From 250ae2774923564daf0ccfa41eba997d64d98984 Mon Sep 17 00:00:00 2001
From: layerdiffusion <19834515+lllyasviel@users.noreply.github.com>
Date: Tue, 20 Aug 2024 21:30:47 -0700
Subject: [PATCH] The First IDM-VTON that pass 4GB VRAM
100% reproduce official results
---
.../forge_space_idm_vton/forge_app.py | 324 ++
.../forge_space_idm_vton/requirements.txt | 6 +
.../forge_space_idm_vton/space_meta.json | 6 +
.../src/attentionhacked_garmnet.py | 670 +++
.../src/attentionhacked_tryon.py | 682 ++++
.../src/transformerhacked_garmnet.py | 460 +++
.../src/transformerhacked_tryon.py | 467 +++
.../src/tryon_pipeline.py | 1893 +++++++++
.../src/unet_block_hacked_garmnet.py | 3579 +++++++++++++++++
.../src/unet_block_hacked_tryon.py | 3522 ++++++++++++++++
.../src/unet_hacked_garmnet.py | 1284 ++++++
.../src/unet_hacked_tryon.py | 1395 +++++++
12 files changed, 14288 insertions(+)
create mode 100644 extensions-builtin/forge_space_idm_vton/forge_app.py
create mode 100644 extensions-builtin/forge_space_idm_vton/requirements.txt
create mode 100644 extensions-builtin/forge_space_idm_vton/space_meta.json
create mode 100644 extensions-builtin/forge_space_idm_vton/src/attentionhacked_garmnet.py
create mode 100644 extensions-builtin/forge_space_idm_vton/src/attentionhacked_tryon.py
create mode 100644 extensions-builtin/forge_space_idm_vton/src/transformerhacked_garmnet.py
create mode 100644 extensions-builtin/forge_space_idm_vton/src/transformerhacked_tryon.py
create mode 100644 extensions-builtin/forge_space_idm_vton/src/tryon_pipeline.py
create mode 100644 extensions-builtin/forge_space_idm_vton/src/unet_block_hacked_garmnet.py
create mode 100644 extensions-builtin/forge_space_idm_vton/src/unet_block_hacked_tryon.py
create mode 100644 extensions-builtin/forge_space_idm_vton/src/unet_hacked_garmnet.py
create mode 100644 extensions-builtin/forge_space_idm_vton/src/unet_hacked_tryon.py
diff --git a/extensions-builtin/forge_space_idm_vton/forge_app.py b/extensions-builtin/forge_space_idm_vton/forge_app.py
new file mode 100644
index 00000000..1d982a82
--- /dev/null
+++ b/extensions-builtin/forge_space_idm_vton/forge_app.py
@@ -0,0 +1,324 @@
+import spaces
+import contextlib
+
+import gradio as gr
+from PIL import Image
+from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
+from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
+from src.unet_hacked_tryon import UNet2DConditionModel
+from transformers import (
+ CLIPImageProcessor,
+ CLIPVisionModelWithProjection,
+ CLIPTextModel,
+ CLIPTextModelWithProjection,
+)
+from diffusers import DDPMScheduler, AutoencoderKL
+from typing import List
+
+import torch
+import os
+from transformers import AutoTokenizer
+import numpy as np
+from utils_mask import get_mask_location
+from torchvision import transforms
+import apply_net
+from preprocess.humanparsing.run_parsing import Parsing
+from preprocess.openpose.run_openpose import OpenPose
+from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
+from torchvision.transforms.functional import to_pil_image
+
+
+def pil_to_binary_mask(pil_image, threshold=0):
+ np_image = np.array(pil_image)
+ grayscale_image = Image.fromarray(np_image).convert("L")
+ binary_mask = np.array(grayscale_image) > threshold
+ mask = np.zeros(binary_mask.shape, dtype=np.uint8)
+ for i in range(binary_mask.shape[0]):
+ for j in range(binary_mask.shape[1]):
+ if binary_mask[i, j] == True:
+ mask[i, j] = 1
+ mask = (mask * 255).astype(np.uint8)
+ output_mask = Image.fromarray(mask)
+ return output_mask
+
+
+base_path = 'yisol/IDM-VTON'
+example_path = os.path.join(spaces.convert_root_path(), 'example')
+
+
+with spaces.capture_gpu_object() as GO:
+ unet = UNet2DConditionModel.from_pretrained(
+ base_path,
+ subfolder="unet",
+ torch_dtype=torch.float16,
+ )
+ unet.requires_grad_(False)
+ tokenizer_one = AutoTokenizer.from_pretrained(
+ base_path,
+ subfolder="tokenizer",
+ revision=None,
+ use_fast=False,
+ )
+ tokenizer_two = AutoTokenizer.from_pretrained(
+ base_path,
+ subfolder="tokenizer_2",
+ revision=None,
+ use_fast=False,
+ )
+ noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
+
+ text_encoder_one = CLIPTextModel.from_pretrained(
+ base_path,
+ subfolder="text_encoder",
+ torch_dtype=torch.float16,
+ )
+ text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
+ base_path,
+ subfolder="text_encoder_2",
+ torch_dtype=torch.float16,
+ )
+ image_encoder = CLIPVisionModelWithProjection.from_pretrained(
+ base_path,
+ subfolder="image_encoder",
+ torch_dtype=torch.float16,
+ )
+ vae = AutoencoderKL.from_pretrained(base_path,
+ subfolder="vae",
+ torch_dtype=torch.float16,
+ )
+
+ # "stabilityai/stable-diffusion-xl-base-1.0",
+ UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
+ base_path,
+ subfolder="unet_encoder",
+ torch_dtype=torch.float16,
+ )
+
+ parsing_model = Parsing(0)
+ openpose_model = OpenPose(0)
+
+ UNet_Encoder.requires_grad_(False)
+ image_encoder.requires_grad_(False)
+ vae.requires_grad_(False)
+ unet.requires_grad_(False)
+ text_encoder_one.requires_grad_(False)
+ text_encoder_two.requires_grad_(False)
+ tensor_transfrom = transforms.Compose(
+ [
+ transforms.ToTensor(),
+ transforms.Normalize([0.5], [0.5]),
+ ]
+ )
+
+ pipe = TryonPipeline.from_pretrained(
+ base_path,
+ unet=unet,
+ vae=vae,
+ feature_extractor=CLIPImageProcessor(),
+ text_encoder=text_encoder_one,
+ text_encoder_2=text_encoder_two,
+ tokenizer=tokenizer_one,
+ tokenizer_2=tokenizer_two,
+ scheduler=noise_scheduler,
+ image_encoder=image_encoder,
+ torch_dtype=torch.float16,
+ )
+ pipe.unet_encoder = UNet_Encoder
+
+unet_joint = torch.nn.ModuleList([
+ unet, UNet_Encoder
+])
+
+
+spaces.automatically_move_to_gpu_when_forward(unet, target_model=unet_joint)
+spaces.automatically_move_to_gpu_when_forward(UNet_Encoder, target_model=unet_joint)
+spaces.automatically_move_to_gpu_when_forward(unet.encoder_hid_proj)
+
+spaces.automatically_move_pipeline_components(pipe=pipe)
+
+spaces.automatically_move_to_gpu_when_forward(openpose_model.preprocessor.body_estimation.model)
+spaces.change_attention_from_diffusers_to_forge(unet)
+spaces.change_attention_from_diffusers_to_forge(vae)
+spaces.change_attention_from_diffusers_to_forge(UNet_Encoder)
+
+
+@spaces.GPU(gpu_objects=GO, manual_load=True)
+def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, progress=gr.Progress(track_tqdm=True)):
+ device = spaces.gpu
+
+ # openpose_model.preprocessor.body_estimation.model.to(device)
+ # pipe.to(device)
+ # pipe.unet_encoder.to(device)
+
+ garm_img = garm_img.convert("RGB").resize((768, 1024))
+ human_img_orig = dict["background"].convert("RGB")
+
+ if is_checked_crop:
+ width, height = human_img_orig.size
+ target_width = int(min(width, height * (3 / 4)))
+ target_height = int(min(height, width * (4 / 3)))
+ left = (width - target_width) / 2
+ top = (height - target_height) / 2
+ right = (width + target_width) / 2
+ bottom = (height + target_height) / 2
+ cropped_img = human_img_orig.crop((left, top, right, bottom))
+ crop_size = cropped_img.size
+ human_img = cropped_img.resize((768, 1024))
+ else:
+ human_img = human_img_orig.resize((768, 1024))
+
+ if is_checked:
+ keypoints = openpose_model(human_img.resize((384, 512)))
+ model_parse, _ = parsing_model(human_img.resize((384, 512)))
+ mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
+ mask = mask.resize((768, 1024))
+ else:
+ mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
+ # mask = transforms.ToTensor()(mask)
+ # mask = mask.unsqueeze(0)
+ mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
+ mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
+
+ human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
+ human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
+
+ args = apply_net.create_argument_parser().parse_args(('show', spaces.convert_root_path() + 'configs/densepose_rcnn_R_50_FPN_s1x.yaml', spaces.convert_root_path() + 'ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
+ # verbosity = getattr(args, "verbosity", None)
+ pose_img = args.func(args, human_img_arg)
+ pose_img = pose_img[:, :, ::-1]
+ pose_img = Image.fromarray(pose_img).resize((768, 1024))
+
+ with torch.no_grad():
+ # Extract the images
+ with torch.cuda.amp.autocast():
+ with torch.no_grad():
+ prompt = "model is wearing " + garment_des
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
+ with torch.inference_mode():
+ (
+ prompt_embeds,
+ negative_prompt_embeds,
+ pooled_prompt_embeds,
+ negative_pooled_prompt_embeds,
+ ) = pipe.encode_prompt(
+ prompt,
+ num_images_per_prompt=1,
+ do_classifier_free_guidance=True,
+ negative_prompt=negative_prompt,
+ )
+
+ prompt = "a photo of " + garment_des
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
+ if not isinstance(prompt, List):
+ prompt = [prompt] * 1
+ if not isinstance(negative_prompt, List):
+ negative_prompt = [negative_prompt] * 1
+ with torch.inference_mode():
+ (
+ prompt_embeds_c,
+ _,
+ _,
+ _,
+ ) = pipe.encode_prompt(
+ prompt,
+ num_images_per_prompt=1,
+ do_classifier_free_guidance=False,
+ negative_prompt=negative_prompt,
+ )
+
+ pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
+ garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16)
+ generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
+ images = pipe(
+ prompt_embeds=prompt_embeds.to(device, torch.float16),
+ negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
+ pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
+ num_inference_steps=denoise_steps,
+ generator=generator,
+ strength=1.0,
+ pose_img=pose_img.to(device, torch.float16),
+ text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
+ cloth=garm_tensor.to(device, torch.float16),
+ mask_image=mask,
+ image=human_img,
+ height=1024,
+ width=768,
+ ip_adapter_image=garm_img.resize((768, 1024)),
+ guidance_scale=2.0,
+ )[0]
+
+ if is_checked_crop:
+ out_img = images[0].resize(crop_size)
+ human_img_orig.paste(out_img, (int(left), int(top)))
+ return human_img_orig, mask_gray
+ else:
+ return images[0], mask_gray
+ # return images[0], mask_gray
+
+
+garm_list = os.listdir(os.path.join(example_path, "cloth"))
+garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]
+
+human_list = os.listdir(os.path.join(example_path, "human"))
+human_list_path = [os.path.join(example_path, "human", human) for human in human_list]
+
+human_ex_list = []
+for ex_human in human_list_path:
+ ex_dict = {}
+ ex_dict['background'] = ex_human
+ ex_dict['layers'] = None
+ ex_dict['composite'] = None
+ human_ex_list.append(ex_dict)
+
+##default human
+
+
+image_blocks = gr.Blocks().queue()
+with image_blocks as demo:
+ gr.Markdown("## IDM-VTON ๐๐๐")
+ gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)")
+ with gr.Row():
+ with gr.Column():
+ imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
+ with gr.Row():
+ is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)", value=True)
+ with gr.Row():
+ is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing", value=False)
+
+ example = gr.Examples(
+ inputs=imgs,
+ examples_per_page=10,
+ examples=human_ex_list
+ )
+
+ with gr.Column():
+ garm_img = gr.Image(label="Garment", sources='upload', type="pil")
+ with gr.Row(elem_id="prompt-container"):
+ with gr.Row():
+ prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
+ example = gr.Examples(
+ inputs=garm_img,
+ examples_per_page=8,
+ examples=garm_list_path)
+ with gr.Column():
+ # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
+ masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
+ with gr.Column():
+ # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
+ image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
+
+ with gr.Column():
+ try_button = gr.Button(value="Try-on")
+ with gr.Accordion(label="Advanced Settings", open=False):
+ with gr.Row():
+ denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
+ seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
+
+ try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked, is_checked_crop, denoise_steps, seed], outputs=[image_out, masked_img], api_name='tryon')
+
+
+demo = image_blocks
+
+if __name__ == "__main__":
+ demo.launch()
diff --git a/extensions-builtin/forge_space_idm_vton/requirements.txt b/extensions-builtin/forge_space_idm_vton/requirements.txt
new file mode 100644
index 00000000..a649adfb
--- /dev/null
+++ b/extensions-builtin/forge_space_idm_vton/requirements.txt
@@ -0,0 +1,6 @@
+basicsr
+fvcore
+cloudpickle
+omegaconf
+pycocotools
+config==0.5.1
diff --git a/extensions-builtin/forge_space_idm_vton/space_meta.json b/extensions-builtin/forge_space_idm_vton/space_meta.json
new file mode 100644
index 00000000..172fff3b
--- /dev/null
+++ b/extensions-builtin/forge_space_idm_vton/space_meta.json
@@ -0,0 +1,6 @@
+{
+ "tag": "General Image Processing and Applications",
+ "title": "IDM-VTON: Virtual Try-on with your image and garment image",
+ "repo_id": "yisol/IDM-VTON",
+ "revision": "810e5908d53e4023f3dade2b8ebf10e3ae995be1"
+}
diff --git a/extensions-builtin/forge_space_idm_vton/src/attentionhacked_garmnet.py b/extensions-builtin/forge_space_idm_vton/src/attentionhacked_garmnet.py
new file mode 100644
index 00000000..66885c47
--- /dev/null
+++ b/extensions-builtin/forge_space_idm_vton/src/attentionhacked_garmnet.py
@@ -0,0 +1,670 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import Any, Dict, Optional
+
+import torch
+import torch.nn.functional as F
+from torch import nn
+
+from diffusers.utils import USE_PEFT_BACKEND
+from diffusers.utils.torch_utils import maybe_allow_in_graph
+from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
+from diffusers.models.attention_processor import Attention
+from diffusers.models.embeddings import SinusoidalPositionalEmbedding
+from diffusers.models.lora import LoRACompatibleLinear
+from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
+
+
+def _chunked_feed_forward(
+ ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None
+):
+ # "feed_forward_chunk_size" can be used to save memory
+ if hidden_states.shape[chunk_dim] % chunk_size != 0:
+ raise ValueError(
+ f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
+ )
+
+ num_chunks = hidden_states.shape[chunk_dim] // chunk_size
+ if lora_scale is None:
+ ff_output = torch.cat(
+ [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
+ dim=chunk_dim,
+ )
+ else:
+ # TOOD(Patrick): LoRA scale can be removed once PEFT refactor is complete
+ ff_output = torch.cat(
+ [ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
+ dim=chunk_dim,
+ )
+
+ return ff_output
+
+
+@maybe_allow_in_graph
+class GatedSelfAttentionDense(nn.Module):
+ r"""
+ A gated self-attention dense layer that combines visual features and object features.
+
+ Parameters:
+ query_dim (`int`): The number of channels in the query.
+ context_dim (`int`): The number of channels in the context.
+ n_heads (`int`): The number of heads to use for attention.
+ d_head (`int`): The number of channels in each head.
+ """
+
+ def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
+ super().__init__()
+
+ # we need a linear projection since we need cat visual feature and obj feature
+ self.linear = nn.Linear(context_dim, query_dim)
+
+ self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
+ self.ff = FeedForward(query_dim, activation_fn="geglu")
+
+ self.norm1 = nn.LayerNorm(query_dim)
+ self.norm2 = nn.LayerNorm(query_dim)
+
+ self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
+ self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
+
+ self.enabled = True
+
+ def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
+ if not self.enabled:
+ return x
+
+ n_visual = x.shape[1]
+ objs = self.linear(objs)
+
+ x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
+ x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
+
+ return x
+
+
+@maybe_allow_in_graph
+class BasicTransformerBlock(nn.Module):
+ r"""
+ A basic Transformer block.
+
+ Parameters:
+ dim (`int`): The number of channels in the input and output.
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
+ attention_head_dim (`int`): The number of channels in each head.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
+ cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
+ num_embeds_ada_norm (:
+ obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
+ attention_bias (:
+ obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
+ only_cross_attention (`bool`, *optional*):
+ Whether to use only cross-attention layers. In this case two cross attention layers are used.
+ double_self_attention (`bool`, *optional*):
+ Whether to use two self-attention layers. In this case no cross attention layers are used.
+ upcast_attention (`bool`, *optional*):
+ Whether to upcast the attention computation to float32. This is useful for mixed precision training.
+ norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
+ Whether to use learnable elementwise affine parameters for normalization.
+ norm_type (`str`, *optional*, defaults to `"layer_norm"`):
+ The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
+ final_dropout (`bool` *optional*, defaults to False):
+ Whether to apply a final dropout after the last feed-forward layer.
+ attention_type (`str`, *optional*, defaults to `"default"`):
+ The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
+ positional_embeddings (`str`, *optional*, defaults to `None`):
+ The type of positional embeddings to apply to.
+ num_positional_embeddings (`int`, *optional*, defaults to `None`):
+ The maximum number of positional embeddings to apply.
+ """
+
+ def __init__(
+ self,
+ dim: int,
+ num_attention_heads: int,
+ attention_head_dim: int,
+ dropout=0.0,
+ cross_attention_dim: Optional[int] = None,
+ activation_fn: str = "geglu",
+ num_embeds_ada_norm: Optional[int] = None,
+ attention_bias: bool = False,
+ only_cross_attention: bool = False,
+ double_self_attention: bool = False,
+ upcast_attention: bool = False,
+ norm_elementwise_affine: bool = True,
+ norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
+ norm_eps: float = 1e-5,
+ final_dropout: bool = False,
+ attention_type: str = "default",
+ positional_embeddings: Optional[str] = None,
+ num_positional_embeddings: Optional[int] = None,
+ ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
+ ada_norm_bias: Optional[int] = None,
+ ff_inner_dim: Optional[int] = None,
+ ff_bias: bool = True,
+ attention_out_bias: bool = True,
+ ):
+ super().__init__()
+ self.only_cross_attention = only_cross_attention
+
+ self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
+ self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
+ self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
+ self.use_layer_norm = norm_type == "layer_norm"
+ self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
+
+ if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
+ raise ValueError(
+ f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
+ f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
+ )
+
+ if positional_embeddings and (num_positional_embeddings is None):
+ raise ValueError(
+ "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
+ )
+
+ if positional_embeddings == "sinusoidal":
+ self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
+ else:
+ self.pos_embed = None
+
+ # Define 3 blocks. Each block has its own normalization layer.
+ # 1. Self-Attn
+ if self.use_ada_layer_norm:
+ self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
+ elif self.use_ada_layer_norm_zero:
+ self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
+ elif self.use_ada_layer_norm_continuous:
+ self.norm1 = AdaLayerNormContinuous(
+ dim,
+ ada_norm_continous_conditioning_embedding_dim,
+ norm_elementwise_affine,
+ norm_eps,
+ ada_norm_bias,
+ "rms_norm",
+ )
+ else:
+ self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
+
+ self.attn1 = Attention(
+ query_dim=dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ dropout=dropout,
+ bias=attention_bias,
+ cross_attention_dim=cross_attention_dim if only_cross_attention else None,
+ upcast_attention=upcast_attention,
+ out_bias=attention_out_bias,
+ )
+
+ # 2. Cross-Attn
+ if cross_attention_dim is not None or double_self_attention:
+ # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
+ # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
+ # the second cross attention block.
+ if self.use_ada_layer_norm:
+ self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
+ elif self.use_ada_layer_norm_continuous:
+ self.norm2 = AdaLayerNormContinuous(
+ dim,
+ ada_norm_continous_conditioning_embedding_dim,
+ norm_elementwise_affine,
+ norm_eps,
+ ada_norm_bias,
+ "rms_norm",
+ )
+ else:
+ self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
+
+ self.attn2 = Attention(
+ query_dim=dim,
+ cross_attention_dim=cross_attention_dim if not double_self_attention else None,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ dropout=dropout,
+ bias=attention_bias,
+ upcast_attention=upcast_attention,
+ out_bias=attention_out_bias,
+ ) # is self-attn if encoder_hidden_states is none
+ else:
+ self.norm2 = None
+ self.attn2 = None
+
+ # 3. Feed-forward
+ if self.use_ada_layer_norm_continuous:
+ self.norm3 = AdaLayerNormContinuous(
+ dim,
+ ada_norm_continous_conditioning_embedding_dim,
+ norm_elementwise_affine,
+ norm_eps,
+ ada_norm_bias,
+ "layer_norm",
+ )
+ elif not self.use_ada_layer_norm_single:
+ self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
+
+ self.ff = FeedForward(
+ dim,
+ dropout=dropout,
+ activation_fn=activation_fn,
+ final_dropout=final_dropout,
+ inner_dim=ff_inner_dim,
+ bias=ff_bias,
+ )
+
+ # 4. Fuser
+ if attention_type == "gated" or attention_type == "gated-text-image":
+ self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
+
+ # 5. Scale-shift for PixArt-Alpha.
+ if self.use_ada_layer_norm_single:
+ self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
+
+ # let chunk size default to None
+ self._chunk_size = None
+ self._chunk_dim = 0
+
+ def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
+ # Sets chunk feed-forward
+ self._chunk_size = chunk_size
+ self._chunk_dim = dim
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ timestep: Optional[torch.LongTensor] = None,
+ cross_attention_kwargs: Dict[str, Any] = None,
+ class_labels: Optional[torch.LongTensor] = None,
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
+ ) -> torch.FloatTensor:
+ # Notice that normalization is always applied before the real computation in the following blocks.
+ # 0. Self-Attention
+ batch_size = hidden_states.shape[0]
+ if self.use_ada_layer_norm:
+ norm_hidden_states = self.norm1(hidden_states, timestep)
+ elif self.use_ada_layer_norm_zero:
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
+ hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
+ )
+ elif self.use_layer_norm:
+ norm_hidden_states = self.norm1(hidden_states)
+ elif self.use_ada_layer_norm_continuous:
+ norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
+ elif self.use_ada_layer_norm_single:
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
+ self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
+ ).chunk(6, dim=1)
+ norm_hidden_states = self.norm1(hidden_states)
+ norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
+ norm_hidden_states = norm_hidden_states.squeeze(1)
+ else:
+ raise ValueError("Incorrect norm used")
+
+ if self.pos_embed is not None:
+ norm_hidden_states = self.pos_embed(norm_hidden_states)
+
+ garment_features = []
+ garment_features.append(norm_hidden_states)
+
+ # 1. Retrieve lora scale.
