(index_llamacpp_html_gz), index_llamacpp_html_gz_len, "text/html; charset=utf-8");
}
else {
res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
}
}
return false;
});
}
}
}
// register API routes
svr->Get ("/health", handle_health);
svr->Get ("/metrics", handle_metrics);
svr->Get ("/props", handle_props);
svr->Get ("/v1/models", handle_models);
svr->Post("/completion", handle_completions); // legacy
svr->Post("/completions", handle_completions); // legacy
svr->Post("/v1/completions", handle_completions_oai);
svr->Post("/chat/completions", handle_chat_completions);
svr->Post("/v1/chat/completions", handle_chat_completions);
svr->Post("/infill", handle_infill);
svr->Post("/embedding", handle_embeddings); // legacy
svr->Post("/embeddings", handle_embeddings);
svr->Post("/v1/embeddings", handle_embeddings);
svr->Post("/tokenize", handle_tokenize);
svr->Post("/detokenize", handle_detokenize);
// LoRA adapters hotswap
svr->Get ("/lora-adapters", handle_lora_adapters_list);
svr->Post("/lora-adapters", handle_lora_adapters_apply);
// Save & load slots
svr->Get ("/slots", handle_slots);
svr->Get ("/slots/list", list_slot_prompts);
if (!params.slot_save_path.empty()) {
// these endpoints rely on slot_save_path existing
svr->Post("/slots/:id_slot", handle_slots_action);
svr->Get ("/list", list_saved_prompts);
svr->Post("/delete_prompt", delete_saved_prompt);
svr->Post("/rename_prompt", rename_saved_prompt);
}
svr->Get ("/version", handle_version);
if (!params.sql_save_file.empty()) {
// these endpoints rely on sql_save_file existing
svr->Post("/load", handle_load);
svr->Post("/save", handle_save);
svr->Post("/rename", handle_rename);
svr->Post("/all", handle_all);
svr->Post("/sessions", handle_sessions);
svr->Get ("/sessions", handle_sessions);
svr->Post("/delete", handle_delete);
//VACUUM is there for the extension but does not require the extension
svr->Get ("/vacuum", handle_vacuum);
#ifdef SQLITE3_MODERN_CPP_SUPPORT
if (sqlite_extension_loaded) {
svr->Get ("/zstd_get_configs", handle_zstd_get_configs);
svr->Post("/zstd_incremental_maintenance", handle_zstd_maintenance);
svr->Post("/zstd_enable_transparent", handle_zstd_enable);
svr->Post("/zstd_update_transparent", handle_zstd_config_update);
}
#endif
}
//
// Start the server
//
if (params.n_threads_http < 1) {
// +2 threads for monitoring endpoints
params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
}
log_data["n_threads_http"] = std::to_string(params.n_threads_http);
svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
LOG_INFO("HTTP server listening", log_data);
// run the HTTP server in a thread - see comment below
std::thread t([&]() {
if (!svr->listen_after_bind()) {
state.store(SERVER_STATE_ERROR);
return 1;
}
return 0;
});
ctx_server.queue_tasks.on_new_task([&ctx_server](server_task && task) {
ctx_server.process_single_task(std::move(task));
});
ctx_server.queue_tasks.on_finish_multitask(std::bind(
&server_context::on_finish_multitask, &ctx_server, std::placeholders::_1));
ctx_server.queue_tasks.on_update_slots(std::bind(
&server_context::update_slots, &ctx_server));
ctx_server.queue_results.on_multitask_update(std::bind(
&server_queue::update_multitask,
&ctx_server.queue_tasks,
std::placeholders::_1,
std::placeholders::_2,
std::placeholders::_3
));
shutdown_handler = [&](int) {
ctx_server.queue_tasks.terminate();
};
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = signal_handler;
sigemptyset (&sigint_action.sa_mask);
sigint_action.sa_flags = 0;
sigaction(SIGINT, &sigint_action, NULL);
sigaction(SIGTERM, &sigint_action, NULL);
#elif defined (_WIN32)
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
};
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
#endif
ctx_server.queue_tasks.start_loop();
svr->stop();
t.join();
llama_backend_free();
return 0;
}