diff --git a/extensions-builtin/Lora/network_oft.py b/extensions-builtin/Lora/network_oft.py deleted file mode 100644 index 7821a8a7..00000000 --- a/extensions-builtin/Lora/network_oft.py +++ /dev/null @@ -1,118 +0,0 @@ -import torch -import network -from einops import rearrange - - -class ModuleTypeOFT(network.ModuleType): - def create_module(self, net: network.Network, weights: network.NetworkWeights): - if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]): - return NetworkModuleOFT(net, weights) - - return None - -# Supports both kohya-ss' implementation of COFT https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py -# and KohakuBlueleaf's implementation of OFT/COFT https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py -class NetworkModuleOFT(network.NetworkModule): - def __init__(self, net: network.Network, weights: network.NetworkWeights): - - super().__init__(net, weights) - - self.lin_module = None - self.org_module: list[torch.Module] = [self.sd_module] - - self.scale = 1.0 - self.is_R = False - self.is_boft = False - - # kohya-ss/New LyCORIS OFT/BOFT - if "oft_blocks" in weights.w.keys(): - self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size) - self.alpha = weights.w.get("alpha", None) # alpha is constraint - self.dim = self.oft_blocks.shape[0] # lora dim - # Old LyCORIS OFT - elif "oft_diag" in weights.w.keys(): - self.is_R = True - self.oft_blocks = weights.w["oft_diag"] - # self.alpha is unused - self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size) - - # LyCORIS BOFT - if self.oft_blocks.dim() == 4: - self.is_boft = True - self.rescale = weights.w.get('rescale', None) - if self.rescale is not None: - self.rescale = self.rescale.reshape(-1, *[1]*(self.org_module[0].weight.dim() - 1)) - - is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear] - is_conv = type(self.sd_module) in [torch.nn.Conv2d] - is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported - - if is_linear: - self.out_dim = self.sd_module.out_features - elif is_conv: - self.out_dim = self.sd_module.out_channels - elif is_other_linear: - self.out_dim = self.sd_module.embed_dim - - self.num_blocks = self.dim - self.block_size = self.out_dim // self.dim - self.constraint = (0 if self.alpha is None else self.alpha) * self.out_dim - if self.is_R: - self.constraint = None - self.block_size = self.dim - self.num_blocks = self.out_dim // self.dim - elif self.is_boft: - self.boft_m = self.oft_blocks.shape[0] - self.num_blocks = self.oft_blocks.shape[1] - self.block_size = self.oft_blocks.shape[2] - self.boft_b = self.block_size - - def calc_updown(self, orig_weight): - oft_blocks = self.oft_blocks.to(orig_weight.device) - eye = torch.eye(self.block_size, device=oft_blocks.device) - - if not self.is_R: - block_Q = oft_blocks - oft_blocks.transpose(-1, -2) # ensure skew-symmetric orthogonal matrix - if self.constraint != 0: - norm_Q = torch.norm(block_Q.flatten()) - new_norm_Q = torch.clamp(norm_Q, max=self.constraint.to(oft_blocks.device)) - block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) - oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse()) - - R = oft_blocks.to(orig_weight.device) - - if not self.is_boft: - # This errors out for MultiheadAttention, might need to be handled up-stream - merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size) - merged_weight = torch.einsum( - 'k n m, k n ... -> k m ...', - R, - merged_weight - ) - merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...') - else: - # TODO: determine correct value for scale - scale = 1.0 - m = self.boft_m - b = self.boft_b - r_b = b // 2 - inp = orig_weight - for i in range(m): - bi = R[i] # b_num, b_size, b_size - if i == 0: - # Apply multiplier/scale and rescale into first weight - bi = bi * scale + (1 - scale) * eye - inp = rearrange(inp, "(c g k) ... -> (c k g) ...", g=2, k=2**i * r_b) - inp = rearrange(inp, "(d b) ... -> d b ...", b=b) - inp = torch.einsum("b i j, b j ... -> b i ...", bi, inp) - inp = rearrange(inp, "d b ... -> (d b) ...") - inp = rearrange(inp, "(c k g) ... -> (c g k) ...", g=2, k=2**i * r_b) - merged_weight = inp - - # Rescale mechanism - if self.rescale is not None: - merged_weight = self.rescale.to(merged_weight) * merged_weight - - updown = merged_weight.to(orig_weight.device) - orig_weight.to(merged_weight.dtype) - output_shape = orig_weight.shape - return self.finalize_updown(updown, orig_weight, output_shape)