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+
+ # 2. Prepare GLIGEN inputs
+ cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
+ gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
+
+ attn_output = self.attn1(
+ norm_hidden_states,
+ encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
+ attention_mask=attention_mask,
+ **cross_attention_kwargs,
+ )
+ if self.use_ada_layer_norm_zero:
+ attn_output = gate_msa.unsqueeze(1) * attn_output
+ elif self.use_ada_layer_norm_single:
+ attn_output = gate_msa * attn_output
+
+ hidden_states = attn_output + hidden_states
+ if hidden_states.ndim == 4:
+ hidden_states = hidden_states.squeeze(1)
+
+ # 2.5 GLIGEN Control
+ if gligen_kwargs is not None:
+ hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
+
+ # 3. Cross-Attention
+ if self.attn2 is not None:
+ if self.use_ada_layer_norm:
+ norm_hidden_states = self.norm2(hidden_states, timestep)
+ elif self.use_ada_layer_norm_zero or self.use_layer_norm:
+ norm_hidden_states = self.norm2(hidden_states)
+ elif self.use_ada_layer_norm_single:
+ # For PixArt norm2 isn't applied here:
+ # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
+ norm_hidden_states = hidden_states
+ elif self.use_ada_layer_norm_continuous:
+ norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
+ else:
+ raise ValueError("Incorrect norm")
+
+ if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
+ norm_hidden_states = self.pos_embed(norm_hidden_states)
+
+ attn_output = self.attn2(
+ norm_hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=encoder_attention_mask,
+ **cross_attention_kwargs,
+ )
+ hidden_states = attn_output + hidden_states
+
+ # 4. Feed-forward
+ if self.use_ada_layer_norm_continuous:
+ norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
+ elif not self.use_ada_layer_norm_single:
+ norm_hidden_states = self.norm3(hidden_states)
+
+ if self.use_ada_layer_norm_zero:
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
+
+ if self.use_ada_layer_norm_single:
+ norm_hidden_states = self.norm2(hidden_states)
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
+
+ if self._chunk_size is not None:
+ # "feed_forward_chunk_size" can be used to save memory
+ ff_output = _chunked_feed_forward(
+ self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
+ )
+ else:
+ ff_output = self.ff(norm_hidden_states, scale=lora_scale)
+
+ if self.use_ada_layer_norm_zero:
+ ff_output = gate_mlp.unsqueeze(1) * ff_output
+ elif self.use_ada_layer_norm_single:
+ ff_output = gate_mlp * ff_output
+
+ hidden_states = ff_output + hidden_states
+ if hidden_states.ndim == 4:
+ hidden_states = hidden_states.squeeze(1)
+
+ return hidden_states, garment_features
+
+
+@maybe_allow_in_graph
+class TemporalBasicTransformerBlock(nn.Module):
+ r"""
+ A basic Transformer block for video like data.
+
+ Parameters:
+ dim (`int`): The number of channels in the input and output.
+ time_mix_inner_dim (`int`): The number of channels for temporal attention.
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
+ attention_head_dim (`int`): The number of channels in each head.
+ cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
+ """
+
+ def __init__(
+ self,
+ dim: int,
+ time_mix_inner_dim: int,
+ num_attention_heads: int,
+ attention_head_dim: int,
+ cross_attention_dim: Optional[int] = None,
+ ):
+ super().__init__()
+ self.is_res = dim == time_mix_inner_dim
+
+ self.norm_in = nn.LayerNorm(dim)
+
+ # Define 3 blocks. Each block has its own normalization layer.
+ # 1. Self-Attn
+ self.norm_in = nn.LayerNorm(dim)
+ self.ff_in = FeedForward(
+ dim,
+ dim_out=time_mix_inner_dim,
+ activation_fn="geglu",
+ )
+
+ self.norm1 = nn.LayerNorm(time_mix_inner_dim)
+ self.attn1 = Attention(
+ query_dim=time_mix_inner_dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ cross_attention_dim=None,
+ )
+
+ # 2. Cross-Attn
+ if cross_attention_dim is not None:
+ # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
+ # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
+ # the second cross attention block.
+ self.norm2 = nn.LayerNorm(time_mix_inner_dim)
+ self.attn2 = Attention(
+ query_dim=time_mix_inner_dim,
+ cross_attention_dim=cross_attention_dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ ) # is self-attn if encoder_hidden_states is none
+ else:
+ self.norm2 = None
+ self.attn2 = None
+
+ # 3. Feed-forward
+ self.norm3 = nn.LayerNorm(time_mix_inner_dim)
+ self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
+
+ # let chunk size default to None
+ self._chunk_size = None
+ self._chunk_dim = None
+
+ def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
+ # Sets chunk feed-forward
+ self._chunk_size = chunk_size
+ # chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
+ self._chunk_dim = 1
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ num_frames: int,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ ) -> torch.FloatTensor:
+ # Notice that normalization is always applied before the real computation in the following blocks.
+ # 0. Self-Attention
+ batch_size = hidden_states.shape[0]
+
+ batch_frames, seq_length, channels = hidden_states.shape
+ batch_size = batch_frames // num_frames
+
+ hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
+ hidden_states = hidden_states.permute(0, 2, 1, 3)
+ hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
+
+ residual = hidden_states
+ hidden_states = self.norm_in(hidden_states)
+
+ if self._chunk_size is not None:
+ hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
+ else:
+ hidden_states = self.ff_in(hidden_states)
+
+ if self.is_res:
+ hidden_states = hidden_states + residual
+
+ norm_hidden_states = self.norm1(hidden_states)
+ attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
+ hidden_states = attn_output + hidden_states
+
+ # 3. Cross-Attention
+ if self.attn2 is not None:
+ norm_hidden_states = self.norm2(hidden_states)
+ attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
+ hidden_states = attn_output + hidden_states
+
+ # 4. Feed-forward
+ norm_hidden_states = self.norm3(hidden_states)
+
+ if self._chunk_size is not None:
+ ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
+ else:
+ ff_output = self.ff(norm_hidden_states)
+
+ if self.is_res:
+ hidden_states = ff_output + hidden_states
+ else:
+ hidden_states = ff_output
+
+ hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
+ hidden_states = hidden_states.permute(0, 2, 1, 3)
+ hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
+
+ return hidden_states
+
+
+class SkipFFTransformerBlock(nn.Module):
+ def __init__(
+ self,
+ dim: int,
+ num_attention_heads: int,
+ attention_head_dim: int,
+ kv_input_dim: int,
+ kv_input_dim_proj_use_bias: bool,
+ dropout=0.0,
+ cross_attention_dim: Optional[int] = None,
+ attention_bias: bool = False,
+ attention_out_bias: bool = True,
+ ):
+ super().__init__()
+ if kv_input_dim != dim:
+ self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
+ else:
+ self.kv_mapper = None
+
+ self.norm1 = RMSNorm(dim, 1e-06)
+
+ self.attn1 = Attention(
+ query_dim=dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ dropout=dropout,
+ bias=attention_bias,
+ cross_attention_dim=cross_attention_dim,
+ out_bias=attention_out_bias,
+ )
+
+ self.norm2 = RMSNorm(dim, 1e-06)
+
+ self.attn2 = Attention(
+ query_dim=dim,
+ cross_attention_dim=cross_attention_dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ dropout=dropout,
+ bias=attention_bias,
+ out_bias=attention_out_bias,
+ )
+
+ def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
+ cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
+
+ if self.kv_mapper is not None:
+ encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
+
+ norm_hidden_states = self.norm1(hidden_states)
+
+ attn_output = self.attn1(
+ norm_hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ **cross_attention_kwargs,
+ )
+
+ hidden_states = attn_output + hidden_states
+
+ norm_hidden_states = self.norm2(hidden_states)
+
+ attn_output = self.attn2(
+ norm_hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ **cross_attention_kwargs,
+ )
+
+ hidden_states = attn_output + hidden_states
+
+ return hidden_states
+
+
+class FeedForward(nn.Module):
+ r"""
+ A feed-forward layer.
+
+ Parameters:
+ dim (`int`): The number of channels in the input.
+ dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
+ mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
+ final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
+ bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
+ """
+
+ def __init__(
+ self,
+ dim: int,
+ dim_out: Optional[int] = None,
+ mult: int = 4,
+ dropout: float = 0.0,
+ activation_fn: str = "geglu",
+ final_dropout: bool = False,
+ inner_dim=None,
+ bias: bool = True,
+ ):
+ super().__init__()
+ if inner_dim is None:
+ inner_dim = int(dim * mult)
+ dim_out = dim_out if dim_out is not None else dim
+ linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
+
+ if activation_fn == "gelu":
+ act_fn = GELU(dim, inner_dim, bias=bias)
+ if activation_fn == "gelu-approximate":
+ act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
+ elif activation_fn == "geglu":
+ act_fn = GEGLU(dim, inner_dim, bias=bias)
+ elif activation_fn == "geglu-approximate":
+ act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
+
+ self.net = nn.ModuleList([])
+ # project in
+ self.net.append(act_fn)
+ # project dropout
+ self.net.append(nn.Dropout(dropout))
+ # project out
+ self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
+ # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
+ if final_dropout:
+ self.net.append(nn.Dropout(dropout))
+
+ def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
+ compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
+ for module in self.net:
+ if isinstance(module, compatible_cls):
+ hidden_states = module(hidden_states, scale)
+ else:
+ hidden_states = module(hidden_states)
+ return hidden_states
diff --git a/extensions-builtin/forge_space_idm_vton/src/attentionhacked_tryon.py b/extensions-builtin/forge_space_idm_vton/src/attentionhacked_tryon.py
new file mode 100644
index 00000000..9947e7c8
--- /dev/null
+++ b/extensions-builtin/forge_space_idm_vton/src/attentionhacked_tryon.py
@@ -0,0 +1,682 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import Any, Dict, Optional
+
+import torch
+import torch.nn.functional as F
+from torch import nn
+
+from diffusers.utils import USE_PEFT_BACKEND
+from diffusers.utils.torch_utils import maybe_allow_in_graph
+from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
+from diffusers.models.attention_processor import Attention
+from diffusers.models.embeddings import SinusoidalPositionalEmbedding
+from diffusers.models.lora import LoRACompatibleLinear
+from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
+
+
+def _chunked_feed_forward(
+ ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None
+):
+ # "feed_forward_chunk_size" can be used to save memory
+ if hidden_states.shape[chunk_dim] % chunk_size != 0:
+ raise ValueError(
+ f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
+ )
+
+ num_chunks = hidden_states.shape[chunk_dim] // chunk_size
+ if lora_scale is None:
+ ff_output = torch.cat(
+ [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
+ dim=chunk_dim,
+ )
+ else:
+ # TOOD(Patrick): LoRA scale can be removed once PEFT refactor is complete
+ ff_output = torch.cat(
+ [ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
+ dim=chunk_dim,
+ )
+
+ return ff_output
+
+
+@maybe_allow_in_graph
+class GatedSelfAttentionDense(nn.Module):
+ r"""
+ A gated self-attention dense layer that combines visual features and object features.
+
+ Parameters:
+ query_dim (`int`): The number of channels in the query.
+ context_dim (`int`): The number of channels in the context.
+ n_heads (`int`): The number of heads to use for attention.
+ d_head (`int`): The number of channels in each head.
+ """
+
+ def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
+ super().__init__()
+
+ # we need a linear projection since we need cat visual feature and obj feature
+ self.linear = nn.Linear(context_dim, query_dim)
+
+ self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
+ self.ff = FeedForward(query_dim, activation_fn="geglu")
+
+ self.norm1 = nn.LayerNorm(query_dim)
+ self.norm2 = nn.LayerNorm(query_dim)
+
+ self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
+ self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
+
+ self.enabled = True
+
+ def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
+ if not self.enabled:
+ return x
+
+ n_visual = x.shape[1]
+ objs = self.linear(objs)
+
+ x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
+ x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
+
+ return x
+
+
+@maybe_allow_in_graph
+class BasicTransformerBlock(nn.Module):
+ r"""
+ A basic Transformer block.
+
+ Parameters:
+ dim (`int`): The number of channels in the input and output.
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
+ attention_head_dim (`int`): The number of channels in each head.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
+ cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
+ num_embeds_ada_norm (:
+ obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
+ attention_bias (:
+ obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
+ only_cross_attention (`bool`, *optional*):
+ Whether to use only cross-attention layers. In this case two cross attention layers are used.
+ double_self_attention (`bool`, *optional*):
+ Whether to use two self-attention layers. In this case no cross attention layers are used.
+ upcast_attention (`bool`, *optional*):
+ Whether to upcast the attention computation to float32. This is useful for mixed precision training.
+ norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
+ Whether to use learnable elementwise affine parameters for normalization.
+ norm_type (`str`, *optional*, defaults to `"layer_norm"`):
+ The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
+ final_dropout (`bool` *optional*, defaults to False):
+ Whether to apply a final dropout after the last feed-forward layer.
+ attention_type (`str`, *optional*, defaults to `"default"`):
+ The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
+ positional_embeddings (`str`, *optional*, defaults to `None`):
+ The type of positional embeddings to apply to.
+ num_positional_embeddings (`int`, *optional*, defaults to `None`):
+ The maximum number of positional embeddings to apply.
+ """
+
+ def __init__(
+ self,
+ dim: int,
+ num_attention_heads: int,
+ attention_head_dim: int,
+ dropout=0.0,
+ cross_attention_dim: Optional[int] = None,
+ activation_fn: str = "geglu",
+ num_embeds_ada_norm: Optional[int] = None,
+ attention_bias: bool = False,
+ only_cross_attention: bool = False,
+ double_self_attention: bool = False,
+ upcast_attention: bool = False,
+ norm_elementwise_affine: bool = True,
+ norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
+ norm_eps: float = 1e-5,
+ final_dropout: bool = False,
+ attention_type: str = "default",
+ positional_embeddings: Optional[str] = None,
+ num_positional_embeddings: Optional[int] = None,
+ ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
+ ada_norm_bias: Optional[int] = None,
+ ff_inner_dim: Optional[int] = None,
+ ff_bias: bool = True,
+ attention_out_bias: bool = True,
+ ):
+ super().__init__()
+ self.only_cross_attention = only_cross_attention
+
+ self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
+ self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
+ self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
+ self.use_layer_norm = norm_type == "layer_norm"
+ self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
+
+ if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
+ raise ValueError(
+ f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
+ f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
+ )
+
+ if positional_embeddings and (num_positional_embeddings is None):
+ raise ValueError(
+ "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
+ )
+
+ if positional_embeddings == "sinusoidal":
+ self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
+ else:
+ self.pos_embed = None
+
+ # Define 3 blocks. Each block has its own normalization layer.
+ # 1. Self-Attn
+ if self.use_ada_layer_norm:
+ self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
+ elif self.use_ada_layer_norm_zero:
+ self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
+ elif self.use_ada_layer_norm_continuous:
+ self.norm1 = AdaLayerNormContinuous(
+ dim,
+ ada_norm_continous_conditioning_embedding_dim,
+ norm_elementwise_affine,
+ norm_eps,
+ ada_norm_bias,
+ "rms_norm",
+ )
+ else:
+ self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
+
+ self.attn1 = Attention(
+ query_dim=dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ dropout=dropout,
+ bias=attention_bias,
+ cross_attention_dim=cross_attention_dim if only_cross_attention else None,
+ upcast_attention=upcast_attention,
+ out_bias=attention_out_bias,
+ )
+
+ # 2. Cross-Attn
+ if cross_attention_dim is not None or double_self_attention:
+ # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
+ # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
+ # the second cross attention block.
+ if self.use_ada_layer_norm:
+ self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
+ elif self.use_ada_layer_norm_continuous:
+ self.norm2 = AdaLayerNormContinuous(
+ dim,
+ ada_norm_continous_conditioning_embedding_dim,
+ norm_elementwise_affine,
+ norm_eps,
+ ada_norm_bias,
+ "rms_norm",
+ )
+ else:
+ self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
+
+ self.attn2 = Attention(
+ query_dim=dim,
+ cross_attention_dim=cross_attention_dim if not double_self_attention else None,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ dropout=dropout,
+ bias=attention_bias,
+ upcast_attention=upcast_attention,
+ out_bias=attention_out_bias,
+ ) # is self-attn if encoder_hidden_states is none
+ else:
+ self.norm2 = None
+ self.attn2 = None
+
+ # 3. Feed-forward
+ if self.use_ada_layer_norm_continuous:
+ self.norm3 = AdaLayerNormContinuous(
+ dim,
+ ada_norm_continous_conditioning_embedding_dim,
+ norm_elementwise_affine,
+ norm_eps,
+ ada_norm_bias,
+ "layer_norm",
+ )
+ elif not self.use_ada_layer_norm_single:
+ self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
+
+ self.ff = FeedForward(
+ dim,
+ dropout=dropout,
+ activation_fn=activation_fn,
+ final_dropout=final_dropout,
+ inner_dim=ff_inner_dim,
+ bias=ff_bias,
+ )
+
+ # 4. Fuser
+ if attention_type == "gated" or attention_type == "gated-text-image":
+ self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
+
+ # 5. Scale-shift for PixArt-Alpha.
+ if self.use_ada_layer_norm_single:
+ self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
+
+ # let chunk size default to None
+ self._chunk_size = None
+ self._chunk_dim = 0
+
+ def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
+ # Sets chunk feed-forward
+ self._chunk_size = chunk_size
+ self._chunk_dim = dim
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ timestep: Optional[torch.LongTensor] = None,
+ cross_attention_kwargs: Dict[str, Any] = None,
+ class_labels: Optional[torch.LongTensor] = None,
+ garment_features=None,
+ curr_garment_feat_idx=0,
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
+ ) -> torch.FloatTensor:
+ # Notice that normalization is always applied before the real computation in the following blocks.
+ # 0. Self-Attention
+ batch_size = hidden_states.shape[0]
+
+
+
+ if self.use_ada_layer_norm:
+ norm_hidden_states = self.norm1(hidden_states, timestep)
+ elif self.use_ada_layer_norm_zero:
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
+ hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
+ )
+ elif self.use_layer_norm:
+ norm_hidden_states = self.norm1(hidden_states)
+ elif self.use_ada_layer_norm_continuous:
+ norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
+ elif self.use_ada_layer_norm_single:
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
+ self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
+ ).chunk(6, dim=1)
+ norm_hidden_states = self.norm1(hidden_states)
+ norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
+ norm_hidden_states = norm_hidden_states.squeeze(1)
+ else:
+ raise ValueError("Incorrect norm used")
+
+ if self.pos_embed is not None:
+ norm_hidden_states = self.pos_embed(norm_hidden_states)
+
+ # 1. Retrieve lora scale.
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+
+ # 2. Prepare GLIGEN inputs
+ cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
+ gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
+
+
+ #type2
+ modify_norm_hidden_states = torch.cat([norm_hidden_states,garment_features[curr_garment_feat_idx]], dim=1)
+ curr_garment_feat_idx +=1
+ attn_output = self.attn1(
+ #norm_hidden_states,
+ modify_norm_hidden_states,
+ encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
+ attention_mask=attention_mask,
+ **cross_attention_kwargs,
+ )
+ if self.use_ada_layer_norm_zero:
+ attn_output = gate_msa.unsqueeze(1) * attn_output
+ elif self.use_ada_layer_norm_single:
+ attn_output = gate_msa * attn_output
+
+
+ #type2
+ hidden_states = attn_output[:,:hidden_states.shape[-2],:] + hidden_states
+
+
+
+
+ if hidden_states.ndim == 4:
+ hidden_states = hidden_states.squeeze(1)
+
+ # 2.5 GLIGEN Control
+ if gligen_kwargs is not None:
+ hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
+
+ # 3. Cross-Attention
+ if self.attn2 is not None:
+ if self.use_ada_layer_norm:
+ norm_hidden_states = self.norm2(hidden_states, timestep)
+ elif self.use_ada_layer_norm_zero or self.use_layer_norm:
+ norm_hidden_states = self.norm2(hidden_states)
+ elif self.use_ada_layer_norm_single:
+ # For PixArt norm2 isn't applied here:
+ # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
+ norm_hidden_states = hidden_states
+ elif self.use_ada_layer_norm_continuous:
+ norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
+ else:
+ raise ValueError("Incorrect norm")
+
+ if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
+ norm_hidden_states = self.pos_embed(norm_hidden_states)
+
+ attn_output = self.attn2(
+ norm_hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=encoder_attention_mask,
+ **cross_attention_kwargs,
+ )
+ hidden_states = attn_output + hidden_states
+
+ # 4. Feed-forward
+ if self.use_ada_layer_norm_continuous:
+ norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
+ elif not self.use_ada_layer_norm_single:
+ norm_hidden_states = self.norm3(hidden_states)
+
+ if self.use_ada_layer_norm_zero:
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
+
+ if self.use_ada_layer_norm_single:
+ norm_hidden_states = self.norm2(hidden_states)
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
+
+ if self._chunk_size is not None:
+ # "feed_forward_chunk_size" can be used to save memory
+ ff_output = _chunked_feed_forward(
+ self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
+ )
+ else:
+ ff_output = self.ff(norm_hidden_states, scale=lora_scale)
+
+ if self.use_ada_layer_norm_zero:
+ ff_output = gate_mlp.unsqueeze(1) * ff_output
+ elif self.use_ada_layer_norm_single:
+ ff_output = gate_mlp * ff_output
+
+ hidden_states = ff_output + hidden_states
+ if hidden_states.ndim == 4:
+ hidden_states = hidden_states.squeeze(1)
+ return hidden_states,curr_garment_feat_idx
+
+
+@maybe_allow_in_graph
+class TemporalBasicTransformerBlock(nn.Module):
+ r"""
+ A basic Transformer block for video like data.
+
+ Parameters:
+ dim (`int`): The number of channels in the input and output.
+ time_mix_inner_dim (`int`): The number of channels for temporal attention.
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
+ attention_head_dim (`int`): The number of channels in each head.
+ cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
+ """
+
+ def __init__(
+ self,
+ dim: int,
+ time_mix_inner_dim: int,
+ num_attention_heads: int,
+ attention_head_dim: int,
+ cross_attention_dim: Optional[int] = None,
+ ):
+ super().__init__()
+ self.is_res = dim == time_mix_inner_dim
+
+ self.norm_in = nn.LayerNorm(dim)
+
+ # Define 3 blocks. Each block has its own normalization layer.
+ # 1. Self-Attn
+ self.norm_in = nn.LayerNorm(dim)
+ self.ff_in = FeedForward(
+ dim,
+ dim_out=time_mix_inner_dim,
+ activation_fn="geglu",
+ )
+
+ self.norm1 = nn.LayerNorm(time_mix_inner_dim)
+ self.attn1 = Attention(
+ query_dim=time_mix_inner_dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ cross_attention_dim=None,
+ )
+
+ # 2. Cross-Attn
+ if cross_attention_dim is not None:
+ # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
+ # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
+ # the second cross attention block.
+ self.norm2 = nn.LayerNorm(time_mix_inner_dim)
+ self.attn2 = Attention(
+ query_dim=time_mix_inner_dim,
+ cross_attention_dim=cross_attention_dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ ) # is self-attn if encoder_hidden_states is none
+ else:
+ self.norm2 = None
+ self.attn2 = None
+
+ # 3. Feed-forward
+ self.norm3 = nn.LayerNorm(time_mix_inner_dim)
+ self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
+
+ # let chunk size default to None
+ self._chunk_size = None
+ self._chunk_dim = None
+
+ def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
+ # Sets chunk feed-forward
+ self._chunk_size = chunk_size
+ # chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
+ self._chunk_dim = 1
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ num_frames: int,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ ) -> torch.FloatTensor:
+ # Notice that normalization is always applied before the real computation in the following blocks.
+ # 0. Self-Attention
+ batch_size = hidden_states.shape[0]
+
+ batch_frames, seq_length, channels = hidden_states.shape
+ batch_size = batch_frames // num_frames
+
+ hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
+ hidden_states = hidden_states.permute(0, 2, 1, 3)
+ hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
+
+ residual = hidden_states
+ hidden_states = self.norm_in(hidden_states)
+
+ if self._chunk_size is not None:
+ hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
+ else:
+ hidden_states = self.ff_in(hidden_states)
+
+ if self.is_res:
+ hidden_states = hidden_states + residual
+
+ norm_hidden_states = self.norm1(hidden_states)
+ attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
+ hidden_states = attn_output + hidden_states
+
+ # 3. Cross-Attention
+ if self.attn2 is not None:
+ norm_hidden_states = self.norm2(hidden_states)
+ attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
+ hidden_states = attn_output + hidden_states
+
+ # 4. Feed-forward
+ norm_hidden_states = self.norm3(hidden_states)
+
+ if self._chunk_size is not None:
+ ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
+ else:
+ ff_output = self.ff(norm_hidden_states)
+
+ if self.is_res:
+ hidden_states = ff_output + hidden_states
+ else:
+ hidden_states = ff_output
+
+ hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
+ hidden_states = hidden_states.permute(0, 2, 1, 3)
+ hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
+
+ return hidden_states
+
+
+class SkipFFTransformerBlock(nn.Module):
+ def __init__(
+ self,
+ dim: int,
+ num_attention_heads: int,
+ attention_head_dim: int,
+ kv_input_dim: int,
+ kv_input_dim_proj_use_bias: bool,
+ dropout=0.0,
+ cross_attention_dim: Optional[int] = None,
+ attention_bias: bool = False,
+ attention_out_bias: bool = True,
+ ):
+ super().__init__()
+ if kv_input_dim != dim:
+ self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
+ else:
+ self.kv_mapper = None
+
+ self.norm1 = RMSNorm(dim, 1e-06)
+
+ self.attn1 = Attention(
+ query_dim=dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ dropout=dropout,
+ bias=attention_bias,
+ cross_attention_dim=cross_attention_dim,
+ out_bias=attention_out_bias,
+ )
+
+ self.norm2 = RMSNorm(dim, 1e-06)
+
+ self.attn2 = Attention(
+ query_dim=dim,
+ cross_attention_dim=cross_attention_dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ dropout=dropout,
+ bias=attention_bias,
+ out_bias=attention_out_bias,
+ )
+
+ def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
+ cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
+
+ if self.kv_mapper is not None:
+ encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
+
+ norm_hidden_states = self.norm1(hidden_states)
+
+ attn_output = self.attn1(
+ norm_hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ **cross_attention_kwargs,
+ )
+
+ hidden_states = attn_output + hidden_states
+
+ norm_hidden_states = self.norm2(hidden_states)
+
+ attn_output = self.attn2(
+ norm_hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ **cross_attention_kwargs,
+ )
+
+ hidden_states = attn_output + hidden_states
+
+ return hidden_states
+
+
+class FeedForward(nn.Module):
+ r"""
+ A feed-forward layer.
+
+ Parameters:
+ dim (`int`): The number of channels in the input.
+ dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
+ mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
+ final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
+ bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
+ """
+
+ def __init__(
+ self,
+ dim: int,
+ dim_out: Optional[int] = None,
+ mult: int = 4,
+ dropout: float = 0.0,
+ activation_fn: str = "geglu",
+ final_dropout: bool = False,
+ inner_dim=None,
+ bias: bool = True,
+ ):
+ super().__init__()
+ if inner_dim is None:
+ inner_dim = int(dim * mult)
+ dim_out = dim_out if dim_out is not None else dim
+ linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
+
+ if activation_fn == "gelu":
+ act_fn = GELU(dim, inner_dim, bias=bias)
+ if activation_fn == "gelu-approximate":
+ act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
+ elif activation_fn == "geglu":
+ act_fn = GEGLU(dim, inner_dim, bias=bias)
+ elif activation_fn == "geglu-approximate":
+ act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
+
+ self.net = nn.ModuleList([])
+ # project in
+ self.net.append(act_fn)
+ # project dropout
+ self.net.append(nn.Dropout(dropout))
+ # project out
+ self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
+ # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
+ if final_dropout:
+ self.net.append(nn.Dropout(dropout))
+
+ def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
+ compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
+ for module in self.net:
+ if isinstance(module, compatible_cls):
+ hidden_states = module(hidden_states, scale)
+ else:
+ hidden_states = module(hidden_states)
+ return hidden_states
diff --git a/extensions-builtin/forge_space_idm_vton/src/transformerhacked_garmnet.py b/extensions-builtin/forge_space_idm_vton/src/transformerhacked_garmnet.py
new file mode 100644
index 00000000..488ceb24
--- /dev/null
+++ b/extensions-builtin/forge_space_idm_vton/src/transformerhacked_garmnet.py
@@ -0,0 +1,460 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from dataclasses import dataclass
+from typing import Any, Dict, Optional
+
+import torch
+import torch.nn.functional as F
+from torch import nn
+
+from diffusers.configuration_utils import ConfigMixin, register_to_config
+from diffusers.models.embeddings import ImagePositionalEmbeddings
+from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_torch_version
+from src.attentionhacked_garmnet import BasicTransformerBlock
+from diffusers.models.embeddings import PatchEmbed, PixArtAlphaTextProjection
+from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
+from diffusers.models.modeling_utils import ModelMixin
+from diffusers.models.normalization import AdaLayerNormSingle
+
+
+@dataclass
+class Transformer2DModelOutput(BaseOutput):
+ """
+ The output of [`Transformer2DModel`].
+
+ Args:
+ sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
+ The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
+ distributions for the unnoised latent pixels.
+ """
+
+ sample: torch.FloatTensor
+
+
+class Transformer2DModel(ModelMixin, ConfigMixin):
+ """
+ A 2D Transformer model for image-like data.
+
+ Parameters:
+ num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
+ attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
+ in_channels (`int`, *optional*):
+ The number of channels in the input and output (specify if the input is **continuous**).
+ num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
+ cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
+ sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
+ This is fixed during training since it is used to learn a number of position embeddings.
+ num_vector_embeds (`int`, *optional*):
+ The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
+ Includes the class for the masked latent pixel.
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
+ num_embeds_ada_norm ( `int`, *optional*):
+ The number of diffusion steps used during training. Pass if at least one of the norm_layers is
+ `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
+ added to the hidden states.
+
+ During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
+ attention_bias (`bool`, *optional*):
+ Configure if the `TransformerBlocks` attention should contain a bias parameter.
+ """
+
+ _supports_gradient_checkpointing = True
+
+ @register_to_config
+ def __init__(
+ self,
+ num_attention_heads: int = 16,
+ attention_head_dim: int = 88,
+ in_channels: Optional[int] = None,
+ out_channels: Optional[int] = None,
+ num_layers: int = 1,
+ dropout: float = 0.0,
+ norm_num_groups: int = 32,
+ cross_attention_dim: Optional[int] = None,
+ attention_bias: bool = False,
+ sample_size: Optional[int] = None,
+ num_vector_embeds: Optional[int] = None,
+ patch_size: Optional[int] = None,
+ activation_fn: str = "geglu",
+ num_embeds_ada_norm: Optional[int] = None,
+ use_linear_projection: bool = False,
+ only_cross_attention: bool = False,
+ double_self_attention: bool = False,
+ upcast_attention: bool = False,
+ norm_type: str = "layer_norm",
+ norm_elementwise_affine: bool = True,
+ norm_eps: float = 1e-5,
+ attention_type: str = "default",
+ caption_channels: int = None,
+ ):
+ super().__init__()
+ self.use_linear_projection = use_linear_projection
+ self.num_attention_heads = num_attention_heads
+ self.attention_head_dim = attention_head_dim
+ inner_dim = num_attention_heads * attention_head_dim
+
+ conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
+ linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
+
+ # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
+ # Define whether input is continuous or discrete depending on configuration
+ self.is_input_continuous = (in_channels is not None) and (patch_size is None)
+ self.is_input_vectorized = num_vector_embeds is not None
+ self.is_input_patches = in_channels is not None and patch_size is not None
+
+ if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
+ deprecation_message = (
+ f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
+ " incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
+ " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
+ " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
+ " would be very nice if you could open a Pull request for the `transformer/config.json` file"
+ )
+ deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
+ norm_type = "ada_norm"
+
+ if self.is_input_continuous and self.is_input_vectorized:
+ raise ValueError(
+ f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
+ " sure that either `in_channels` or `num_vector_embeds` is None."
+ )
+ elif self.is_input_vectorized and self.is_input_patches:
+ raise ValueError(
+ f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
+ " sure that either `num_vector_embeds` or `num_patches` is None."
+ )
+ elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
+ raise ValueError(
+ f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
+ f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
+ )
+
+ # 2. Define input layers
+ if self.is_input_continuous:
+ self.in_channels = in_channels
+
+ self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
+ if use_linear_projection:
+ self.proj_in = linear_cls(in_channels, inner_dim)
+ else:
+ self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
+ elif self.is_input_vectorized:
+ assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
+ assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
+
+ self.height = sample_size
+ self.width = sample_size
+ self.num_vector_embeds = num_vector_embeds
+ self.num_latent_pixels = self.height * self.width
+
+ self.latent_image_embedding = ImagePositionalEmbeddings(
+ num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
+ )
+ elif self.is_input_patches:
+ assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
+
+ self.height = sample_size
+ self.width = sample_size
+
+ self.patch_size = patch_size
+ interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1
+ interpolation_scale = max(interpolation_scale, 1)
+ self.pos_embed = PatchEmbed(
+ height=sample_size,
+ width=sample_size,
+ patch_size=patch_size,
+ in_channels=in_channels,
+ embed_dim=inner_dim,
+ interpolation_scale=interpolation_scale,
+ )
+
+ # 3. Define transformers blocks
+ self.transformer_blocks = nn.ModuleList(
+ [
+ BasicTransformerBlock(
+ inner_dim,
+ num_attention_heads,
+ attention_head_dim,
+ dropout=dropout,
+ cross_attention_dim=cross_attention_dim,
+ activation_fn=activation_fn,
+ num_embeds_ada_norm=num_embeds_ada_norm,
+ attention_bias=attention_bias,
+ only_cross_attention=only_cross_attention,
+ double_self_attention=double_self_attention,
+ upcast_attention=upcast_attention,
+ norm_type=norm_type,
+ norm_elementwise_affine=norm_elementwise_affine,
+ norm_eps=norm_eps,
+ attention_type=attention_type,
+ )
+ for d in range(num_layers)
+ ]
+ )
+
+ # 4. Define output layers
+ self.out_channels = in_channels if out_channels is None else out_channels
+ if self.is_input_continuous:
+ # TODO: should use out_channels for continuous projections
+ if use_linear_projection:
+ self.proj_out = linear_cls(inner_dim, in_channels)
+ else:
+ self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
+ elif self.is_input_vectorized:
+ self.norm_out = nn.LayerNorm(inner_dim)
+ self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
+ elif self.is_input_patches and norm_type != "ada_norm_single":
+ self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
+ self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
+ self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
+ elif self.is_input_patches and norm_type == "ada_norm_single":
+ self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
+ self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
+ self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
+
+ # 5. PixArt-Alpha blocks.
+ self.adaln_single = None
+ self.use_additional_conditions = False
+ if norm_type == "ada_norm_single":
+ self.use_additional_conditions = self.config.sample_size == 128
+ # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
+ # additional conditions until we find better name
+ self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
+
+ self.caption_projection = None
+ if caption_channels is not None:
+ self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
+
+ self.gradient_checkpointing = False
+
+ def _set_gradient_checkpointing(self, module, value=False):
+ if hasattr(module, "gradient_checkpointing"):
+ module.gradient_checkpointing = value
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ timestep: Optional[torch.LongTensor] = None,
+ added_cond_kwargs: Dict[str, torch.Tensor] = None,
+ class_labels: Optional[torch.LongTensor] = None,
+ cross_attention_kwargs: Dict[str, Any] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ return_dict: bool = True,
+ ):
+ """
+ The [`Transformer2DModel`] forward method.
+
+ Args:
+ hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
+ Input `hidden_states`.
+ encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
+ Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
+ self-attention.
+ timestep ( `torch.LongTensor`, *optional*):
+ Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
+ class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
+ Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
+ `AdaLayerZeroNorm`.
+ cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
+ `self.processor` in
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
+ attention_mask ( `torch.Tensor`, *optional*):
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
+ negative values to the attention scores corresponding to "discard" tokens.
+ encoder_attention_mask ( `torch.Tensor`, *optional*):
+ Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
+
+ * Mask `(batch, sequence_length)` True = keep, False = discard.
+ * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
+
+ If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
+ above. This bias will be added to the cross-attention scores.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
+ tuple.
+
+ Returns:
+ If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
+ `tuple` where the first element is the sample tensor.
+ """
+ # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
+ # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
+ # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
+ # expects mask of shape:
+ # [batch, key_tokens]
+ # adds singleton query_tokens dimension:
+ # [batch, 1, key_tokens]
+ # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
+ # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
+ # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
+ if attention_mask is not None and attention_mask.ndim == 2:
+ # assume that mask is expressed as:
+ # (1 = keep, 0 = discard)
+ # convert mask into a bias that can be added to attention scores:
+ # (keep = +0, discard = -10000.0)
+ attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
+ attention_mask = attention_mask.unsqueeze(1)
+
+ # convert encoder_attention_mask to a bias the same way we do for attention_mask
+ if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
+ encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
+ encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
+
+ # Retrieve lora scale.
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+
+ # 1. Input
+ if self.is_input_continuous:
+ batch, _, height, width = hidden_states.shape
+ residual = hidden_states
+
+ hidden_states = self.norm(hidden_states)
+ if not self.use_linear_projection:
+ hidden_states = (
+ self.proj_in(hidden_states, scale=lora_scale)
+ if not USE_PEFT_BACKEND
+ else self.proj_in(hidden_states)
+ )
+ inner_dim = hidden_states.shape[1]
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
+ else:
+ inner_dim = hidden_states.shape[1]
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
+ hidden_states = (
+ self.proj_in(hidden_states, scale=lora_scale)
+ if not USE_PEFT_BACKEND
+ else self.proj_in(hidden_states)
+ )
+
+ elif self.is_input_vectorized:
+ hidden_states = self.latent_image_embedding(hidden_states)
+ elif self.is_input_patches:
+ height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
+ hidden_states = self.pos_embed(hidden_states)
+
+ if self.adaln_single is not None:
+ if self.use_additional_conditions and added_cond_kwargs is None:
+ raise ValueError(
+ "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
+ )
+ batch_size = hidden_states.shape[0]
+ timestep, embedded_timestep = self.adaln_single(
+ timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
+ )
+
+ # 2. Blocks
+ if self.caption_projection is not None:
+ batch_size = hidden_states.shape[0]
+ encoder_hidden_states = self.caption_projection(encoder_hidden_states)
+ encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
+
+ garment_features = []
+ for block in self.transformer_blocks:
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
+ hidden_states,out_garment_feat = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(block),
+ hidden_states,
+ attention_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ timestep,
+ cross_attention_kwargs,
+ class_labels,
+ **ckpt_kwargs,
+ )
+ else:
+ hidden_states,out_garment_feat = block(
+ hidden_states,
+ attention_mask=attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ timestep=timestep,
+ cross_attention_kwargs=cross_attention_kwargs,
+ class_labels=class_labels,
+ )
+ garment_features += out_garment_feat
+ # 3. Output
+ if self.is_input_continuous:
+ if not self.use_linear_projection:
+ hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
+ hidden_states = (
+ self.proj_out(hidden_states, scale=lora_scale)
+ if not USE_PEFT_BACKEND
+ else self.proj_out(hidden_states)
+ )
+ else:
+ hidden_states = (
+ self.proj_out(hidden_states, scale=lora_scale)
+ if not USE_PEFT_BACKEND
+ else self.proj_out(hidden_states)
+ )
+ hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
+
+ output = hidden_states + residual
+ elif self.is_input_vectorized:
+ hidden_states = self.norm_out(hidden_states)
+ logits = self.out(hidden_states)
+ # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
+ logits = logits.permute(0, 2, 1)
+
+ # log(p(x_0))
+ output = F.log_softmax(logits.double(), dim=1).float()
+
+ if self.is_input_patches:
+ if self.config.norm_type != "ada_norm_single":
+ conditioning = self.transformer_blocks[0].norm1.emb(
+ timestep, class_labels, hidden_dtype=hidden_states.dtype
+ )
+ shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
+ hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
+ hidden_states = self.proj_out_2(hidden_states)
+ elif self.config.norm_type == "ada_norm_single":
+ shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
+ hidden_states = self.norm_out(hidden_states)
+ # Modulation
+ hidden_states = hidden_states * (1 + scale) + shift
+ hidden_states = self.proj_out(hidden_states)
+ hidden_states = hidden_states.squeeze(1)
+
+ # unpatchify
+ if self.adaln_single is None:
+ height = width = int(hidden_states.shape[1] ** 0.5)
+ hidden_states = hidden_states.reshape(
+ shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
+ )
+ hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
+ output = hidden_states.reshape(
+ shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
+ )
+
+ if not return_dict:
+ return (output,) ,garment_features
+
+ return Transformer2DModelOutput(sample=output),garment_features
diff --git a/extensions-builtin/forge_space_idm_vton/src/transformerhacked_tryon.py b/extensions-builtin/forge_space_idm_vton/src/transformerhacked_tryon.py
new file mode 100644
index 00000000..9a4ac5da
--- /dev/null
+++ b/extensions-builtin/forge_space_idm_vton/src/transformerhacked_tryon.py
@@ -0,0 +1,467 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from dataclasses import dataclass
+from typing import Any, Dict, Optional
+
+import torch
+import torch.nn.functional as F
+from torch import nn
+
+from diffusers.configuration_utils import ConfigMixin, register_to_config
+from diffusers.models.embeddings import ImagePositionalEmbeddings
+from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_torch_version
+from src.attentionhacked_tryon import BasicTransformerBlock
+from diffusers.models.embeddings import PatchEmbed, PixArtAlphaTextProjection
+from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
+from diffusers.models.modeling_utils import ModelMixin
+from diffusers.models.normalization import AdaLayerNormSingle
+
+
+@dataclass
+class Transformer2DModelOutput(BaseOutput):
+ """
+ The output of [`Transformer2DModel`].
+
+ Args:
+ sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
+ The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
+ distributions for the unnoised latent pixels.
+ """
+
+ sample: torch.FloatTensor
+
+
+class Transformer2DModel(ModelMixin, ConfigMixin):
+ """
+ A 2D Transformer model for image-like data.
+
+ Parameters:
+ num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
+ attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
+ in_channels (`int`, *optional*):
+ The number of channels in the input and output (specify if the input is **continuous**).
+ num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
+ cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
+ sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
+ This is fixed during training since it is used to learn a number of position embeddings.
+ num_vector_embeds (`int`, *optional*):
+ The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
+ Includes the class for the masked latent pixel.
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
+ num_embeds_ada_norm ( `int`, *optional*):
+ The number of diffusion steps used during training. Pass if at least one of the norm_layers is
+ `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
+ added to the hidden states.
+
+ During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
+ attention_bias (`bool`, *optional*):
+ Configure if the `TransformerBlocks` attention should contain a bias parameter.
+ """
+
+ _supports_gradient_checkpointing = True
+
+ @register_to_config
+ def __init__(
+ self,
+ num_attention_heads: int = 16,
+ attention_head_dim: int = 88,
+ in_channels: Optional[int] = None,
+ out_channels: Optional[int] = None,
+ num_layers: int = 1,
+ dropout: float = 0.0,
+ norm_num_groups: int = 32,
+ cross_attention_dim: Optional[int] = None,
+ attention_bias: bool = False,
+ sample_size: Optional[int] = None,
+ num_vector_embeds: Optional[int] = None,
+ patch_size: Optional[int] = None,
+ activation_fn: str = "geglu",
+ num_embeds_ada_norm: Optional[int] = None,
+ use_linear_projection: bool = False,
+ only_cross_attention: bool = False,
+ double_self_attention: bool = False,
+ upcast_attention: bool = False,
+ norm_type: str = "layer_norm",
+ norm_elementwise_affine: bool = True,
+ norm_eps: float = 1e-5,
+ attention_type: str = "default",
+ caption_channels: int = None,
+ ):
+ super().__init__()
+ self.use_linear_projection = use_linear_projection
+ self.num_attention_heads = num_attention_heads
+ self.attention_head_dim = attention_head_dim
+ inner_dim = num_attention_heads * attention_head_dim
+
+ conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
+ linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
+
+ # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
+ # Define whether input is continuous or discrete depending on configuration
+ self.is_input_continuous = (in_channels is not None) and (patch_size is None)
+ self.is_input_vectorized = num_vector_embeds is not None
+ self.is_input_patches = in_channels is not None and patch_size is not None
+
+ if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
+ deprecation_message = (
+ f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
+ " incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
+ " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
+ " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
+ " would be very nice if you could open a Pull request for the `transformer/config.json` file"
+ )
+ deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
+ norm_type = "ada_norm"
+
+ if self.is_input_continuous and self.is_input_vectorized:
+ raise ValueError(
+ f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
+ " sure that either `in_channels` or `num_vector_embeds` is None."
+ )
+ elif self.is_input_vectorized and self.is_input_patches:
+ raise ValueError(
+ f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
+ " sure that either `num_vector_embeds` or `num_patches` is None."
+ )
+ elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
+ raise ValueError(
+ f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
+ f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
+ )
+
+ # 2. Define input layers
+ if self.is_input_continuous:
+ self.in_channels = in_channels
+
+ self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
+ if use_linear_projection:
+ self.proj_in = linear_cls(in_channels, inner_dim)
+ else:
+ self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
+ elif self.is_input_vectorized:
+ assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
+ assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
+
+ self.height = sample_size
+ self.width = sample_size
+ self.num_vector_embeds = num_vector_embeds
+ self.num_latent_pixels = self.height * self.width
+
+ self.latent_image_embedding = ImagePositionalEmbeddings(
+ num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
+ )
+ elif self.is_input_patches:
+ assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
+
+ self.height = sample_size
+ self.width = sample_size
+
+ self.patch_size = patch_size
+ interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1
+ interpolation_scale = max(interpolation_scale, 1)
+ self.pos_embed = PatchEmbed(
+ height=sample_size,
+ width=sample_size,
+ patch_size=patch_size,
+ in_channels=in_channels,
+ embed_dim=inner_dim,
+ interpolation_scale=interpolation_scale,
+ )
+
+ # 3. Define transformers blocks
+ self.transformer_blocks = nn.ModuleList(
+ [
+ BasicTransformerBlock(
+ inner_dim,
+ num_attention_heads,
+ attention_head_dim,
+ dropout=dropout,
+ cross_attention_dim=cross_attention_dim,
+ activation_fn=activation_fn,
+ num_embeds_ada_norm=num_embeds_ada_norm,
+ attention_bias=attention_bias,
+ only_cross_attention=only_cross_attention,
+ double_self_attention=double_self_attention,
+ upcast_attention=upcast_attention,
+ norm_type=norm_type,
+ norm_elementwise_affine=norm_elementwise_affine,
+ norm_eps=norm_eps,
+ attention_type=attention_type,
+ )
+ for d in range(num_layers)
+ ]
+ )
+
+ # 4. Define output layers
+ self.out_channels = in_channels if out_channels is None else out_channels
+ if self.is_input_continuous:
+ # TODO: should use out_channels for continuous projections
+ if use_linear_projection:
+ self.proj_out = linear_cls(inner_dim, in_channels)
+ else:
+ self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
+ elif self.is_input_vectorized:
+ self.norm_out = nn.LayerNorm(inner_dim)
+ self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
+ elif self.is_input_patches and norm_type != "ada_norm_single":
+ self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
+ self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
+ self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
+ elif self.is_input_patches and norm_type == "ada_norm_single":
+ self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
+ self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
+ self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
+
+ # 5. PixArt-Alpha blocks.
+ self.adaln_single = None
+ self.use_additional_conditions = False
+ if norm_type == "ada_norm_single":
+ self.use_additional_conditions = self.config.sample_size == 128
+ # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
+ # additional conditions until we find better name
+ self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
+
+ self.caption_projection = None
+ if caption_channels is not None:
+ self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
+
+ self.gradient_checkpointing = False
+
+ def _set_gradient_checkpointing(self, module, value=False):
+ if hasattr(module, "gradient_checkpointing"):
+ module.gradient_checkpointing = value
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ timestep: Optional[torch.LongTensor] = None,
+ added_cond_kwargs: Dict[str, torch.Tensor] = None,
+ class_labels: Optional[torch.LongTensor] = None,
+ cross_attention_kwargs: Dict[str, Any] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ garment_features=None,
+ curr_garment_feat_idx=0,
+ return_dict: bool = True,
+ ):
+ """
+ The [`Transformer2DModel`] forward method.
+
+ Args:
+ hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
+ Input `hidden_states`.
+ encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
+ Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
+ self-attention.
+ timestep ( `torch.LongTensor`, *optional*):
+ Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
+ class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
+ Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
+ `AdaLayerZeroNorm`.
+ cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
+ `self.processor` in
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
+ attention_mask ( `torch.Tensor`, *optional*):
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
+ negative values to the attention scores corresponding to "discard" tokens.
+ encoder_attention_mask ( `torch.Tensor`, *optional*):
+ Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
+
+ * Mask `(batch, sequence_length)` True = keep, False = discard.
+ * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
+
+ If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
+ above. This bias will be added to the cross-attention scores.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
+ tuple.
+
+ Returns:
+ If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
+ `tuple` where the first element is the sample tensor.
+ """
+ # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
+ # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
+ # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
+ # expects mask of shape:
+ # [batch, key_tokens]
+ # adds singleton query_tokens dimension:
+ # [batch, 1, key_tokens]
+ # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
+ # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
+ # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
+ if attention_mask is not None and attention_mask.ndim == 2:
+ # assume that mask is expressed as:
+ # (1 = keep, 0 = discard)
+ # convert mask into a bias that can be added to attention scores:
+ # (keep = +0, discard = -10000.0)
+ attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
+ attention_mask = attention_mask.unsqueeze(1)
+
+ # convert encoder_attention_mask to a bias the same way we do for attention_mask
+ if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
+ encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
+ encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
+
+ # Retrieve lora scale.
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+
+ # 1. Input
+ if self.is_input_continuous:
+ batch, _, height, width = hidden_states.shape
+ residual = hidden_states
+
+ hidden_states = self.norm(hidden_states)
+ if not self.use_linear_projection:
+ hidden_states = (
+ self.proj_in(hidden_states, scale=lora_scale)
+ if not USE_PEFT_BACKEND
+ else self.proj_in(hidden_states)
+ )
+ inner_dim = hidden_states.shape[1]
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
+ else:
+ inner_dim = hidden_states.shape[1]
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
+ hidden_states = (
+ self.proj_in(hidden_states, scale=lora_scale)
+ if not USE_PEFT_BACKEND
+ else self.proj_in(hidden_states)
+ )
+
+ elif self.is_input_vectorized:
+ hidden_states = self.latent_image_embedding(hidden_states)
+ elif self.is_input_patches:
+ height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
+ hidden_states = self.pos_embed(hidden_states)
+
+ if self.adaln_single is not None:
+ if self.use_additional_conditions and added_cond_kwargs is None:
+ raise ValueError(
+ "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
+ )
+ batch_size = hidden_states.shape[0]
+ timestep, embedded_timestep = self.adaln_single(
+ timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
+ )
+
+ # 2. Blocks
+ if self.caption_projection is not None:
+ batch_size = hidden_states.shape[0]
+ encoder_hidden_states = self.caption_projection(encoder_hidden_states)
+ encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
+
+
+ for block in self.transformer_blocks:
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
+ hidden_states,curr_garment_feat_idx = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(block),
+ hidden_states,
+ attention_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ timestep,
+ cross_attention_kwargs,
+ class_labels,
+ garment_features,
+ curr_garment_feat_idx,
+ **ckpt_kwargs,
+ )
+ else:
+ hidden_states,curr_garment_feat_idx = block(
+ hidden_states,
+ attention_mask=attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ timestep=timestep,
+ cross_attention_kwargs=cross_attention_kwargs,
+ class_labels=class_labels,
+ garment_features=garment_features,
+ curr_garment_feat_idx=curr_garment_feat_idx,
+ )
+
+
+ # 3. Output
+ if self.is_input_continuous:
+ if not self.use_linear_projection:
+ hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
+ hidden_states = (
+ self.proj_out(hidden_states, scale=lora_scale)
+ if not USE_PEFT_BACKEND
+ else self.proj_out(hidden_states)
+ )
+ else:
+ hidden_states = (
+ self.proj_out(hidden_states, scale=lora_scale)
+ if not USE_PEFT_BACKEND
+ else self.proj_out(hidden_states)
+ )
+ hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
+
+ output = hidden_states + residual
+ elif self.is_input_vectorized:
+ hidden_states = self.norm_out(hidden_states)
+ logits = self.out(hidden_states)
+ # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
+ logits = logits.permute(0, 2, 1)
+
+ # log(p(x_0))
+ output = F.log_softmax(logits.double(), dim=1).float()
+
+ if self.is_input_patches:
+ if self.config.norm_type != "ada_norm_single":
+ conditioning = self.transformer_blocks[0].norm1.emb(
+ timestep, class_labels, hidden_dtype=hidden_states.dtype
+ )
+ shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
+ hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
+ hidden_states = self.proj_out_2(hidden_states)
+ elif self.config.norm_type == "ada_norm_single":
+ shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
+ hidden_states = self.norm_out(hidden_states)
+ # Modulation
+ hidden_states = hidden_states * (1 + scale) + shift
+ hidden_states = self.proj_out(hidden_states)
+ hidden_states = hidden_states.squeeze(1)
+
+ # unpatchify
+ if self.adaln_single is None:
+ height = width = int(hidden_states.shape[1] ** 0.5)
+ hidden_states = hidden_states.reshape(
+ shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
+ )
+ hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
+ output = hidden_states.reshape(
+ shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
+ )
+
+ if not return_dict:
+ return (output,),curr_garment_feat_idx
+
+ return Transformer2DModelOutput(sample=output),curr_garment_feat_idx
diff --git a/extensions-builtin/forge_space_idm_vton/src/tryon_pipeline.py b/extensions-builtin/forge_space_idm_vton/src/tryon_pipeline.py
new file mode 100644
index 00000000..78f22375
--- /dev/null
+++ b/extensions-builtin/forge_space_idm_vton/src/tryon_pipeline.py
@@ -0,0 +1,1893 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+from typing import Any, Callable, Dict, List, Optional, Tuple, Union
+
+import numpy as np
+import PIL.Image
+import torch
+from transformers import (
+ CLIPImageProcessor,
+ CLIPTextModel,
+ CLIPTextModelWithProjection,
+ CLIPTokenizer,
+ CLIPVisionModelWithProjection,
+)
+
+from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
+from diffusers.loaders import (
+ FromSingleFileMixin,
+ IPAdapterMixin,
+ StableDiffusionXLLoraLoaderMixin,
+ TextualInversionLoaderMixin,
+)
+from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
+from diffusers.models.attention_processor import (
+ AttnProcessor2_0,
+ FusedAttnProcessor2_0,
+ LoRAAttnProcessor2_0,
+ LoRAXFormersAttnProcessor,
+ XFormersAttnProcessor,
+)
+from diffusers.models.lora import adjust_lora_scale_text_encoder
+from diffusers.schedulers import KarrasDiffusionSchedulers
+from diffusers.utils import (
+ USE_PEFT_BACKEND,
+ deprecate,
+ is_invisible_watermark_available,
+ is_torch_xla_available,
+ logging,
+ replace_example_docstring,
+ scale_lora_layers,
+ unscale_lora_layers,
+)
+from diffusers.utils.torch_utils import randn_tensor
+from diffusers.pipelines.pipeline_utils import DiffusionPipeline
+
+
+
+if is_torch_xla_available():
+ import torch_xla.core.xla_model as xm
+
+ XLA_AVAILABLE = True
+else:
+ XLA_AVAILABLE = False
+
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+EXAMPLE_DOC_STRING = """
+ Examples:
+ ```py
+ >>> import torch
+ >>> from diffusers import StableDiffusionXLInpaintPipeline
+ >>> from diffusers.utils import load_image
+
+ >>> pipe = StableDiffusionXLInpaintPipeline.from_pretrained(
+ ... "stabilityai/stable-diffusion-xl-base-1.0",
+ ... torch_dtype=torch.float16,
+ ... variant="fp16",
+ ... use_safetensors=True,
+ ... )
+ >>> pipe.to("cuda")
+
+ >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
+ >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
+
+ >>> init_image = load_image(img_url).convert("RGB")
+ >>> mask_image = load_image(mask_url).convert("RGB")
+
+ >>> prompt = "A majestic tiger sitting on a bench"
+ >>> image = pipe(
+ ... prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=50, strength=0.80
+ ... ).images[0]
+ ```
+"""
+
+
+# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
+def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
+ """
+ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
+ Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
+ """
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
+ # rescale the results from guidance (fixes overexposure)
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
+ return noise_cfg
+
+
+def mask_pil_to_torch(mask, height, width):
+ # preprocess mask
+ if isinstance(mask, (PIL.Image.Image, np.ndarray)):
+ mask = [mask]
+
+ if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
+ mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
+ mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
+ mask = mask.astype(np.float32) / 255.0
+ elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
+ mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
+
+ mask = torch.from_numpy(mask)
+ return mask
+
+
+def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False):
+ """
+ Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
+ converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
+ ``image`` and ``1`` for the ``mask``.
+
+ The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
+ binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
+
+ Args:
+ image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
+ It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
+ ``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
+ mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
+ It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
+ ``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
+
+
+ Raises:
+ ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
+ should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
+ TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
+ (ot the other way around).
+
+ Returns:
+ tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
+ dimensions: ``batch x channels x height x width``.
+ """
+
+ # checkpoint. TOD(Yiyi) - need to clean this up later
+ deprecation_message = "The prepare_mask_and_masked_image method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead"
+ deprecate(
+ "prepare_mask_and_masked_image",
+ "0.30.0",
+ deprecation_message,
+ )
+ if image is None:
+ raise ValueError("`image` input cannot be undefined.")
+
+ if mask is None:
+ raise ValueError("`mask_image` input cannot be undefined.")
+
+ if isinstance(image, torch.Tensor):
+ if not isinstance(mask, torch.Tensor):
+ mask = mask_pil_to_torch(mask, height, width)
+
+ if image.ndim == 3:
+ image = image.unsqueeze(0)
+
+ # Batch and add channel dim for single mask
+ if mask.ndim == 2:
+ mask = mask.unsqueeze(0).unsqueeze(0)
+
+ # Batch single mask or add channel dim
+ if mask.ndim == 3:
+ # Single batched mask, no channel dim or single mask not batched but channel dim
+ if mask.shape[0] == 1:
+ mask = mask.unsqueeze(0)
+
+ # Batched masks no channel dim
+ else:
+ mask = mask.unsqueeze(1)
+
+ assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
+ # assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
+ assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
+
+ # Check image is in [-1, 1]
+ # if image.min() < -1 or image.max() > 1:
+ # raise ValueError("Image should be in [-1, 1] range")
+
+ # Check mask is in [0, 1]
+ if mask.min() < 0 or mask.max() > 1:
+ raise ValueError("Mask should be in [0, 1] range")
+
+ # Binarize mask
+ mask[mask < 0.5] = 0
+ mask[mask >= 0.5] = 1
+
+ # Image as float32
+ image = image.to(dtype=torch.float32)
+ elif isinstance(mask, torch.Tensor):
+ raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
+ else:
+ # preprocess image
+ if isinstance(image, (PIL.Image.Image, np.ndarray)):
+ image = [image]
+ if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
+ # resize all images w.r.t passed height an width
+ image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
+ image = [np.array(i.convert("RGB"))[None, :] for i in image]
+ image = np.concatenate(image, axis=0)
+ elif isinstance(image, list) and isinstance(image[0], np.ndarray):
+ image = np.concatenate([i[None, :] for i in image], axis=0)
+
+ image = image.transpose(0, 3, 1, 2)
+ image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
+
+ mask = mask_pil_to_torch(mask, height, width)
+ mask[mask < 0.5] = 0
+ mask[mask >= 0.5] = 1
+
+ if image.shape[1] == 4:
+ # images are in latent space and thus can't
+ # be masked set masked_image to None
+ # we assume that the checkpoint is not an inpainting
+ # checkpoint. TOD(Yiyi) - need to clean this up later
+ masked_image = None
+ else:
+ masked_image = image * (mask < 0.5)
+
+ # n.b. ensure backwards compatibility as old function does not return image
+ if return_image:
+ return mask, masked_image, image
+
+ return mask, masked_image
+
+
+# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
+def retrieve_latents(
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
+):
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
+ return encoder_output.latent_dist.sample(generator)
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
+ return encoder_output.latent_dist.mode()
+ elif hasattr(encoder_output, "latents"):
+ return encoder_output.latents
+ else:
+ raise AttributeError("Could not access latents of provided encoder_output")
+
+
+# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
+def retrieve_timesteps(
+ scheduler,
+ num_inference_steps: Optional[int] = None,
+ device: Optional[Union[str, torch.device]] = None,
+ timesteps: Optional[List[int]] = None,
+ **kwargs,
+):
+ """
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
+
+ Args:
+ scheduler (`SchedulerMixin`):
+ The scheduler to get timesteps from.
+ num_inference_steps (`int`):
+ The number of diffusion steps used when generating samples with a pre-trained model. If used,
+ `timesteps` must be `None`.
+ device (`str` or `torch.device`, *optional*):
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
+ timesteps (`List[int]`, *optional*):
+ Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
+ timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
+ must be `None`.
+
+ Returns:
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
+ second element is the number of inference steps.
+ """
+ if timesteps is not None:
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
+ if not accepts_timesteps:
+ raise ValueError(
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
+ f" timestep schedules. Please check whether you are using the correct scheduler."
+ )
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
+ timesteps = scheduler.timesteps
+ num_inference_steps = len(timesteps)
+ else:
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
+ timesteps = scheduler.timesteps
+ return timesteps, num_inference_steps
+
+
+class StableDiffusionXLInpaintPipeline(
+ DiffusionPipeline,
+ TextualInversionLoaderMixin,
+ StableDiffusionXLLoraLoaderMixin,
+ FromSingleFileMixin,
+ IPAdapterMixin,
+):
+ r"""
+ Pipeline for text-to-image generation using Stable Diffusion XL.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
+
+ The pipeline also inherits the following loading methods:
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+ text_encoder ([`CLIPTextModel`]):
+ Frozen text-encoder. Stable Diffusion XL uses the text portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+ text_encoder_2 ([` CLIPTextModelWithProjection`]):
+ Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
+ specifically the
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
+ variant.
+ tokenizer (`CLIPTokenizer`):
+ Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ tokenizer_2 (`CLIPTokenizer`):
+ Second Tokenizer of class
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
+ requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
+ Whether the `unet` requires a aesthetic_score condition to be passed during inference. Also see the config
+ of `stabilityai/stable-diffusion-xl-refiner-1-0`.
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
+ Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
+ `stabilityai/stable-diffusion-xl-base-1-0`.
+ add_watermarker (`bool`, *optional*):
+ Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
+ watermark output images. If not defined, it will default to True if the package is installed, otherwise no
+ watermarker will be used.
+ """
+
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
+
+ _optional_components = [
+ "tokenizer",
+ "tokenizer_2",
+ "text_encoder",
+ "text_encoder_2",
+ "image_encoder",
+ "feature_extractor",
+ ]
+ _callback_tensor_inputs = [
+ "latents",
+ "prompt_embeds",
+ "negative_prompt_embeds",
+ "add_text_embeds",
+ "add_time_ids",
+ "negative_pooled_prompt_embeds",
+ "add_neg_time_ids",
+ "mask",
+ "masked_image_latents",
+ ]
+
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ text_encoder: CLIPTextModel,
+ text_encoder_2: CLIPTextModelWithProjection,
+ tokenizer: CLIPTokenizer,
+ tokenizer_2: CLIPTokenizer,
+ unet: UNet2DConditionModel,
+ scheduler: KarrasDiffusionSchedulers,
+ image_encoder: CLIPVisionModelWithProjection = None,
+ feature_extractor: CLIPImageProcessor = None,
+ requires_aesthetics_score: bool = False,
+ force_zeros_for_empty_prompt: bool = True,
+ ):
+ super().__init__()
+
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ text_encoder_2=text_encoder_2,
+ tokenizer=tokenizer,
+ tokenizer_2=tokenizer_2,
+ unet=unet,
+ image_encoder=image_encoder,
+ feature_extractor=feature_extractor,
+ scheduler=scheduler,
+ )
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
+ self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
+ self.mask_processor = VaeImageProcessor(
+ vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
+ )
+
+
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
+ def enable_vae_slicing(self):
+ r"""
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
+ """
+ self.vae.enable_slicing()
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
+ def disable_vae_slicing(self):
+ r"""
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
+ computing decoding in one step.
+ """
+ self.vae.disable_slicing()
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
+ def enable_vae_tiling(self):
+ r"""
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
+ processing larger images.
+ """
+ self.vae.enable_tiling()
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
+ def disable_vae_tiling(self):
+ r"""
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
+ computing decoding in one step.
+ """
+ self.vae.disable_tiling()
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
+ dtype = next(self.image_encoder.parameters()).dtype
+ # print(image.shape)
+ if not isinstance(image, torch.Tensor):
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
+
+ image = image.to(device=device, dtype=dtype)
+ if output_hidden_states:
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
+ uncond_image_enc_hidden_states = self.image_encoder(
+ torch.zeros_like(image), output_hidden_states=True
+ ).hidden_states[-2]
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
+ num_images_per_prompt, dim=0
+ )
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
+ else:
+ image_embeds = self.image_encoder(image).image_embeds
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
+ uncond_image_embeds = torch.zeros_like(image_embeds)
+
+ return image_embeds, uncond_image_embeds
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
+ def prepare_ip_adapter_image_embeds(self, ip_adapter_image, device, num_images_per_prompt):
+ # if not isinstance(ip_adapter_image, list):
+ # ip_adapter_image = [ip_adapter_image]
+
+ # if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
+ # raise ValueError(
+ # f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
+ # )
+ output_hidden_state = not isinstance(self.unet.encoder_hid_proj, ImageProjection)
+ # print(output_hidden_state)
+ image_embeds, negative_image_embeds = self.encode_image(
+ ip_adapter_image, device, 1, output_hidden_state
+ )
+ # print(single_image_embeds.shape)
+ # single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
+ # single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
+ # print(single_image_embeds.shape)
+ if self.do_classifier_free_guidance:
+ image_embeds = torch.cat([negative_image_embeds, image_embeds])
+ image_embeds = image_embeds.to(device)
+
+
+ return image_embeds
+
+
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
+ def encode_prompt(
+ self,
+ prompt: str,
+ prompt_2: Optional[str] = None,
+ device: Optional[torch.device] = None,
+ num_images_per_prompt: int = 1,
+ do_classifier_free_guidance: bool = True,
+ negative_prompt: Optional[str] = None,
+ negative_prompt_2: Optional[str] = None,
+ prompt_embeds: Optional[torch.FloatTensor] = None,
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
+ lora_scale: Optional[float] = None,
+ clip_skip: Optional[int] = None,
+ ):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `List[str]`, *optional*):
+ prompt to be encoded
+ prompt_2 (`str` or `List[str]`, *optional*):
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
+ used in both text-encoders
+ device: (`torch.device`):
+ torch device
+ num_images_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
+ less than `1`).
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
+ prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
+ provided, text embeddings will be generated from `prompt` input argument.
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
+ argument.
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
+ input argument.
+ lora_scale (`float`, *optional*):
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
+ clip_skip (`int`, *optional*):
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
+ the output of the pre-final layer will be used for computing the prompt embeddings.
+ """
+ device = device or self._execution_device
+
+ # set lora scale so that monkey patched LoRA
+ # function of text encoder can correctly access it
+ if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
+ self._lora_scale = lora_scale
+
+ # dynamically adjust the LoRA scale
+ if self.text_encoder is not None:
+ if not USE_PEFT_BACKEND:
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
+ else:
+ scale_lora_layers(self.text_encoder, lora_scale)
+
+ if self.text_encoder_2 is not None:
+ if not USE_PEFT_BACKEND:
+ adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
+ else:
+ scale_lora_layers(self.text_encoder_2, lora_scale)
+
+ prompt = [prompt] if isinstance(prompt, str) else prompt
+
+ if prompt is not None:
+ batch_size = len(prompt)
+ else:
+ batch_size = prompt_embeds.shape[0]
+
+ # Define tokenizers and text encoders
+ tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
+ text_encoders = (
+ [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
+ )
+
+ if prompt_embeds is None:
+ prompt_2 = prompt_2 or prompt
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
+
+ # textual inversion: procecss multi-vector tokens if necessary
+ prompt_embeds_list = []
+ prompts = [prompt, prompt_2]
+ for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
+ if isinstance(self, TextualInversionLoaderMixin):
+ prompt = self.maybe_convert_prompt(prompt, tokenizer)
+
+ text_inputs = tokenizer(
+ prompt,
+ padding="max_length",
+ max_length=tokenizer.model_max_length,
+ truncation=True,
+ return_tensors="pt",
+ )
+
+ text_input_ids = text_inputs.input_ids
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
+
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
+ text_input_ids, untruncated_ids
+ ):
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
+ logger.warning(
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
+ f" {tokenizer.model_max_length} tokens: {removed_text}"
+ )
+
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
+
+ # We are only ALWAYS interested in the pooled output of the final text encoder
+ pooled_prompt_embeds = prompt_embeds[0]
+ if clip_skip is None:
+ prompt_embeds = prompt_embeds.hidden_states[-2]
+ else:
+ # "2" because SDXL always indexes from the penultimate layer.
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
+
+ prompt_embeds_list.append(prompt_embeds)
+
+ prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
+
+ # get unconditional embeddings for classifier free guidance
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
+ negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
+ negative_prompt = negative_prompt or ""
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
+
+ # normalize str to list
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
+ negative_prompt_2 = (
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
+ )
+
+ uncond_tokens: List[str]
+ if prompt is not None and type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = [negative_prompt, negative_prompt_2]
+
+ negative_prompt_embeds_list = []
+ for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
+ if isinstance(self, TextualInversionLoaderMixin):
+ negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
+
+ max_length = prompt_embeds.shape[1]
+ uncond_input = tokenizer(
+ negative_prompt,
+ padding="max_length",
+ max_length=max_length,
+ truncation=True,
+ return_tensors="pt",
+ )
+
+ negative_prompt_embeds = text_encoder(
+ uncond_input.input_ids.to(device),
+ output_hidden_states=True,
+ )
+ # We are only ALWAYS interested in the pooled output of the final text encoder
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
+ negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
+
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
+
+ negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
+
+ if self.text_encoder_2 is not None:
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
+ else:
+ prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
+
+ bs_embed, seq_len, _ = prompt_embeds.shape
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
+
+ if do_classifier_free_guidance:
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = negative_prompt_embeds.shape[1]
+
+ if self.text_encoder_2 is not None:
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
+ else:
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
+
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
+
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
+ bs_embed * num_images_per_prompt, -1
+ )
+ if do_classifier_free_guidance:
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
+ bs_embed * num_images_per_prompt, -1
+ )
+
+ if self.text_encoder is not None:
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
+ # Retrieve the original scale by scaling back the LoRA layers
+ unscale_lora_layers(self.text_encoder, lora_scale)
+
+ if self.text_encoder_2 is not None:
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
+ # Retrieve the original scale by scaling back the LoRA layers
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
+
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
+ def prepare_extra_step_kwargs(self, generator, eta):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (ฮท) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to ฮท in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ extra_step_kwargs = {}
+ if accepts_eta:
+ extra_step_kwargs["eta"] = eta
+
+ # check if the scheduler accepts generator
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+ if accepts_generator:
+ extra_step_kwargs["generator"] = generator
+ return extra_step_kwargs
+
+ def check_inputs(
+ self,
+ prompt,
+ prompt_2,
+ image,
+ mask_image,
+ height,
+ width,
+ strength,
+ callback_steps,
+ output_type,
+ negative_prompt=None,
+ negative_prompt_2=None,
+ prompt_embeds=None,
+ negative_prompt_embeds=None,
+ callback_on_step_end_tensor_inputs=None,
+ padding_mask_crop=None,
+ ):
+ if strength < 0 or strength > 1:
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
+
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+
+ if callback_on_step_end_tensor_inputs is not None and not all(
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
+ ):
+ raise ValueError(
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
+ )
+
+ if prompt is not None and prompt_embeds is not None:
+ raise ValueError(
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
+ " only forward one of the two."
+ )
+ elif prompt_2 is not None and prompt_embeds is not None:
+ raise ValueError(
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
+ " only forward one of the two."
+ )
+ elif prompt is None and prompt_embeds is None:
+ raise ValueError(
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
+ )
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
+
+ if negative_prompt is not None and negative_prompt_embeds is not None:
+ raise ValueError(
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
+ )
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
+ raise ValueError(
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
+ )
+
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
+ raise ValueError(
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
+ f" {negative_prompt_embeds.shape}."
+ )
+ if padding_mask_crop is not None:
+ if not isinstance(image, PIL.Image.Image):
+ raise ValueError(
+ f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
+ )
+ if not isinstance(mask_image, PIL.Image.Image):
+ raise ValueError(
+ f"The mask image should be a PIL image when inpainting mask crop, but is of type"
+ f" {type(mask_image)}."
+ )
+ if output_type != "pil":
+ raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
+
+ def prepare_latents(
+ self,
+ batch_size,
+ num_channels_latents,
+ height,
+ width,
+ dtype,
+ device,
+ generator,
+ latents=None,
+ image=None,
+ timestep=None,
+ is_strength_max=True,
+ add_noise=True,
+ return_noise=False,
+ return_image_latents=False,
+ ):
+ shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if (image is None or timestep is None) and not is_strength_max:
+ raise ValueError(
+ "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
+ "However, either the image or the noise timestep has not been provided."
+ )
+
+ if image.shape[1] == 4:
+ image_latents = image.to(device=device, dtype=dtype)
+ image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
+ elif return_image_latents or (latents is None and not is_strength_max):
+ image = image.to(device=device, dtype=dtype)
+ image_latents = self._encode_vae_image(image=image, generator=generator)
+ image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
+
+ if latents is None and add_noise:
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
+ # if strength is 1. then initialise the latents to noise, else initial to image + noise
+ latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
+ # if pure noise then scale the initial latents by the Scheduler's init sigma
+ latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
+ elif add_noise:
+ noise = latents.to(device)
+ latents = noise * self.scheduler.init_noise_sigma
+ else:
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
+ latents = image_latents.to(device)
+
+ outputs = (latents,)
+
+ if return_noise:
+ outputs += (noise,)
+
+ if return_image_latents:
+ outputs += (image_latents,)
+
+ return outputs
+
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
+ dtype = image.dtype
+ if self.vae.config.force_upcast:
+ image = image.float()
+ self.vae.to(dtype=torch.float32)
+
+ if isinstance(generator, list):
+ image_latents = [
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
+ for i in range(image.shape[0])
+ ]
+ image_latents = torch.cat(image_latents, dim=0)
+ else:
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
+
+ if self.vae.config.force_upcast:
+ self.vae.to(dtype)
+
+ image_latents = image_latents.to(dtype)
+ image_latents = self.vae.config.scaling_factor * image_latents
+
+ return image_latents
+
+ def prepare_mask_latents(
+ self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
+ ):
+ # resize the mask to latents shape as we concatenate the mask to the latents
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
+ # and half precision
+ mask = torch.nn.functional.interpolate(
+ mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
+ )
+ mask = mask.to(device=device, dtype=dtype)
+
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
+ if mask.shape[0] < batch_size:
+ if not batch_size % mask.shape[0] == 0:
+ raise ValueError(
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
+ f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
+ " of masks that you pass is divisible by the total requested batch size."
+ )
+ mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
+
+ mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
+ if masked_image is not None and masked_image.shape[1] == 4:
+ masked_image_latents = masked_image
+ else:
+ masked_image_latents = None
+
+ if masked_image is not None:
+ if masked_image_latents is None:
+ masked_image = masked_image.to(device=device, dtype=dtype)
+ masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
+
+ if masked_image_latents.shape[0] < batch_size:
+ if not batch_size % masked_image_latents.shape[0] == 0:
+ raise ValueError(
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
+ )
+ masked_image_latents = masked_image_latents.repeat(
+ batch_size // masked_image_latents.shape[0], 1, 1, 1
+ )
+
+ masked_image_latents = (
+ torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
+ )
+
+ # aligning device to prevent device errors when concating it with the latent model input
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
+
+ return mask, masked_image_latents
+
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.get_timesteps
+ def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
+ # get the original timestep using init_timestep
+ if denoising_start is None:
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
+ t_start = max(num_inference_steps - init_timestep, 0)
+ else:
+ t_start = 0
+
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
+
+ # Strength is irrelevant if we directly request a timestep to start at;
+ # that is, strength is determined by the denoising_start instead.
+ if denoising_start is not None:
+ discrete_timestep_cutoff = int(
+ round(
+ self.scheduler.config.num_train_timesteps
+ - (denoising_start * self.scheduler.config.num_train_timesteps)
+ )
+ )
+
+ num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
+ if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
+ # if the scheduler is a 2nd order scheduler we might have to do +1
+ # because `num_inference_steps` might be even given that every timestep
+ # (except the highest one) is duplicated. If `num_inference_steps` is even it would
+ # mean that we cut the timesteps in the middle of the denoising step
+ # (between 1st and 2nd devirative) which leads to incorrect results. By adding 1
+ # we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
+ num_inference_steps = num_inference_steps + 1
+
+ # because t_n+1 >= t_n, we slice the timesteps starting from the end
+ timesteps = timesteps[-num_inference_steps:]
+ return timesteps, num_inference_steps
+
+ return timesteps, num_inference_steps - t_start
+
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids
+ def _get_add_time_ids(
+ self,
+ original_size,
+ crops_coords_top_left,
+ target_size,
+ aesthetic_score,
+ negative_aesthetic_score,
+ negative_original_size,
+ negative_crops_coords_top_left,
+ negative_target_size,
+ dtype,
+ text_encoder_projection_dim=None,
+ ):
+ if self.config.requires_aesthetics_score:
+ add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
+ add_neg_time_ids = list(
+ negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
+ )
+ else:
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
+ add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)
+
+ passed_add_embed_dim = (
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
+ )
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
+
+ if (
+ expected_add_embed_dim > passed_add_embed_dim
+ and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
+ ):
+ raise ValueError(
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
+ )
+ elif (
+ expected_add_embed_dim < passed_add_embed_dim
+ and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
+ ):
+ raise ValueError(
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
+ )
+ elif expected_add_embed_dim != passed_add_embed_dim:
+ raise ValueError(
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
+ )
+
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
+ add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
+
+ return add_time_ids, add_neg_time_ids
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
+ def upcast_vae(self):
+ dtype = self.vae.dtype
+ self.vae.to(dtype=torch.float32)
+ use_torch_2_0_or_xformers = isinstance(
+ self.vae.decoder.mid_block.attentions[0].processor,
+ (
+ AttnProcessor2_0,
+ XFormersAttnProcessor,
+ LoRAXFormersAttnProcessor,
+ LoRAAttnProcessor2_0,
+ ),
+ )
+ # if xformers or torch_2_0 is used attention block does not need
+ # to be in float32 which can save lots of memory
+ if use_torch_2_0_or_xformers:
+ self.vae.post_quant_conv.to(dtype)
+ self.vae.decoder.conv_in.to(dtype)
+ self.vae.decoder.mid_block.to(dtype)
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
+ def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
+ r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
+
+ The suffixes after the scaling factors represent the stages where they are being applied.
+
+ Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
+ that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
+
+ Args:
+ s1 (`float`):
+ Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
+ mitigate "oversmoothing effect" in the enhanced denoising process.
+ s2 (`float`):
+ Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
+ mitigate "oversmoothing effect" in the enhanced denoising process.
+ b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
+ b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
+ """
+ if not hasattr(self, "unet"):
+ raise ValueError("The pipeline must have `unet` for using FreeU.")
+ self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
+
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
+ def disable_freeu(self):
+ """Disables the FreeU mechanism if enabled."""
+ self.unet.disable_freeu()
+
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections
+ def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
+ """
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
+ key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
+
+
+
+ This API is ๐งช experimental.
+
+
+
+ Args:
+ unet (`bool`, defaults to `True`): To apply fusion on the UNet.
+ vae (`bool`, defaults to `True`): To apply fusion on the VAE.
+ """
+ self.fusing_unet = False
+ self.fusing_vae = False
+
+ if unet:
+ self.fusing_unet = True
+ self.unet.fuse_qkv_projections()
+ self.unet.set_attn_processor(FusedAttnProcessor2_0())
+
+ if vae:
+ if not isinstance(self.vae, AutoencoderKL):
+ raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")
+
+ self.fusing_vae = True
+ self.vae.fuse_qkv_projections()
+ self.vae.set_attn_processor(FusedAttnProcessor2_0())
+
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections
+ def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
+ """Disable QKV projection fusion if enabled.
+
+
+
+ This API is ๐งช experimental.
+
+
+
+ Args:
+ unet (`bool`, defaults to `True`): To apply fusion on the UNet.
+ vae (`bool`, defaults to `True`): To apply fusion on the VAE.
+
+ """
+ if unet:
+ if not self.fusing_unet:
+ logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
+ else:
+ self.unet.unfuse_qkv_projections()
+ self.fusing_unet = False
+
+ if vae:
+ if not self.fusing_vae:
+ logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
+ else:
+ self.vae.unfuse_qkv_projections()
+ self.fusing_vae = False
+
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
+ def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
+ """
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
+
+ Args:
+ timesteps (`torch.Tensor`):
+ generate embedding vectors at these timesteps
+ embedding_dim (`int`, *optional*, defaults to 512):
+ dimension of the embeddings to generate
+ dtype:
+ data type of the generated embeddings
+
+ Returns:
+ `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
+ """
+ assert len(w.shape) == 1
+ w = w * 1000.0
+
+ half_dim = embedding_dim // 2
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
+ emb = w.to(dtype)[:, None] * emb[None, :]
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
+ if embedding_dim % 2 == 1: # zero pad
+ emb = torch.nn.functional.pad(emb, (0, 1))
+ assert emb.shape == (w.shape[0], embedding_dim)
+ return emb
+
+ @property
+ def guidance_scale(self):
+ return self._guidance_scale
+
+ @property
+ def guidance_rescale(self):
+ return self._guidance_rescale
+
+ @property
+ def clip_skip(self):
+ return self._clip_skip
+
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ @property
+ def do_classifier_free_guidance(self):
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
+
+ @property
+ def cross_attention_kwargs(self):
+ return self._cross_attention_kwargs
+
+ @property
+ def denoising_end(self):
+ return self._denoising_end
+
+ @property
+ def denoising_start(self):
+ return self._denoising_start
+
+ @property
+ def num_timesteps(self):
+ return self._num_timesteps
+
+ @property
+ def interrupt(self):
+ return self._interrupt
+
+ @torch.no_grad()
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
+ def __call__(
+ self,
+ prompt: Union[str, List[str]] = None,
+ prompt_2: Optional[Union[str, List[str]]] = None,
+ image: PipelineImageInput = None,
+ mask_image: PipelineImageInput = None,
+ masked_image_latents: torch.FloatTensor = None,
+ height: Optional[int] = None,
+ width: Optional[int] = None,
+ padding_mask_crop: Optional[int] = None,
+ strength: float = 0.9999,
+ num_inference_steps: int = 50,
+ timesteps: List[int] = None,
+ denoising_start: Optional[float] = None,
+ denoising_end: Optional[float] = None,
+ guidance_scale: float = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
+ num_images_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
+ latents: Optional[torch.FloatTensor] = None,
+ prompt_embeds: Optional[torch.FloatTensor] = None,
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
+ ip_adapter_image: Optional[PipelineImageInput] = None,
+ output_type: Optional[str] = "pil",
+ cloth =None,
+ pose_img = None,
+ text_embeds_cloth=None,
+ return_dict: bool = True,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ guidance_rescale: float = 0.0,
+ original_size: Tuple[int, int] = None,
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
+ target_size: Tuple[int, int] = None,
+ negative_original_size: Optional[Tuple[int, int]] = None,
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
+ negative_target_size: Optional[Tuple[int, int]] = None,
+ aesthetic_score: float = 6.0,
+ negative_aesthetic_score: float = 2.5,
+ clip_skip: Optional[int] = None,
+ pooled_prompt_embeds_c=None,
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
+ **kwargs,
+ ):
+ r"""
+ Function invoked when calling the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
+ instead.
+ prompt_2 (`str` or `List[str]`, *optional*):
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
+ used in both text-encoders
+ image (`PIL.Image.Image`):
+ `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
+ be masked out with `mask_image` and repainted according to `prompt`.
+ mask_image (`PIL.Image.Image`):
+ `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
+ repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
+ to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
+ instead of 3, so the expected shape would be `(B, H, W, 1)`.
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
+ Anything below 512 pixels won't work well for
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
+ and checkpoints that are not specifically fine-tuned on low resolutions.
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
+ Anything below 512 pixels won't work well for
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
+ and checkpoints that are not specifically fine-tuned on low resolutions.
+ padding_mask_crop (`int`, *optional*, defaults to `None`):
+ The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to image and mask_image. If
+ `padding_mask_crop` is not `None`, it will first find a rectangular region with the same aspect ration of the image and
+ contains all masked area, and then expand that area based on `padding_mask_crop`. The image and mask_image will then be cropped based on
+ the expanded area before resizing to the original image size for inpainting. This is useful when the masked area is small while the image is large
+ and contain information inreleant for inpainging, such as background.
+ strength (`float`, *optional*, defaults to 0.9999):
+ Conceptually, indicates how much to transform the masked portion of the reference `image`. Must be
+ between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the
+ `strength`. The number of denoising steps depends on the amount of noise initially added. When
+ `strength` is 1, added noise will be maximum and the denoising process will run for the full number of
+ iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores the masked
+ portion of the reference `image`. Note that in the case of `denoising_start` being declared as an
+ integer, the value of `strength` will be ignored.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ timesteps (`List[int]`, *optional*):
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
+ passed will be used. Must be in descending order.
+ denoising_start (`float`, *optional*):
+ When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
+ bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
+ it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
+ strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
+ is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
+ denoising_end (`float`, *optional*):
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
+ completed before it is intentionally prematurely terminated. As a result, the returned sample will
+ still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be
+ denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the
+ final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline
+ forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+ usually at the expense of lower image quality.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
+ less than `1`).
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
+ prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
+ provided, text embeddings will be generated from `prompt` input argument.
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
+ argument.
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
+ input argument.
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (ฮท) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+ [`schedulers.DDIMScheduler`], will be ignored for others.
+ generator (`torch.Generator`, *optional*):
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
+ to make generation deterministic.
+ latents (`torch.FloatTensor`, *optional*):
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor will ge generated by sampling using the supplied random `generator`.
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generate image. Choose between
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+ plain tuple.
+ cross_attention_kwargs (`dict`, *optional*):
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
+ `self.processor` in
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
+ explained in section 2.2 of
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
+ not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
+ micro-conditioning as explained in section 2.2 of
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
+ micro-conditioning as explained in section 2.2 of
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
+ To negatively condition the generation process based on a target image resolution. It should be as same
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
+ aesthetic_score (`float`, *optional*, defaults to 6.0):
+ Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
+ Part of SDXL's micro-conditioning as explained in section 2.2 of
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
+ negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
+ Part of SDXL's micro-conditioning as explained in section 2.2 of
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
+ simulate an aesthetic score of the generated image by influencing the negative text condition.
+ clip_skip (`int`, *optional*):
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
+ the output of the pre-final layer will be used for computing the prompt embeddings.
+ callback_on_step_end (`Callable`, *optional*):
+ A function that calls at the end of each denoising steps during the inference. The function is called
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
+ `callback_on_step_end_tensor_inputs`.
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
+ `._callback_tensor_inputs` attribute of your pipeline class.
+
+ Examples:
+
+ Returns:
+ [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
+ [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
+ `tuple. `tuple. When returning a tuple, the first element is a list with the generated images.
+ """
+
+ callback = kwargs.pop("callback", None)
+ callback_steps = kwargs.pop("callback_steps", None)
+
+ if callback is not None:
+ deprecate(
+ "callback",
+ "1.0.0",
+ "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
+ )
+ if callback_steps is not None:
+ deprecate(
+ "callback_steps",
+ "1.0.0",
+ "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
+ )
+
+ # 0. Default height and width to unet
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
+
+ # 1. Check inputs
+ self.check_inputs(
+ prompt,
+ prompt_2,
+ image,
+ mask_image,
+ height,
+ width,
+ strength,
+ callback_steps,
+ output_type,
+ negative_prompt,
+ negative_prompt_2,
+ prompt_embeds,
+ negative_prompt_embeds,
+ callback_on_step_end_tensor_inputs,
+ padding_mask_crop,
+ )
+
+ self._guidance_scale = guidance_scale
+ self._guidance_rescale = guidance_rescale
+ self._clip_skip = clip_skip
+ self._cross_attention_kwargs = cross_attention_kwargs
+ self._denoising_end = denoising_end
+ self._denoising_start = denoising_start
+ self._interrupt = False
+
+ # 2. Define call parameters
+ if prompt is not None and isinstance(prompt, str):
+ batch_size = 1
+ elif prompt is not None and isinstance(prompt, list):
+ batch_size = len(prompt)
+ else:
+ batch_size = prompt_embeds.shape[0]
+
+ device = self._execution_device
+
+ # 3. Encode input prompt
+ text_encoder_lora_scale = (
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
+ )
+
+ (
+ prompt_embeds,
+ negative_prompt_embeds,
+ pooled_prompt_embeds,
+ negative_pooled_prompt_embeds,
+ ) = self.encode_prompt(
+ prompt=prompt,
+ prompt_2=prompt_2,
+ device=device,
+ num_images_per_prompt=num_images_per_prompt,
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
+ negative_prompt=negative_prompt,
+ negative_prompt_2=negative_prompt_2,
+ prompt_embeds=prompt_embeds,
+ negative_prompt_embeds=negative_prompt_embeds,
+ pooled_prompt_embeds=pooled_prompt_embeds,
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
+ lora_scale=text_encoder_lora_scale,
+ clip_skip=self.clip_skip,
+ )
+
+ # 4. set timesteps
+ def denoising_value_valid(dnv):
+ return isinstance(self.denoising_end, float) and 0 < dnv < 1
+
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
+ timesteps, num_inference_steps = self.get_timesteps(
+ num_inference_steps,
+ strength,
+ device,
+ denoising_start=self.denoising_start if denoising_value_valid else None,
+ )
+ # check that number of inference steps is not < 1 - as this doesn't make sense
+ if num_inference_steps < 1:
+ raise ValueError(
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
+ )
+ # at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
+ # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
+ is_strength_max = strength == 1.0
+
+ # 5. Preprocess mask and image
+ if padding_mask_crop is not None:
+ crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
+ resize_mode = "fill"
+ else:
+ crops_coords = None
+ resize_mode = "default"
+
+ original_image = image
+ init_image = self.image_processor.preprocess(
+ image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
+ )
+ init_image = init_image.to(dtype=torch.float32)
+
+ mask = self.mask_processor.preprocess(
+ mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
+ )
+ if masked_image_latents is not None:
+ masked_image = masked_image_latents
+ elif init_image.shape[1] == 4:
+ # if images are in latent space, we can't mask it
+ masked_image = None
+ else:
+ masked_image = init_image * (mask < 0.5)
+
+ # 6. Prepare latent variables
+ num_channels_latents = self.vae.config.latent_channels
+ num_channels_unet = self.unet.config.in_channels
+ return_image_latents = num_channels_unet == 4
+
+ add_noise = True if self.denoising_start is None else False
+ latents_outputs = self.prepare_latents(
+ batch_size * num_images_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ prompt_embeds.dtype,
+ device,
+ generator,
+ latents,
+ image=init_image,
+ timestep=latent_timestep,
+ is_strength_max=is_strength_max,
+ add_noise=add_noise,
+ return_noise=True,
+ return_image_latents=return_image_latents,
+ )
+
+ if return_image_latents:
+ latents, noise, image_latents = latents_outputs
+ else:
+ latents, noise = latents_outputs
+
+ # 7. Prepare mask latent variables
+ mask, masked_image_latents = self.prepare_mask_latents(
+ mask,
+ masked_image,
+ batch_size * num_images_per_prompt,
+ height,
+ width,
+ prompt_embeds.dtype,
+ device,
+ generator,
+ self.do_classifier_free_guidance,
+ )
+ pose_img = pose_img.to(device=device, dtype=prompt_embeds.dtype)
+
+ pose_img = self.vae.encode(pose_img).latent_dist.sample()
+ pose_img = pose_img * self.vae.config.scaling_factor
+
+ # pose_img = self._encode_vae_image(pose_img, generator=generator)
+
+ pose_img = (
+ torch.cat([pose_img] * 2) if self.do_classifier_free_guidance else pose_img
+ )
+ cloth = self._encode_vae_image(cloth, generator=generator)
+
+ # # 8. Check that sizes of mask, masked image and latents match
+ # if num_channels_unet == 9:
+ # # default case for runwayml/stable-diffusion-inpainting
+ # num_channels_mask = mask.shape[1]
+ # num_channels_masked_image = masked_image_latents.shape[1]
+ # if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
+ # raise ValueError(
+ # f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
+ # f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
+ # f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
+ # f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
+ # " `pipeline.unet` or your `mask_image` or `image` input."
+ # )
+ # elif num_channels_unet != 4:
+ # raise ValueError(
+ # f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
+ # )
+ # 8.1 Prepare extra step kwargs.
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+ # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ height, width = latents.shape[-2:]
+ height = height * self.vae_scale_factor
+ width = width * self.vae_scale_factor
+
+ original_size = original_size or (height, width)
+ target_size = target_size or (height, width)
+
+ # 10. Prepare added time ids & embeddings
+ if negative_original_size is None:
+ negative_original_size = original_size
+ if negative_target_size is None:
+ negative_target_size = target_size
+
+ add_text_embeds = pooled_prompt_embeds
+ if self.text_encoder_2 is None:
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
+ else:
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
+
+ add_time_ids, add_neg_time_ids = self._get_add_time_ids(
+ original_size,
+ crops_coords_top_left,
+ target_size,
+ aesthetic_score,
+ negative_aesthetic_score,
+ negative_original_size,
+ negative_crops_coords_top_left,
+ negative_target_size,
+ dtype=prompt_embeds.dtype,
+ text_encoder_projection_dim=text_encoder_projection_dim,
+ )
+ add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
+
+ if self.do_classifier_free_guidance:
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
+ add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
+ add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
+
+ prompt_embeds = prompt_embeds.to(device)
+ add_text_embeds = add_text_embeds.to(device)
+ add_time_ids = add_time_ids.to(device)
+
+ if ip_adapter_image is not None:
+ image_embeds = self.prepare_ip_adapter_image_embeds(
+ ip_adapter_image, device, batch_size * num_images_per_prompt
+ )
+
+ #project outside for loop
+ image_embeds = self.unet.encoder_hid_proj(image_embeds).to(prompt_embeds.dtype)
+
+
+ # 11. Denoising loop
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
+
+ if (
+ self.denoising_end is not None
+ and self.denoising_start is not None
+ and denoising_value_valid(self.denoising_end)
+ and denoising_value_valid(self.denoising_start)
+ and self.denoising_start >= self.denoising_end
+ ):
+ raise ValueError(
+ f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
+ + f" {self.denoising_end} when using type float."
+ )
+ elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
+ discrete_timestep_cutoff = int(
+ round(
+ self.scheduler.config.num_train_timesteps
+ - (self.denoising_end * self.scheduler.config.num_train_timesteps)
+ )
+ )
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
+ timesteps = timesteps[:num_inference_steps]
+
+ # 11.1 Optionally get Guidance Scale Embedding
+ timestep_cond = None
+ if self.unet.config.time_cond_proj_dim is not None:
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
+ timestep_cond = self.get_guidance_scale_embedding(
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
+ ).to(device=device, dtype=latents.dtype)
+
+
+
+ self._num_timesteps = len(timesteps)
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ if self.interrupt:
+ continue
+ # expand the latents if we are doing classifier free guidance
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
+
+ # concat latents, mask, masked_image_latents in the channel dimension
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+
+ # bsz = mask.shape[0]
+ if num_channels_unet == 13:
+ latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents,pose_img], dim=1)
+
+ # if num_channels_unet == 9:
+ # latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
+
+ # predict the noise residual
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
+ if ip_adapter_image is not None:
+ added_cond_kwargs["image_embeds"] = image_embeds
+ # down,reference_features = self.UNet_Encoder(cloth,t, text_embeds_cloth,added_cond_kwargs= {"text_embeds": pooled_prompt_embeds_c, "time_ids": add_time_ids},return_dict=False)
+ down,reference_features = self.unet_encoder(cloth,t, text_embeds_cloth,return_dict=False)
+ # print(type(reference_features))
+ # print(reference_features)
+ reference_features = list(reference_features)
+ # print(len(reference_features))
+ # for elem in reference_features:
+ # print(elem.shape)
+ # exit(1)
+ if self.do_classifier_free_guidance:
+ reference_features = [torch.cat([torch.zeros_like(d), d]) for d in reference_features]
+
+
+ noise_pred = self.unet(
+ latent_model_input,
+ t,
+ encoder_hidden_states=prompt_embeds,
+ timestep_cond=timestep_cond,
+ cross_attention_kwargs=self.cross_attention_kwargs,
+ added_cond_kwargs=added_cond_kwargs,
+ return_dict=False,
+ garment_features=reference_features,
+ )[0]
+ # noise_pred = self.unet(latent_model_input, t,
+ # prompt_embeds,timestep_cond=timestep_cond,cross_attention_kwargs=self.cross_attention_kwargs,added_cond_kwargs=added_cond_kwargs,down_block_additional_attn=down ).sample
+
+
+ # perform guidance
+ if self.do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
+
+ if num_channels_unet == 4:
+ init_latents_proper = image_latents
+ if self.do_classifier_free_guidance:
+ init_mask, _ = mask.chunk(2)
+ else:
+ init_mask = mask
+
+ if i < len(timesteps) - 1:
+ noise_timestep = timesteps[i + 1]
+ init_latents_proper = self.scheduler.add_noise(
+ init_latents_proper, noise, torch.tensor([noise_timestep])
+ )
+
+ latents = (1 - init_mask) * init_latents_proper + init_mask * latents
+
+ if callback_on_step_end is not None:
+ callback_kwargs = {}
+ for k in callback_on_step_end_tensor_inputs:
+ callback_kwargs[k] = locals()[k]
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
+
+ latents = callback_outputs.pop("latents", latents)
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
+ add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
+ negative_pooled_prompt_embeds = callback_outputs.pop(
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
+ )
+ add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
+ add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
+ mask = callback_outputs.pop("mask", mask)
+ masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ step_idx = i // getattr(self.scheduler, "order", 1)
+ callback(step_idx, t, latents)
+
+ if XLA_AVAILABLE:
+ xm.mark_step()
+
+ if not output_type == "latent":
+ # make sure the VAE is in float32 mode, as it overflows in float16
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
+
+ if needs_upcasting:
+ self.upcast_vae()
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
+
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
+
+ # cast back to fp16 if needed
+ if needs_upcasting:
+ self.vae.to(dtype=torch.float16)
+ # else:
+ # return StableDiffusionXLPipelineOutput(images=latents)
+
+
+ image = self.image_processor.postprocess(image, output_type=output_type)
+
+ if padding_mask_crop is not None:
+ image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
+
+ # Offload all models
+ self.maybe_free_model_hooks()
+
+ # if not return_dict:
+ return (image,)
+
+ # return StableDiffusionXLPipelineOutput(images=image)
\ No newline at end of file
diff --git a/extensions-builtin/forge_space_idm_vton/src/unet_block_hacked_garmnet.py b/extensions-builtin/forge_space_idm_vton/src/unet_block_hacked_garmnet.py
new file mode 100644
index 00000000..a6e80c05
--- /dev/null
+++ b/extensions-builtin/forge_space_idm_vton/src/unet_block_hacked_garmnet.py
@@ -0,0 +1,3579 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import Any, Dict, Optional, Tuple, Union
+
+import numpy as np
+import torch
+import torch.nn.functional as F
+from torch import nn
+
+from diffusers.utils import is_torch_version, logging
+from diffusers.utils.torch_utils import apply_freeu
+from diffusers.models.activations import get_activation
+from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
+from diffusers.models.dual_transformer_2d import DualTransformer2DModel
+from diffusers.models.normalization import AdaGroupNorm
+from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
+from src.transformerhacked_garmnet import Transformer2DModel
+from einops import rearrange
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+def get_down_block(
+ down_block_type: str,
+ num_layers: int,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ add_downsample: bool,
+ resnet_eps: float,
+ resnet_act_fn: str,
+ transformer_layers_per_block: int = 1,
+ num_attention_heads: Optional[int] = None,
+ resnet_groups: Optional[int] = None,
+ cross_attention_dim: Optional[int] = None,
+ downsample_padding: Optional[int] = None,
+ dual_cross_attention: bool = False,
+ use_linear_projection: bool = False,
+ only_cross_attention: bool = False,
+ upcast_attention: bool = False,
+ resnet_time_scale_shift: str = "default",
+ attention_type: str = "default",
+ resnet_skip_time_act: bool = False,
+ resnet_out_scale_factor: float = 1.0,
+ cross_attention_norm: Optional[str] = None,
+ attention_head_dim: Optional[int] = None,
+ downsample_type: Optional[str] = None,
+ dropout: float = 0.0,
+):
+ # If attn head dim is not defined, we default it to the number of heads
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
+ )
+ attention_head_dim = num_attention_heads
+
+ down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
+ if down_block_type == "DownBlock2D":
+ return DownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "ResnetDownsampleBlock2D":
+ return ResnetDownsampleBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ skip_time_act=resnet_skip_time_act,
+ output_scale_factor=resnet_out_scale_factor,
+ )
+ elif down_block_type == "AttnDownBlock2D":
+ if add_downsample is False:
+ downsample_type = None
+ else:
+ downsample_type = downsample_type or "conv" # default to 'conv'
+ return AttnDownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ dropout=dropout,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ attention_head_dim=attention_head_dim,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ downsample_type=downsample_type,
+ )
+ elif down_block_type == "CrossAttnDownBlock2D":
+ if cross_attention_dim is None:
+ raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
+ return CrossAttnDownBlock2D(
+ num_layers=num_layers,
+ transformer_layers_per_block=transformer_layers_per_block,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ cross_attention_dim=cross_attention_dim,
+ num_attention_heads=num_attention_heads,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ attention_type=attention_type,
+ )
+ elif down_block_type == "SimpleCrossAttnDownBlock2D":
+ if cross_attention_dim is None:
+ raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
+ return SimpleCrossAttnDownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ cross_attention_dim=cross_attention_dim,
+ attention_head_dim=attention_head_dim,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ skip_time_act=resnet_skip_time_act,
+ output_scale_factor=resnet_out_scale_factor,
+ only_cross_attention=only_cross_attention,
+ cross_attention_norm=cross_attention_norm,
+ )
+ elif down_block_type == "SkipDownBlock2D":
+ return SkipDownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ downsample_padding=downsample_padding,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "AttnSkipDownBlock2D":
+ return AttnSkipDownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ attention_head_dim=attention_head_dim,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "DownEncoderBlock2D":
+ return DownEncoderBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "AttnDownEncoderBlock2D":
+ return AttnDownEncoderBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ attention_head_dim=attention_head_dim,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "KDownBlock2D":
+ return KDownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ )
+ elif down_block_type == "KCrossAttnDownBlock2D":
+ return KCrossAttnDownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ cross_attention_dim=cross_attention_dim,
+ attention_head_dim=attention_head_dim,
+ add_self_attention=True if not add_downsample else False,
+ )
+ raise ValueError(f"{down_block_type} does not exist.")
+
+
+def get_up_block(
+ up_block_type: str,
+ num_layers: int,
+ in_channels: int,
+ out_channels: int,
+ prev_output_channel: int,
+ temb_channels: int,
+ add_upsample: bool,
+ resnet_eps: float,
+ resnet_act_fn: str,
+ resolution_idx: Optional[int] = None,
+ transformer_layers_per_block: int = 1,
+ num_attention_heads: Optional[int] = None,
+ resnet_groups: Optional[int] = None,
+ cross_attention_dim: Optional[int] = None,
+ dual_cross_attention: bool = False,
+ use_linear_projection: bool = False,
+ only_cross_attention: bool = False,
+ upcast_attention: bool = False,
+ resnet_time_scale_shift: str = "default",
+ attention_type: str = "default",
+ resnet_skip_time_act: bool = False,
+ resnet_out_scale_factor: float = 1.0,
+ cross_attention_norm: Optional[str] = None,
+ attention_head_dim: Optional[int] = None,
+ upsample_type: Optional[str] = None,
+ dropout: float = 0.0,
+) -> nn.Module:
+ # If attn head dim is not defined, we default it to the number of heads
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
+ )
+ attention_head_dim = num_attention_heads
+
+ up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
+ if up_block_type == "UpBlock2D":
+ return UpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif up_block_type == "ResnetUpsampleBlock2D":
+ return ResnetUpsampleBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ skip_time_act=resnet_skip_time_act,
+ output_scale_factor=resnet_out_scale_factor,
+ )
+ elif up_block_type == "CrossAttnUpBlock2D":
+ if cross_attention_dim is None:
+ raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
+ return CrossAttnUpBlock2D(
+ num_layers=num_layers,
+ transformer_layers_per_block=transformer_layers_per_block,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ cross_attention_dim=cross_attention_dim,
+ num_attention_heads=num_attention_heads,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ attention_type=attention_type,
+ )
+ elif up_block_type == "SimpleCrossAttnUpBlock2D":
+ if cross_attention_dim is None:
+ raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
+ return SimpleCrossAttnUpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ cross_attention_dim=cross_attention_dim,
+ attention_head_dim=attention_head_dim,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ skip_time_act=resnet_skip_time_act,
+ output_scale_factor=resnet_out_scale_factor,
+ only_cross_attention=only_cross_attention,
+ cross_attention_norm=cross_attention_norm,
+ )
+ elif up_block_type == "AttnUpBlock2D":
+ if add_upsample is False:
+ upsample_type = None
+ else:
+ upsample_type = upsample_type or "conv" # default to 'conv'
+
+ return AttnUpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ attention_head_dim=attention_head_dim,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ upsample_type=upsample_type,
+ )
+ elif up_block_type == "SkipUpBlock2D":
+ return SkipUpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif up_block_type == "AttnSkipUpBlock2D":
+ return AttnSkipUpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ attention_head_dim=attention_head_dim,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif up_block_type == "UpDecoderBlock2D":
+ return UpDecoderBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ temb_channels=temb_channels,
+ )
+ elif up_block_type == "AttnUpDecoderBlock2D":
+ return AttnUpDecoderBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ attention_head_dim=attention_head_dim,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ temb_channels=temb_channels,
+ )
+ elif up_block_type == "KUpBlock2D":
+ return KUpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ )
+ elif up_block_type == "KCrossAttnUpBlock2D":
+ return KCrossAttnUpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ cross_attention_dim=cross_attention_dim,
+ attention_head_dim=attention_head_dim,
+ )
+
+ raise ValueError(f"{up_block_type} does not exist.")
+
+
+class AutoencoderTinyBlock(nn.Module):
+ """
+ Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU
+ blocks.
+
+ Args:
+ in_channels (`int`): The number of input channels.
+ out_channels (`int`): The number of output channels.
+ act_fn (`str`):
+ ` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`.
+
+ Returns:
+ `torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to
+ `out_channels`.
+ """
+
+ def __init__(self, in_channels: int, out_channels: int, act_fn: str):
+ super().__init__()
+ act_fn = get_activation(act_fn)
+ self.conv = nn.Sequential(
+ nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
+ act_fn,
+ nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
+ act_fn,
+ nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
+ )
+ self.skip = (
+ nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
+ if in_channels != out_channels
+ else nn.Identity()
+ )
+ self.fuse = nn.ReLU()
+
+ def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
+ return self.fuse(self.conv(x) + self.skip(x))
+
+
+class UNetMidBlock2D(nn.Module):
+ """
+ A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks.
+
+ Args:
+ in_channels (`int`): The number of input channels.
+ temb_channels (`int`): The number of temporal embedding channels.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
+ num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
+ resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
+ resnet_time_scale_shift (`str`, *optional*, defaults to `default`):
+ The type of normalization to apply to the time embeddings. This can help to improve the performance of the
+ model on tasks with long-range temporal dependencies.
+ resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks.
+ resnet_groups (`int`, *optional*, defaults to 32):
+ The number of groups to use in the group normalization layers of the resnet blocks.
+ attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks.
+ resnet_pre_norm (`bool`, *optional*, defaults to `True`):
+ Whether to use pre-normalization for the resnet blocks.
+ add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks.
+ attention_head_dim (`int`, *optional*, defaults to 1):
+ Dimension of a single attention head. The number of attention heads is determined based on this value and
+ the number of input channels.
+ output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor.
+
+ Returns:
+ `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
+ in_channels, height, width)`.
+
+ """
+
+ def __init__(
+ self,
+ in_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default", # default, spatial
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ attn_groups: Optional[int] = None,
+ resnet_pre_norm: bool = True,
+ add_attention: bool = True,
+ attention_head_dim: int = 1,
+ output_scale_factor: float = 1.0,
+ ):
+ super().__init__()
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
+ self.add_attention = add_attention
+
+ if attn_groups is None:
+ attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None
+
+ # there is always at least one resnet
+ resnets = [
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ ]
+ attentions = []
+
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
+ )
+ attention_head_dim = in_channels
+
+ for _ in range(num_layers):
+ if self.add_attention:
+ attentions.append(
+ Attention(
+ in_channels,
+ heads=in_channels // attention_head_dim,
+ dim_head=attention_head_dim,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=attn_groups,
+ spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
+ residual_connection=True,
+ bias=True,
+ upcast_softmax=True,
+ _from_deprecated_attn_block=True,
+ )
+ )
+ else:
+ attentions.append(None)
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
+ hidden_states = self.resnets[0](hidden_states, temb)
+ for attn, resnet in zip(self.attentions, self.resnets[1:]):
+ if attn is not None:
+ hidden_states = attn(hidden_states, temb=temb)
+ hidden_states = resnet(hidden_states, temb)
+
+ return hidden_states
+
+
+class UNetMidBlock2DCrossAttn(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ transformer_layers_per_block: Union[int, Tuple[int]] = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ num_attention_heads: int = 1,
+ output_scale_factor: float = 1.0,
+ cross_attention_dim: int = 1280,
+ dual_cross_attention: bool = False,
+ use_linear_projection: bool = False,
+ upcast_attention: bool = False,
+ attention_type: str = "default",
+ ):
+ super().__init__()
+
+ self.has_cross_attention = True
+ self.num_attention_heads = num_attention_heads
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
+
+ # support for variable transformer layers per block
+ if isinstance(transformer_layers_per_block, int):
+ transformer_layers_per_block = [transformer_layers_per_block] * num_layers
+
+ # there is always at least one resnet
+ resnets = [
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ ]
+ attentions = []
+
+ for i in range(num_layers):
+ if not dual_cross_attention:
+ attentions.append(
+ Transformer2DModel(
+ num_attention_heads,
+ in_channels // num_attention_heads,
+ in_channels=in_channels,
+ num_layers=transformer_layers_per_block[i],
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ use_linear_projection=use_linear_projection,
+ upcast_attention=upcast_attention,
+ attention_type=attention_type,
+ )
+ )
+ else:
+ attentions.append(
+ DualTransformer2DModel(
+ num_attention_heads,
+ in_channels // num_attention_heads,
+ in_channels=in_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ )
+ )
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ temb: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ ) -> torch.FloatTensor:
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+ hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
+ garment_features = []
+ for attn, resnet in zip(self.attentions, self.resnets[1:]):
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
+ # hidden_states = attn(
+ hidden_states,out_garment_feat = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ attention_mask=attention_mask,
+ encoder_attention_mask=encoder_attention_mask,
+ return_dict=False,
+ )
+ hidden_states=hidden_states[0]
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet),
+ hidden_states,
+ temb,
+ **ckpt_kwargs,
+ )
+ else:
+ # hidden_states= attn(
+ hidden_states,out_garment_feat = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ attention_mask=attention_mask,
+ encoder_attention_mask=encoder_attention_mask,
+ return_dict=False,
+ )
+ hidden_states=hidden_states[0]
+ hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+ garment_features += out_garment_feat
+ return hidden_states,garment_features
+ # return hidden_states
+
+
+class UNetMidBlock2DSimpleCrossAttn(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attention_head_dim: int = 1,
+ output_scale_factor: float = 1.0,
+ cross_attention_dim: int = 1280,
+ skip_time_act: bool = False,
+ only_cross_attention: bool = False,
+ cross_attention_norm: Optional[str] = None,
+ ):
+ super().__init__()
+
+ self.has_cross_attention = True
+
+ self.attention_head_dim = attention_head_dim
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
+
+ self.num_heads = in_channels // self.attention_head_dim
+
+ # there is always at least one resnet
+ resnets = [
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ )
+ ]
+ attentions = []
+
+ for _ in range(num_layers):
+ processor = (
+ AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
+ )
+
+ attentions.append(
+ Attention(
+ query_dim=in_channels,
+ cross_attention_dim=in_channels,
+ heads=self.num_heads,
+ dim_head=self.attention_head_dim,
+ added_kv_proj_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ bias=True,
+ upcast_softmax=True,
+ only_cross_attention=only_cross_attention,
+ cross_attention_norm=cross_attention_norm,
+ processor=processor,
+ )
+ )
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ )
+ )
+
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ temb: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ ) -> torch.FloatTensor:
+ cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+ lora_scale = cross_attention_kwargs.get("scale", 1.0)
+
+ if attention_mask is None:
+ # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
+ mask = None if encoder_hidden_states is None else encoder_attention_mask
+ else:
+ # when attention_mask is defined: we don't even check for encoder_attention_mask.
+ # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
+ # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
+ # then we can simplify this whole if/else block to:
+ # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
+ mask = attention_mask
+
+ hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
+ for attn, resnet in zip(self.attentions, self.resnets[1:]):
+ # attn
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=mask,
+ **cross_attention_kwargs,
+ )
+
+ # resnet
+ hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+
+ return hidden_states
+
+
+class AttnDownBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attention_head_dim: int = 1,
+ output_scale_factor: float = 1.0,
+ downsample_padding: int = 1,
+ downsample_type: str = "conv",
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+ self.downsample_type = downsample_type
+
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
+ )
+ attention_head_dim = out_channels
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ attentions.append(
+ Attention(
+ out_channels,
+ heads=out_channels // attention_head_dim,
+ dim_head=attention_head_dim,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=resnet_groups,
+ residual_connection=True,
+ bias=True,
+ upcast_softmax=True,
+ _from_deprecated_attn_block=True,
+ )
+ )
+
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ if downsample_type == "conv":
+ self.downsamplers = nn.ModuleList(
+ [
+ Downsample2D(
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+ )
+ ]
+ )
+ elif downsample_type == "resnet":
+ self.downsamplers = nn.ModuleList(
+ [
+ ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ down=True,
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ temb: Optional[torch.FloatTensor] = None,
+ upsample_size: Optional[int] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+ cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+
+ lora_scale = cross_attention_kwargs.get("scale", 1.0)
+
+ output_states = ()
+
+ for resnet, attn in zip(self.resnets, self.attentions):
+ cross_attention_kwargs.update({"scale": lora_scale})
+ hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+ hidden_states = attn(hidden_states, **cross_attention_kwargs)
+ output_states = output_states + (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ if self.downsample_type == "resnet":
+ hidden_states = downsampler(hidden_states, temb=temb, scale=lora_scale)
+ else:
+ hidden_states = downsampler(hidden_states, scale=lora_scale)
+
+ output_states += (hidden_states,)
+
+ return hidden_states, output_states
+
+
+class CrossAttnDownBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ transformer_layers_per_block: Union[int, Tuple[int]] = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ num_attention_heads: int = 1,
+ cross_attention_dim: int = 1280,
+ output_scale_factor: float = 1.0,
+ downsample_padding: int = 1,
+ add_downsample: bool = True,
+ dual_cross_attention: bool = False,
+ use_linear_projection: bool = False,
+ only_cross_attention: bool = False,
+ upcast_attention: bool = False,
+ attention_type: str = "default",
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ self.has_cross_attention = True
+ self.num_attention_heads = num_attention_heads
+ if isinstance(transformer_layers_per_block, int):
+ transformer_layers_per_block = [transformer_layers_per_block] * num_layers
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ if not dual_cross_attention:
+ attentions.append(
+ Transformer2DModel(
+ num_attention_heads,
+ out_channels // num_attention_heads,
+ in_channels=out_channels,
+ num_layers=transformer_layers_per_block[i],
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ attention_type=attention_type,
+ )
+ )
+ else:
+ attentions.append(
+ DualTransformer2DModel(
+ num_attention_heads,
+ out_channels // num_attention_heads,
+ in_channels=out_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ )
+ )
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.ModuleList(
+ [
+ Downsample2D(
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ temb: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ additional_residuals: Optional[torch.FloatTensor] = None,
+ ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+ output_states = ()
+
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+
+ blocks = list(zip(self.resnets, self.attentions))
+ garment_features = []
+ for i, (resnet, attn) in enumerate(blocks):
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet),
+ hidden_states,
+ temb,
+ **ckpt_kwargs,
+ )
+ hidden_states,out_garment_feat = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ attention_mask=attention_mask,
+ encoder_attention_mask=encoder_attention_mask,
+ return_dict=False,
+ )
+ hidden_states=hidden_states[0]
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+ hidden_states,out_garment_feat = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ attention_mask=attention_mask,
+ encoder_attention_mask=encoder_attention_mask,
+ return_dict=False,
+ )
+ hidden_states=hidden_states[0]
+ garment_features += out_garment_feat
+ # apply additional residuals to the output of the last pair of resnet and attention blocks
+ if i == len(blocks) - 1 and additional_residuals is not None:
+ hidden_states = hidden_states + additional_residuals
+
+ output_states = output_states + (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states, scale=lora_scale)
+
+ output_states = output_states + (hidden_states,)
+
+ return hidden_states, output_states,garment_features
+
+
+class DownBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor: float = 1.0,
+ add_downsample: bool = True,
+ downsample_padding: int = 1,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.ModuleList(
+ [
+ Downsample2D(
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
+ ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+ output_states = ()
+
+ for resnet in self.resnets:
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ if is_torch_version(">=", "1.11.0"):
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+ )
+ else:
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=scale)
+
+ output_states = output_states + (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states, scale=scale)
+
+ output_states = output_states + (hidden_states,)
+
+ return hidden_states, output_states
+
+
+class DownEncoderBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor: float = 1.0,
+ add_downsample: bool = True,
+ downsample_padding: int = 1,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=None,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.ModuleList(
+ [
+ Downsample2D(
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
+ for resnet in self.resnets:
+ hidden_states = resnet(hidden_states, temb=None, scale=scale)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states, scale)
+
+ return hidden_states
+
+
+class AttnDownEncoderBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attention_head_dim: int = 1,
+ output_scale_factor: float = 1.0,
+ add_downsample: bool = True,
+ downsample_padding: int = 1,
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
+ )
+ attention_head_dim = out_channels
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=None,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ attentions.append(
+ Attention(
+ out_channels,
+ heads=out_channels // attention_head_dim,
+ dim_head=attention_head_dim,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=resnet_groups,
+ residual_connection=True,
+ bias=True,
+ upcast_softmax=True,
+ _from_deprecated_attn_block=True,
+ )
+ )
+
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.ModuleList(
+ [
+ Downsample2D(
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
+ for resnet, attn in zip(self.resnets, self.attentions):
+ hidden_states = resnet(hidden_states, temb=None, scale=scale)
+ cross_attention_kwargs = {"scale": scale}
+ hidden_states = attn(hidden_states, **cross_attention_kwargs)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states, scale)
+
+ return hidden_states
+
+
+class AttnSkipDownBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_pre_norm: bool = True,
+ attention_head_dim: int = 1,
+ output_scale_factor: float = np.sqrt(2.0),
+ add_downsample: bool = True,
+ ):
+ super().__init__()
+ self.attentions = nn.ModuleList([])
+ self.resnets = nn.ModuleList([])
+
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
+ )
+ attention_head_dim = out_channels
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ self.resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(in_channels // 4, 32),
+ groups_out=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ self.attentions.append(
+ Attention(
+ out_channels,
+ heads=out_channels // attention_head_dim,
+ dim_head=attention_head_dim,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=32,
+ residual_connection=True,
+ bias=True,
+ upcast_softmax=True,
+ _from_deprecated_attn_block=True,
+ )
+ )
+
+ if add_downsample:
+ self.resnet_down = ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ use_in_shortcut=True,
+ down=True,
+ kernel="fir",
+ )
+ self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
+ self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
+ else:
+ self.resnet_down = None
+ self.downsamplers = None
+ self.skip_conv = None
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ temb: Optional[torch.FloatTensor] = None,
+ skip_sample: Optional[torch.FloatTensor] = None,
+ scale: float = 1.0,
+ ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]:
+ output_states = ()
+
+ for resnet, attn in zip(self.resnets, self.attentions):
+ hidden_states = resnet(hidden_states, temb, scale=scale)
+ cross_attention_kwargs = {"scale": scale}
+ hidden_states = attn(hidden_states, **cross_attention_kwargs)
+ output_states += (hidden_states,)
+
+ if self.downsamplers is not None:
+ hidden_states = self.resnet_down(hidden_states, temb, scale=scale)
+ for downsampler in self.downsamplers:
+ skip_sample = downsampler(skip_sample)
+
+ hidden_states = self.skip_conv(skip_sample) + hidden_states
+
+ output_states += (hidden_states,)
+
+ return hidden_states, output_states, skip_sample
+
+
+class SkipDownBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_pre_norm: bool = True,
+ output_scale_factor: float = np.sqrt(2.0),
+ add_downsample: bool = True,
+ downsample_padding: int = 1,
+ ):
+ super().__init__()
+ self.resnets = nn.ModuleList([])
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ self.resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(in_channels // 4, 32),
+ groups_out=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ if add_downsample:
+ self.resnet_down = ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ use_in_shortcut=True,
+ down=True,
+ kernel="fir",
+ )
+ self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
+ self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
+ else:
+ self.resnet_down = None
+ self.downsamplers = None
+ self.skip_conv = None
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ temb: Optional[torch.FloatTensor] = None,
+ skip_sample: Optional[torch.FloatTensor] = None,
+ scale: float = 1.0,
+ ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]:
+ output_states = ()
+
+ for resnet in self.resnets:
+ hidden_states = resnet(hidden_states, temb, scale)
+ output_states += (hidden_states,)
+
+ if self.downsamplers is not None:
+ hidden_states = self.resnet_down(hidden_states, temb, scale)
+ for downsampler in self.downsamplers:
+ skip_sample = downsampler(skip_sample)
+
+ hidden_states = self.skip_conv(skip_sample) + hidden_states
+
+ output_states += (hidden_states,)
+
+ return hidden_states, output_states, skip_sample
+
+
+class ResnetDownsampleBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor: float = 1.0,
+ add_downsample: bool = True,
+ skip_time_act: bool = False,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.ModuleList(
+ [
+ ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ down=True,
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
+ ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+ output_states = ()
+
+ for resnet in self.resnets:
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ if is_torch_version(">=", "1.11.0"):
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+ )
+ else:
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale)
+
+ output_states = output_states + (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states, temb, scale)
+
+ output_states = output_states + (hidden_states,)
+
+ return hidden_states, output_states
+
+
+class SimpleCrossAttnDownBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attention_head_dim: int = 1,
+ cross_attention_dim: int = 1280,
+ output_scale_factor: float = 1.0,
+ add_downsample: bool = True,
+ skip_time_act: bool = False,
+ only_cross_attention: bool = False,
+ cross_attention_norm: Optional[str] = None,
+ ):
+ super().__init__()
+
+ self.has_cross_attention = True
+
+ resnets = []
+ attentions = []
+
+ self.attention_head_dim = attention_head_dim
+ self.num_heads = out_channels // self.attention_head_dim
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ )
+ )
+
+ processor = (
+ AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
+ )
+
+ attentions.append(
+ Attention(
+ query_dim=out_channels,
+ cross_attention_dim=out_channels,
+ heads=self.num_heads,
+ dim_head=attention_head_dim,
+ added_kv_proj_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ bias=True,
+ upcast_softmax=True,
+ only_cross_attention=only_cross_attention,
+ cross_attention_norm=cross_attention_norm,
+ processor=processor,
+ )
+ )
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.ModuleList(
+ [
+ ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ down=True,
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ temb: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+ output_states = ()
+ cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+
+ lora_scale = cross_attention_kwargs.get("scale", 1.0)
+
+ if attention_mask is None:
+ # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
+ mask = None if encoder_hidden_states is None else encoder_attention_mask
+ else:
+ # when attention_mask is defined: we don't even check for encoder_attention_mask.
+ # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
+ # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
+ # then we can simplify this whole if/else block to:
+ # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
+ mask = attention_mask
+
+ for resnet, attn in zip(self.resnets, self.attentions):
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=mask,
+ **cross_attention_kwargs,
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=mask,
+ **cross_attention_kwargs,
+ )
+
+ output_states = output_states + (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states, temb, scale=lora_scale)
+
+ output_states = output_states + (hidden_states,)
+
+ return hidden_states, output_states
+
+
+class KDownBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 4,
+ resnet_eps: float = 1e-5,
+ resnet_act_fn: str = "gelu",
+ resnet_group_size: int = 32,
+ add_downsample: bool = False,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ groups = in_channels // resnet_group_size
+ groups_out = out_channels // resnet_group_size
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ dropout=dropout,
+ temb_channels=temb_channels,
+ groups=groups,
+ groups_out=groups_out,
+ eps=resnet_eps,
+ non_linearity=resnet_act_fn,
+ time_embedding_norm="ada_group",
+ conv_shortcut_bias=False,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_downsample:
+ # YiYi's comments- might be able to use FirDownsample2D, look into details later
+ self.downsamplers = nn.ModuleList([KDownsample2D()])
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
+ ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+ output_states = ()
+
+ for resnet in self.resnets:
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ if is_torch_version(">=", "1.11.0"):
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+ )
+ else:
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale)
+
+ output_states += (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states)
+
+ return hidden_states, output_states
+
+
+class KCrossAttnDownBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ cross_attention_dim: int,
+ dropout: float = 0.0,
+ num_layers: int = 4,
+ resnet_group_size: int = 32,
+ add_downsample: bool = True,
+ attention_head_dim: int = 64,
+ add_self_attention: bool = False,
+ resnet_eps: float = 1e-5,
+ resnet_act_fn: str = "gelu",
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ self.has_cross_attention = True
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ groups = in_channels // resnet_group_size
+ groups_out = out_channels // resnet_group_size
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ dropout=dropout,
+ temb_channels=temb_channels,
+ groups=groups,
+ groups_out=groups_out,
+ eps=resnet_eps,
+ non_linearity=resnet_act_fn,
+ time_embedding_norm="ada_group",
+ conv_shortcut_bias=False,
+ )
+ )
+ attentions.append(
+ KAttentionBlock(
+ out_channels,
+ out_channels // attention_head_dim,
+ attention_head_dim,
+ cross_attention_dim=cross_attention_dim,
+ temb_channels=temb_channels,
+ attention_bias=True,
+ add_self_attention=add_self_attention,
+ cross_attention_norm="layer_norm",
+ group_size=resnet_group_size,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+ self.attentions = nn.ModuleList(attentions)
+
+ if add_downsample:
+ self.downsamplers = nn.ModuleList([KDownsample2D()])
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ temb: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+ output_states = ()
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+
+ for resnet, attn in zip(self.resnets, self.attentions):
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet),
+ hidden_states,
+ temb,
+ **ckpt_kwargs,
+ )
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ emb=temb,
+ attention_mask=attention_mask,
+ cross_attention_kwargs=cross_attention_kwargs,
+ encoder_attention_mask=encoder_attention_mask,
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ emb=temb,
+ attention_mask=attention_mask,
+ cross_attention_kwargs=cross_attention_kwargs,
+ encoder_attention_mask=encoder_attention_mask,
+ )
+
+ if self.downsamplers is None:
+ output_states += (None,)
+ else:
+ output_states += (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states)
+
+ return hidden_states, output_states
+
+
+class AttnUpBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ prev_output_channel: int,
+ out_channels: int,
+ temb_channels: int,
+ resolution_idx: int = None,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attention_head_dim: int = 1,
+ output_scale_factor: float = 1.0,
+ upsample_type: str = "conv",
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ self.upsample_type = upsample_type
+
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
+ )
+ attention_head_dim = out_channels
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ attentions.append(
+ Attention(
+ out_channels,
+ heads=out_channels // attention_head_dim,
+ dim_head=attention_head_dim,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=resnet_groups,
+ residual_connection=True,
+ bias=True,
+ upcast_softmax=True,
+ _from_deprecated_attn_block=True,
+ )
+ )
+
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ if upsample_type == "conv":
+ self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+ elif upsample_type == "resnet":
+ self.upsamplers = nn.ModuleList(
+ [
+ ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ up=True,
+ )
+ ]
+ )
+ else:
+ self.upsamplers = None
+
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+ temb: Optional[torch.FloatTensor] = None,
+ upsample_size: Optional[int] = None,
+ scale: float = 1.0,
+ ) -> torch.FloatTensor:
+ for resnet, attn in zip(self.resnets, self.attentions):
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+ hidden_states = resnet(hidden_states, temb, scale=scale)
+ cross_attention_kwargs = {"scale": scale}
+ hidden_states = attn(hidden_states, **cross_attention_kwargs)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ if self.upsample_type == "resnet":
+ hidden_states = upsampler(hidden_states, temb=temb, scale=scale)
+ else:
+ hidden_states = upsampler(hidden_states, scale=scale)
+
+ return hidden_states
+
+
+class CrossAttnUpBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ prev_output_channel: int,
+ temb_channels: int,
+ resolution_idx: Optional[int] = None,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ transformer_layers_per_block: Union[int, Tuple[int]] = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ num_attention_heads: int = 1,
+ cross_attention_dim: int = 1280,
+ output_scale_factor: float = 1.0,
+ add_upsample: bool = True,
+ dual_cross_attention: bool = False,
+ use_linear_projection: bool = False,
+ only_cross_attention: bool = False,
+ upcast_attention: bool = False,
+ attention_type: str = "default",
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ self.has_cross_attention = True
+ self.num_attention_heads = num_attention_heads
+
+ if isinstance(transformer_layers_per_block, int):
+ transformer_layers_per_block = [transformer_layers_per_block] * num_layers
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ if not dual_cross_attention:
+ attentions.append(
+ Transformer2DModel(
+ num_attention_heads,
+ out_channels // num_attention_heads,
+ in_channels=out_channels,
+ num_layers=transformer_layers_per_block[i],
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ attention_type=attention_type,
+ )
+ )
+ else:
+ attentions.append(
+ DualTransformer2DModel(
+ num_attention_heads,
+ out_channels // num_attention_heads,
+ in_channels=out_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ )
+ )
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+ temb: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ upsample_size: Optional[int] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ ) -> torch.FloatTensor:
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+ is_freeu_enabled = (
+ getattr(self, "s1", None)
+ and getattr(self, "s2", None)
+ and getattr(self, "b1", None)
+ and getattr(self, "b2", None)
+ )
+ garment_features = []
+ for resnet, attn in zip(self.resnets, self.attentions):
+ # pop res hidden states
+ # print("h.shape")
+ # print(h.shape)
+ # print("hidden_states.shape)
+ # print(hidden_states.shape)
+ # print("attn_block")
+ # print(attn)
+
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+
+ # FreeU: Only operate on the first two stages
+ if is_freeu_enabled:
+ hidden_states, res_hidden_states = apply_freeu(
+ self.resolution_idx,
+ hidden_states,
+ res_hidden_states,
+ s1=self.s1,
+ s2=self.s2,
+ b1=self.b1,
+ b2=self.b2,
+ )
+
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+ # print(hidden_states.shape)
+ # print(encoder_hidden_states.shape)
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet),
+ hidden_states,
+ temb,
+ **ckpt_kwargs,
+ )
+ hidden_states,out_garment_feat = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ attention_mask=attention_mask,
+ encoder_attention_mask=encoder_attention_mask,
+ return_dict=False,
+ )
+ hidden_states=hidden_states[0]
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+ hidden_states,out_garment_feat = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ attention_mask=attention_mask,
+ encoder_attention_mask=encoder_attention_mask,
+ return_dict=False,
+ )
+ hidden_states=hidden_states[0]
+ garment_features += out_garment_feat
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
+
+ return hidden_states,garment_features
+
+
+class UpBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ prev_output_channel: int,
+ out_channels: int,
+ temb_channels: int,
+ resolution_idx: Optional[int] = None,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor: float = 1.0,
+ add_upsample: bool = True,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+ temb: Optional[torch.FloatTensor] = None,
+ upsample_size: Optional[int] = None,
+ scale: float = 1.0,
+ ) -> torch.FloatTensor:
+ is_freeu_enabled = (
+ getattr(self, "s1", None)
+ and getattr(self, "s2", None)
+ and getattr(self, "b1", None)
+ and getattr(self, "b2", None)
+ )
+
+ for resnet in self.resnets:
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+
+ # FreeU: Only operate on the first two stages
+ if is_freeu_enabled:
+ hidden_states, res_hidden_states = apply_freeu(
+ self.resolution_idx,
+ hidden_states,
+ res_hidden_states,
+ s1=self.s1,
+ s2=self.s2,
+ b1=self.b1,
+ b2=self.b2,
+ )
+
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ if is_torch_version(">=", "1.11.0"):
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+ )
+ else:
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=scale)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
+
+ return hidden_states
+ # def forward(
+ # self,
+ # hidden_states: torch.FloatTensor,
+ # res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+ # temb: Optional[torch.FloatTensor] = None,
+ # upsample_size: Optional[int] = None,
+ # scale: float = 1.0,
+ # zero_block=None,
+ # hint=None,
+ # ) -> torch.FloatTensor:
+ # is_freeu_enabled = (
+ # getattr(self, "s1", None)
+ # and getattr(self, "s2", None)
+ # and getattr(self, "b1", None)
+ # and getattr(self, "b2", None)
+ # )
+
+ # # print(len(self.resnets))
+ # # print(len(zero_block))
+ # # print(len(hint))
+ # # for resnet in self.resnets:
+ # for resnet, zero,h in zip(self.resnets,zero_block,hint):
+
+ # # pop res hidden states
+ # res_hidden_states = res_hidden_states_tuple[-1]
+ # res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+
+ # res_hidden_states = res_hidden_states + zero(h)
+ # # FreeU: Only operate on the first two stages
+ # if is_freeu_enabled:
+ # hidden_states, res_hidden_states = apply_freeu(
+ # self.resolution_idx,
+ # hidden_states,
+ # res_hidden_states,
+ # s1=self.s1,
+ # s2=self.s2,
+ # b1=self.b1,
+ # b2=self.b2,
+ # )
+
+ # # print(hidden_states.shape)
+ # # # print(h.shape)
+ # # print(res_hidden_states.shape)
+ # hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+ # # print(hidden_states.shape)
+
+ # if self.training and self.gradient_checkpointing:
+
+ # def create_custom_forward(module):
+ # def custom_forward(*inputs):
+ # return module(*inputs)
+
+ # return custom_forward
+
+ # if is_torch_version(">=", "1.11.0"):
+ # hidden_states = torch.utils.checkpoint.checkpoint(
+ # create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+ # )
+ # else:
+ # hidden_states = torch.utils.checkpoint.checkpoint(
+ # create_custom_forward(resnet), hidden_states, temb
+ # )
+ # else:
+ # hidden_states = resnet(hidden_states, temb, scale=scale)
+
+ # if self.upsamplers is not None:
+ # for upsampler in self.upsamplers:
+ # hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
+
+ # return hidden_states
+
+
+class UpDecoderBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ resolution_idx: Optional[int] = None,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default", # default, spatial
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor: float = 1.0,
+ add_upsample: bool = True,
+ temb_channels: Optional[int] = None,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ input_channels = in_channels if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=input_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+ else:
+ self.upsamplers = None
+
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
+ ) -> torch.FloatTensor:
+ for resnet in self.resnets:
+ hidden_states = resnet(hidden_states, temb=temb, scale=scale)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states)
+
+ return hidden_states
+
+
+class AttnUpDecoderBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ resolution_idx: Optional[int] = None,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attention_head_dim: int = 1,
+ output_scale_factor: float = 1.0,
+ add_upsample: bool = True,
+ temb_channels: Optional[int] = None,
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
+ )
+ attention_head_dim = out_channels
+
+ for i in range(num_layers):
+ input_channels = in_channels if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=input_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ attentions.append(
+ Attention(
+ out_channels,
+ heads=out_channels // attention_head_dim,
+ dim_head=attention_head_dim,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None,
+ spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
+ residual_connection=True,
+ bias=True,
+ upcast_softmax=True,
+ _from_deprecated_attn_block=True,
+ )
+ )
+
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+ else:
+ self.upsamplers = None
+
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
+ ) -> torch.FloatTensor:
+ for resnet, attn in zip(self.resnets, self.attentions):
+ hidden_states = resnet(hidden_states, temb=temb, scale=scale)
+ cross_attention_kwargs = {"scale": scale}
+ hidden_states = attn(hidden_states, temb=temb, **cross_attention_kwargs)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states, scale=scale)
+
+ return hidden_states
+
+
+class AttnSkipUpBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ prev_output_channel: int,
+ out_channels: int,
+ temb_channels: int,
+ resolution_idx: Optional[int] = None,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_pre_norm: bool = True,
+ attention_head_dim: int = 1,
+ output_scale_factor: float = np.sqrt(2.0),
+ add_upsample: bool = True,
+ ):
+ super().__init__()
+ self.attentions = nn.ModuleList([])
+ self.resnets = nn.ModuleList([])
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ self.resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(resnet_in_channels + res_skip_channels // 4, 32),
+ groups_out=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
+ )
+ attention_head_dim = out_channels
+
+ self.attentions.append(
+ Attention(
+ out_channels,
+ heads=out_channels // attention_head_dim,
+ dim_head=attention_head_dim,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=32,
+ residual_connection=True,
+ bias=True,
+ upcast_softmax=True,
+ _from_deprecated_attn_block=True,
+ )
+ )
+
+ self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
+ if add_upsample:
+ self.resnet_up = ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(out_channels // 4, 32),
+ groups_out=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ use_in_shortcut=True,
+ up=True,
+ kernel="fir",
+ )
+ self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
+ self.skip_norm = torch.nn.GroupNorm(
+ num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
+ )
+ self.act = nn.SiLU()
+ else:
+ self.resnet_up = None
+ self.skip_conv = None
+ self.skip_norm = None
+ self.act = None
+
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+ temb: Optional[torch.FloatTensor] = None,
+ skip_sample=None,
+ scale: float = 1.0,
+ ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
+ for resnet in self.resnets:
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+ hidden_states = resnet(hidden_states, temb, scale=scale)
+
+ cross_attention_kwargs = {"scale": scale}
+ hidden_states = self.attentions[0](hidden_states, **cross_attention_kwargs)
+
+ if skip_sample is not None:
+ skip_sample = self.upsampler(skip_sample)
+ else:
+ skip_sample = 0
+
+ if self.resnet_up is not None:
+ skip_sample_states = self.skip_norm(hidden_states)
+ skip_sample_states = self.act(skip_sample_states)
+ skip_sample_states = self.skip_conv(skip_sample_states)
+
+ skip_sample = skip_sample + skip_sample_states
+
+ hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
+
+ return hidden_states, skip_sample
+
+
+class SkipUpBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ prev_output_channel: int,
+ out_channels: int,
+ temb_channels: int,
+ resolution_idx: Optional[int] = None,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_pre_norm: bool = True,
+ output_scale_factor: float = np.sqrt(2.0),
+ add_upsample: bool = True,
+ upsample_padding: int = 1,
+ ):
+ super().__init__()
+ self.resnets = nn.ModuleList([])
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ self.resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
+ groups_out=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
+ if add_upsample:
+ self.resnet_up = ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(out_channels // 4, 32),
+ groups_out=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ use_in_shortcut=True,
+ up=True,
+ kernel="fir",
+ )
+ self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
+ self.skip_norm = torch.nn.GroupNorm(
+ num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
+ )
+ self.act = nn.SiLU()
+ else:
+ self.resnet_up = None
+ self.skip_conv = None
+ self.skip_norm = None
+ self.act = None
+
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+ temb: Optional[torch.FloatTensor] = None,
+ skip_sample=None,
+ scale: float = 1.0,
+ ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
+ for resnet in self.resnets:
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+ hidden_states = resnet(hidden_states, temb, scale=scale)
+
+ if skip_sample is not None:
+ skip_sample = self.upsampler(skip_sample)
+ else:
+ skip_sample = 0
+
+ if self.resnet_up is not None:
+ skip_sample_states = self.skip_norm(hidden_states)
+ skip_sample_states = self.act(skip_sample_states)
+ skip_sample_states = self.skip_conv(skip_sample_states)
+
+ skip_sample = skip_sample + skip_sample_states
+
+ hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
+
+ return hidden_states, skip_sample
+
+
+class ResnetUpsampleBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ prev_output_channel: int,
+ out_channels: int,
+ temb_channels: int,
+ resolution_idx: Optional[int] = None,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor: float = 1.0,
+ add_upsample: bool = True,
+ skip_time_act: bool = False,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.ModuleList(
+ [
+ ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ up=True,
+ )
+ ]
+ )
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+ temb: Optional[torch.FloatTensor] = None,
+ upsample_size: Optional[int] = None,
+ scale: float = 1.0,
+ ) -> torch.FloatTensor:
+ for resnet in self.resnets:
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ if is_torch_version(">=", "1.11.0"):
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+ )
+ else:
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=scale)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states, temb, scale=scale)
+
+ return hidden_states
+
+
+class SimpleCrossAttnUpBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ prev_output_channel: int,
+ temb_channels: int,
+ resolution_idx: Optional[int] = None,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attention_head_dim: int = 1,
+ cross_attention_dim: int = 1280,
+ output_scale_factor: float = 1.0,
+ add_upsample: bool = True,
+ skip_time_act: bool = False,
+ only_cross_attention: bool = False,
+ cross_attention_norm: Optional[str] = None,
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ self.has_cross_attention = True
+ self.attention_head_dim = attention_head_dim
+
+ self.num_heads = out_channels // self.attention_head_dim
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ )
+ )
+
+ processor = (
+ AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
+ )
+
+ attentions.append(
+ Attention(
+ query_dim=out_channels,
+ cross_attention_dim=out_channels,
+ heads=self.num_heads,
+ dim_head=self.attention_head_dim,
+ added_kv_proj_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ bias=True,
+ upcast_softmax=True,
+ only_cross_attention=only_cross_attention,
+ cross_attention_norm=cross_attention_norm,
+ processor=processor,
+ )
+ )
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.ModuleList(
+ [
+ ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ up=True,
+ )
+ ]
+ )
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+ temb: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ upsample_size: Optional[int] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ ) -> torch.FloatTensor:
+ cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+
+ lora_scale = cross_attention_kwargs.get("scale", 1.0)
+ if attention_mask is None:
+ # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
+ mask = None if encoder_hidden_states is None else encoder_attention_mask
+ else:
+ # when attention_mask is defined: we don't even check for encoder_attention_mask.
+ # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
+ # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
+ # then we can simplify this whole if/else block to:
+ # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
+ mask = attention_mask
+
+ for resnet, attn in zip(self.resnets, self.attentions):
+ # resnet
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=mask,
+ **cross_attention_kwargs,
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=mask,
+ **cross_attention_kwargs,
+ )
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states, temb, scale=lora_scale)
+
+ return hidden_states
+
+
+class KUpBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ resolution_idx: int,
+ dropout: float = 0.0,
+ num_layers: int = 5,
+ resnet_eps: float = 1e-5,
+ resnet_act_fn: str = "gelu",
+ resnet_group_size: Optional[int] = 32,
+ add_upsample: bool = True,
+ ):
+ super().__init__()
+ resnets = []
+ k_in_channels = 2 * out_channels
+ k_out_channels = in_channels
+ num_layers = num_layers - 1
+
+ for i in range(num_layers):
+ in_channels = k_in_channels if i == 0 else out_channels
+ groups = in_channels // resnet_group_size
+ groups_out = out_channels // resnet_group_size
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=k_out_channels if (i == num_layers - 1) else out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=groups,
+ groups_out=groups_out,
+ dropout=dropout,
+ non_linearity=resnet_act_fn,
+ time_embedding_norm="ada_group",
+ conv_shortcut_bias=False,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.ModuleList([KUpsample2D()])
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+ temb: Optional[torch.FloatTensor] = None,
+ upsample_size: Optional[int] = None,
+ scale: float = 1.0,
+ ) -> torch.FloatTensor:
+ res_hidden_states_tuple = res_hidden_states_tuple[-1]
+ if res_hidden_states_tuple is not None:
+ hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)
+
+ for resnet in self.resnets:
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ if is_torch_version(">=", "1.11.0"):
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+ )
+ else:
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=scale)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states)
+
+ return hidden_states
+
+
+class KCrossAttnUpBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ resolution_idx: int,
+ dropout: float = 0.0,
+ num_layers: int = 4,
+ resnet_eps: float = 1e-5,
+ resnet_act_fn: str = "gelu",
+ resnet_group_size: int = 32,
+ attention_head_dim: int = 1, # attention dim_head
+ cross_attention_dim: int = 768,
+ add_upsample: bool = True,
+ upcast_attention: bool = False,
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ is_first_block = in_channels == out_channels == temb_channels
+ is_middle_block = in_channels != out_channels
+ add_self_attention = True if is_first_block else False
+
+ self.has_cross_attention = True
+ self.attention_head_dim = attention_head_dim
+
+ # in_channels, and out_channels for the block (k-unet)
+ k_in_channels = out_channels if is_first_block else 2 * out_channels
+ k_out_channels = in_channels
+
+ num_layers = num_layers - 1
+
+ for i in range(num_layers):
+ in_channels = k_in_channels if i == 0 else out_channels
+ groups = in_channels // resnet_group_size
+ groups_out = out_channels // resnet_group_size
+
+ if is_middle_block and (i == num_layers - 1):
+ conv_2d_out_channels = k_out_channels
+ else:
+ conv_2d_out_channels = None
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ conv_2d_out_channels=conv_2d_out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=groups,
+ groups_out=groups_out,
+ dropout=dropout,
+ non_linearity=resnet_act_fn,
+ time_embedding_norm="ada_group",
+ conv_shortcut_bias=False,
+ )
+ )
+ attentions.append(
+ KAttentionBlock(
+ k_out_channels if (i == num_layers - 1) else out_channels,
+ k_out_channels // attention_head_dim
+ if (i == num_layers - 1)
+ else out_channels // attention_head_dim,
+ attention_head_dim,
+ cross_attention_dim=cross_attention_dim,
+ temb_channels=temb_channels,
+ attention_bias=True,
+ add_self_attention=add_self_attention,
+ cross_attention_norm="layer_norm",
+ upcast_attention=upcast_attention,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+ self.attentions = nn.ModuleList(attentions)
+
+ if add_upsample:
+ self.upsamplers = nn.ModuleList([KUpsample2D()])
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+ temb: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ upsample_size: Optional[int] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ ) -> torch.FloatTensor:
+ res_hidden_states_tuple = res_hidden_states_tuple[-1]
+ if res_hidden_states_tuple is not None:
+ hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)
+
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+ for resnet, attn in zip(self.resnets, self.attentions):
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet),
+ hidden_states,
+ temb,
+ **ckpt_kwargs,
+ )
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ emb=temb,
+ attention_mask=attention_mask,
+ cross_attention_kwargs=cross_attention_kwargs,
+ encoder_attention_mask=encoder_attention_mask,
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ emb=temb,
+ attention_mask=attention_mask,
+ cross_attention_kwargs=cross_attention_kwargs,
+ encoder_attention_mask=encoder_attention_mask,
+ )
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states)
+
+ return hidden_states
+
+
+# can potentially later be renamed to `No-feed-forward` attention
+class KAttentionBlock(nn.Module):
+ r"""
+ A basic Transformer block.
+
+ Parameters:
+ dim (`int`): The number of channels in the input and output.
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
+ attention_head_dim (`int`): The number of channels in each head.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
+ cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
+ attention_bias (`bool`, *optional*, defaults to `False`):
+ Configure if the attention layers should contain a bias parameter.
+ upcast_attention (`bool`, *optional*, defaults to `False`):
+ Set to `True` to upcast the attention computation to `float32`.
+ temb_channels (`int`, *optional*, defaults to 768):
+ The number of channels in the token embedding.
+ add_self_attention (`bool`, *optional*, defaults to `False`):
+ Set to `True` to add self-attention to the block.
+ cross_attention_norm (`str`, *optional*, defaults to `None`):
+ The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
+ group_size (`int`, *optional*, defaults to 32):
+ The number of groups to separate the channels into for group normalization.
+ """
+
+ def __init__(
+ self,
+ dim: int,
+ num_attention_heads: int,
+ attention_head_dim: int,
+ dropout: float = 0.0,
+ cross_attention_dim: Optional[int] = None,
+ attention_bias: bool = False,
+ upcast_attention: bool = False,
+ temb_channels: int = 768, # for ada_group_norm
+ add_self_attention: bool = False,
+ cross_attention_norm: Optional[str] = None,
+ group_size: int = 32,
+ ):
+ super().__init__()
+ self.add_self_attention = add_self_attention
+
+ # 1. Self-Attn
+ if add_self_attention:
+ self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
+ self.attn1 = Attention(
+ query_dim=dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ dropout=dropout,
+ bias=attention_bias,
+ cross_attention_dim=None,
+ cross_attention_norm=None,
+ )
+
+ # 2. Cross-Attn
+ self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
+ self.attn2 = Attention(
+ query_dim=dim,
+ cross_attention_dim=cross_attention_dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ dropout=dropout,
+ bias=attention_bias,
+ upcast_attention=upcast_attention,
+ cross_attention_norm=cross_attention_norm,
+ )
+
+ def _to_3d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor:
+ return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1)
+
+ def _to_4d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor:
+ return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight)
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ # TODO: mark emb as non-optional (self.norm2 requires it).
+ # requires assessing impact of change to positional param interface.
+ emb: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ ) -> torch.FloatTensor:
+ cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+
+ # 1. Self-Attention
+ if self.add_self_attention:
+ norm_hidden_states = self.norm1(hidden_states, emb)
+
+ height, weight = norm_hidden_states.shape[2:]
+ norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
+
+ attn_output = self.attn1(
+ norm_hidden_states,
+ encoder_hidden_states=None,
+ attention_mask=attention_mask,
+ **cross_attention_kwargs,
+ )
+ attn_output = self._to_4d(attn_output, height, weight)
+
+ hidden_states = attn_output + hidden_states
+
+ # 2. Cross-Attention/None
+ norm_hidden_states = self.norm2(hidden_states, emb)
+
+ height, weight = norm_hidden_states.shape[2:]
+ norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
+ attn_output = self.attn2(
+ norm_hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask,
+ **cross_attention_kwargs,
+ )
+ attn_output = self._to_4d(attn_output, height, weight)
+
+ hidden_states = attn_output + hidden_states
+
+ return hidden_states
diff --git a/extensions-builtin/forge_space_idm_vton/src/unet_block_hacked_tryon.py b/extensions-builtin/forge_space_idm_vton/src/unet_block_hacked_tryon.py
new file mode 100644
index 00000000..d46728a7
--- /dev/null
+++ b/extensions-builtin/forge_space_idm_vton/src/unet_block_hacked_tryon.py
@@ -0,0 +1,3522 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import Any, Dict, Optional, Tuple, Union
+
+import numpy as np
+import torch
+import torch.nn.functional as F
+from torch import nn
+
+from diffusers.utils import is_torch_version, logging
+from diffusers.utils.torch_utils import apply_freeu
+from diffusers.models.activations import get_activation
+from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
+from diffusers.models.dual_transformer_2d import DualTransformer2DModel
+from diffusers.models.normalization import AdaGroupNorm
+from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
+from src.transformerhacked_tryon import Transformer2DModel
+from einops import rearrange
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+def get_down_block(
+ down_block_type: str,
+ num_layers: int,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ add_downsample: bool,
+ resnet_eps: float,
+ resnet_act_fn: str,
+ transformer_layers_per_block: int = 1,
+ num_attention_heads: Optional[int] = None,
+ resnet_groups: Optional[int] = None,
+ cross_attention_dim: Optional[int] = None,
+ downsample_padding: Optional[int] = None,
+ dual_cross_attention: bool = False,
+ use_linear_projection: bool = False,
+ only_cross_attention: bool = False,
+ upcast_attention: bool = False,
+ resnet_time_scale_shift: str = "default",
+ attention_type: str = "default",
+ resnet_skip_time_act: bool = False,
+ resnet_out_scale_factor: float = 1.0,
+ cross_attention_norm: Optional[str] = None,
+ attention_head_dim: Optional[int] = None,
+ downsample_type: Optional[str] = None,
+ dropout: float = 0.0,
+):
+ # If attn head dim is not defined, we default it to the number of heads
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
+ )
+ attention_head_dim = num_attention_heads
+
+ down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
+ if down_block_type == "DownBlock2D":
+ return DownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "ResnetDownsampleBlock2D":
+ return ResnetDownsampleBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ skip_time_act=resnet_skip_time_act,
+ output_scale_factor=resnet_out_scale_factor,
+ )
+ elif down_block_type == "AttnDownBlock2D":
+ if add_downsample is False:
+ downsample_type = None
+ else:
+ downsample_type = downsample_type or "conv" # default to 'conv'
+ return AttnDownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ dropout=dropout,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ attention_head_dim=attention_head_dim,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ downsample_type=downsample_type,
+ )
+ elif down_block_type == "CrossAttnDownBlock2D":
+ if cross_attention_dim is None:
+ raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
+ return CrossAttnDownBlock2D(
+ num_layers=num_layers,
+ transformer_layers_per_block=transformer_layers_per_block,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ cross_attention_dim=cross_attention_dim,
+ num_attention_heads=num_attention_heads,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ attention_type=attention_type,
+ )
+ elif down_block_type == "SimpleCrossAttnDownBlock2D":
+ if cross_attention_dim is None:
+ raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
+ return SimpleCrossAttnDownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ cross_attention_dim=cross_attention_dim,
+ attention_head_dim=attention_head_dim,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ skip_time_act=resnet_skip_time_act,
+ output_scale_factor=resnet_out_scale_factor,
+ only_cross_attention=only_cross_attention,
+ cross_attention_norm=cross_attention_norm,
+ )
+ elif down_block_type == "SkipDownBlock2D":
+ return SkipDownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ downsample_padding=downsample_padding,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "AttnSkipDownBlock2D":
+ return AttnSkipDownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ attention_head_dim=attention_head_dim,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "DownEncoderBlock2D":
+ return DownEncoderBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "AttnDownEncoderBlock2D":
+ return AttnDownEncoderBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ attention_head_dim=attention_head_dim,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif down_block_type == "KDownBlock2D":
+ return KDownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ )
+ elif down_block_type == "KCrossAttnDownBlock2D":
+ return KCrossAttnDownBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ cross_attention_dim=cross_attention_dim,
+ attention_head_dim=attention_head_dim,
+ add_self_attention=True if not add_downsample else False,
+ )
+ raise ValueError(f"{down_block_type} does not exist.")
+
+
+def get_up_block(
+ up_block_type: str,
+ num_layers: int,
+ in_channels: int,
+ out_channels: int,
+ prev_output_channel: int,
+ temb_channels: int,
+ add_upsample: bool,
+ resnet_eps: float,
+ resnet_act_fn: str,
+ resolution_idx: Optional[int] = None,
+ transformer_layers_per_block: int = 1,
+ num_attention_heads: Optional[int] = None,
+ resnet_groups: Optional[int] = None,
+ cross_attention_dim: Optional[int] = None,
+ dual_cross_attention: bool = False,
+ use_linear_projection: bool = False,
+ only_cross_attention: bool = False,
+ upcast_attention: bool = False,
+ resnet_time_scale_shift: str = "default",
+ attention_type: str = "default",
+ resnet_skip_time_act: bool = False,
+ resnet_out_scale_factor: float = 1.0,
+ cross_attention_norm: Optional[str] = None,
+ attention_head_dim: Optional[int] = None,
+ upsample_type: Optional[str] = None,
+ dropout: float = 0.0,
+) -> nn.Module:
+ # If attn head dim is not defined, we default it to the number of heads
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
+ )
+ attention_head_dim = num_attention_heads
+
+ up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
+ if up_block_type == "UpBlock2D":
+ return UpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif up_block_type == "ResnetUpsampleBlock2D":
+ return ResnetUpsampleBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ skip_time_act=resnet_skip_time_act,
+ output_scale_factor=resnet_out_scale_factor,
+ )
+ elif up_block_type == "CrossAttnUpBlock2D":
+ if cross_attention_dim is None:
+ raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
+ return CrossAttnUpBlock2D(
+ num_layers=num_layers,
+ transformer_layers_per_block=transformer_layers_per_block,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ cross_attention_dim=cross_attention_dim,
+ num_attention_heads=num_attention_heads,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ attention_type=attention_type,
+ )
+ elif up_block_type == "SimpleCrossAttnUpBlock2D":
+ if cross_attention_dim is None:
+ raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
+ return SimpleCrossAttnUpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ cross_attention_dim=cross_attention_dim,
+ attention_head_dim=attention_head_dim,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ skip_time_act=resnet_skip_time_act,
+ output_scale_factor=resnet_out_scale_factor,
+ only_cross_attention=only_cross_attention,
+ cross_attention_norm=cross_attention_norm,
+ )
+ elif up_block_type == "AttnUpBlock2D":
+ if add_upsample is False:
+ upsample_type = None
+ else:
+ upsample_type = upsample_type or "conv" # default to 'conv'
+
+ return AttnUpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ attention_head_dim=attention_head_dim,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ upsample_type=upsample_type,
+ )
+ elif up_block_type == "SkipUpBlock2D":
+ return SkipUpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif up_block_type == "AttnSkipUpBlock2D":
+ return AttnSkipUpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ prev_output_channel=prev_output_channel,
+ temb_channels=temb_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ attention_head_dim=attention_head_dim,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ )
+ elif up_block_type == "UpDecoderBlock2D":
+ return UpDecoderBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ temb_channels=temb_channels,
+ )
+ elif up_block_type == "AttnUpDecoderBlock2D":
+ return AttnUpDecoderBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ attention_head_dim=attention_head_dim,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ temb_channels=temb_channels,
+ )
+ elif up_block_type == "KUpBlock2D":
+ return KUpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ )
+ elif up_block_type == "KCrossAttnUpBlock2D":
+ return KCrossAttnUpBlock2D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ cross_attention_dim=cross_attention_dim,
+ attention_head_dim=attention_head_dim,
+ )
+
+ raise ValueError(f"{up_block_type} does not exist.")
+
+
+class AutoencoderTinyBlock(nn.Module):
+ """
+ Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU
+ blocks.
+
+ Args:
+ in_channels (`int`): The number of input channels.
+ out_channels (`int`): The number of output channels.
+ act_fn (`str`):
+ ` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`.
+
+ Returns:
+ `torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to
+ `out_channels`.
+ """
+
+ def __init__(self, in_channels: int, out_channels: int, act_fn: str):
+ super().__init__()
+ act_fn = get_activation(act_fn)
+ self.conv = nn.Sequential(
+ nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
+ act_fn,
+ nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
+ act_fn,
+ nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
+ )
+ self.skip = (
+ nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
+ if in_channels != out_channels
+ else nn.Identity()
+ )
+ self.fuse = nn.ReLU()
+
+ def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
+ return self.fuse(self.conv(x) + self.skip(x))
+
+
+class UNetMidBlock2D(nn.Module):
+ """
+ A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks.
+
+ Args:
+ in_channels (`int`): The number of input channels.
+ temb_channels (`int`): The number of temporal embedding channels.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
+ num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
+ resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
+ resnet_time_scale_shift (`str`, *optional*, defaults to `default`):
+ The type of normalization to apply to the time embeddings. This can help to improve the performance of the
+ model on tasks with long-range temporal dependencies.
+ resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks.
+ resnet_groups (`int`, *optional*, defaults to 32):
+ The number of groups to use in the group normalization layers of the resnet blocks.
+ attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks.
+ resnet_pre_norm (`bool`, *optional*, defaults to `True`):
+ Whether to use pre-normalization for the resnet blocks.
+ add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks.
+ attention_head_dim (`int`, *optional*, defaults to 1):
+ Dimension of a single attention head. The number of attention heads is determined based on this value and
+ the number of input channels.
+ output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor.
+
+ Returns:
+ `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
+ in_channels, height, width)`.
+
+ """
+
+ def __init__(
+ self,
+ in_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default", # default, spatial
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ attn_groups: Optional[int] = None,
+ resnet_pre_norm: bool = True,
+ add_attention: bool = True,
+ attention_head_dim: int = 1,
+ output_scale_factor: float = 1.0,
+ ):
+ super().__init__()
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
+ self.add_attention = add_attention
+
+ if attn_groups is None:
+ attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None
+
+ # there is always at least one resnet
+ resnets = [
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ ]
+ attentions = []
+
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
+ )
+ attention_head_dim = in_channels
+
+ for _ in range(num_layers):
+ if self.add_attention:
+ attentions.append(
+ Attention(
+ in_channels,
+ heads=in_channels // attention_head_dim,
+ dim_head=attention_head_dim,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=attn_groups,
+ spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
+ residual_connection=True,
+ bias=True,
+ upcast_softmax=True,
+ _from_deprecated_attn_block=True,
+ )
+ )
+ else:
+ attentions.append(None)
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
+ hidden_states = self.resnets[0](hidden_states, temb)
+ for attn, resnet in zip(self.attentions, self.resnets[1:]):
+ if attn is not None:
+ hidden_states = attn(hidden_states, temb=temb)
+ hidden_states = resnet(hidden_states, temb)
+
+ return hidden_states
+
+
+class UNetMidBlock2DCrossAttn(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ transformer_layers_per_block: Union[int, Tuple[int]] = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ num_attention_heads: int = 1,
+ output_scale_factor: float = 1.0,
+ cross_attention_dim: int = 1280,
+ dual_cross_attention: bool = False,
+ use_linear_projection: bool = False,
+ upcast_attention: bool = False,
+ attention_type: str = "default",
+ ):
+ super().__init__()
+
+ self.has_cross_attention = True
+ self.num_attention_heads = num_attention_heads
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
+
+ # support for variable transformer layers per block
+ if isinstance(transformer_layers_per_block, int):
+ transformer_layers_per_block = [transformer_layers_per_block] * num_layers
+
+ # there is always at least one resnet
+ resnets = [
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ ]
+ attentions = []
+
+ for i in range(num_layers):
+ if not dual_cross_attention:
+ attentions.append(
+ Transformer2DModel(
+ num_attention_heads,
+ in_channels // num_attention_heads,
+ in_channels=in_channels,
+ num_layers=transformer_layers_per_block[i],
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ use_linear_projection=use_linear_projection,
+ upcast_attention=upcast_attention,
+ attention_type=attention_type,
+ )
+ )
+ else:
+ attentions.append(
+ DualTransformer2DModel(
+ num_attention_heads,
+ in_channels // num_attention_heads,
+ in_channels=in_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ )
+ )
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ temb: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ garment_features=None,
+ curr_garment_feat_idx=0,
+ ) -> torch.FloatTensor:
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+ hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
+ for attn, resnet in zip(self.attentions, self.resnets[1:]):
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
+ hidden_states,curr_garment_feat_idx = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ attention_mask=attention_mask,
+ encoder_attention_mask=encoder_attention_mask,
+ return_dict=False,
+ garment_features=garment_features,
+ curr_garment_feat_idx=curr_garment_feat_idx,
+ )
+ hidden_states=hidden_states[0]
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet),
+ hidden_states,
+ temb,
+ **ckpt_kwargs,
+ )
+ else:
+ hidden_states,curr_garment_feat_idx = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ attention_mask=attention_mask,
+ encoder_attention_mask=encoder_attention_mask,
+ return_dict=False,
+ garment_features=garment_features,
+ curr_garment_feat_idx=curr_garment_feat_idx,
+ )
+ hidden_states=hidden_states[0]
+ hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+
+ return hidden_states,curr_garment_feat_idx
+
+
+class UNetMidBlock2DSimpleCrossAttn(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attention_head_dim: int = 1,
+ output_scale_factor: float = 1.0,
+ cross_attention_dim: int = 1280,
+ skip_time_act: bool = False,
+ only_cross_attention: bool = False,
+ cross_attention_norm: Optional[str] = None,
+ ):
+ super().__init__()
+
+ self.has_cross_attention = True
+
+ self.attention_head_dim = attention_head_dim
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
+
+ self.num_heads = in_channels // self.attention_head_dim
+
+ # there is always at least one resnet
+ resnets = [
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ )
+ ]
+ attentions = []
+
+ for _ in range(num_layers):
+ processor = (
+ AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
+ )
+
+ attentions.append(
+ Attention(
+ query_dim=in_channels,
+ cross_attention_dim=in_channels,
+ heads=self.num_heads,
+ dim_head=self.attention_head_dim,
+ added_kv_proj_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ bias=True,
+ upcast_softmax=True,
+ only_cross_attention=only_cross_attention,
+ cross_attention_norm=cross_attention_norm,
+ processor=processor,
+ )
+ )
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ )
+ )
+
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ temb: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ ) -> torch.FloatTensor:
+ cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+ lora_scale = cross_attention_kwargs.get("scale", 1.0)
+
+ if attention_mask is None:
+ # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
+ mask = None if encoder_hidden_states is None else encoder_attention_mask
+ else:
+ # when attention_mask is defined: we don't even check for encoder_attention_mask.
+ # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
+ # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
+ # then we can simplify this whole if/else block to:
+ # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
+ mask = attention_mask
+
+ hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
+ for attn, resnet in zip(self.attentions, self.resnets[1:]):
+ # attn
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=mask,
+ **cross_attention_kwargs,
+ )
+
+ # resnet
+ hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+
+ return hidden_states
+
+
+class AttnDownBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attention_head_dim: int = 1,
+ output_scale_factor: float = 1.0,
+ downsample_padding: int = 1,
+ downsample_type: str = "conv",
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+ self.downsample_type = downsample_type
+
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
+ )
+ attention_head_dim = out_channels
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ attentions.append(
+ Attention(
+ out_channels,
+ heads=out_channels // attention_head_dim,
+ dim_head=attention_head_dim,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=resnet_groups,
+ residual_connection=True,
+ bias=True,
+ upcast_softmax=True,
+ _from_deprecated_attn_block=True,
+ )
+ )
+
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ if downsample_type == "conv":
+ self.downsamplers = nn.ModuleList(
+ [
+ Downsample2D(
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+ )
+ ]
+ )
+ elif downsample_type == "resnet":
+ self.downsamplers = nn.ModuleList(
+ [
+ ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ down=True,
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ temb: Optional[torch.FloatTensor] = None,
+ upsample_size: Optional[int] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+ cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+
+ lora_scale = cross_attention_kwargs.get("scale", 1.0)
+
+ output_states = ()
+
+ for resnet, attn in zip(self.resnets, self.attentions):
+ cross_attention_kwargs.update({"scale": lora_scale})
+ hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+ hidden_states = attn(hidden_states, **cross_attention_kwargs)
+ output_states = output_states + (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ if self.downsample_type == "resnet":
+ hidden_states = downsampler(hidden_states, temb=temb, scale=lora_scale)
+ else:
+ hidden_states = downsampler(hidden_states, scale=lora_scale)
+
+ output_states += (hidden_states,)
+
+ return hidden_states, output_states
+
+
+class CrossAttnDownBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ transformer_layers_per_block: Union[int, Tuple[int]] = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ num_attention_heads: int = 1,
+ cross_attention_dim: int = 1280,
+ output_scale_factor: float = 1.0,
+ downsample_padding: int = 1,
+ add_downsample: bool = True,
+ dual_cross_attention: bool = False,
+ use_linear_projection: bool = False,
+ only_cross_attention: bool = False,
+ upcast_attention: bool = False,
+ attention_type: str = "default",
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ self.has_cross_attention = True
+ self.num_attention_heads = num_attention_heads
+ if isinstance(transformer_layers_per_block, int):
+ transformer_layers_per_block = [transformer_layers_per_block] * num_layers
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ if not dual_cross_attention:
+ attentions.append(
+ Transformer2DModel(
+ num_attention_heads,
+ out_channels // num_attention_heads,
+ in_channels=out_channels,
+ num_layers=transformer_layers_per_block[i],
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ attention_type=attention_type,
+ )
+ )
+ else:
+ attentions.append(
+ DualTransformer2DModel(
+ num_attention_heads,
+ out_channels // num_attention_heads,
+ in_channels=out_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ )
+ )
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.ModuleList(
+ [
+ Downsample2D(
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ temb: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ additional_residuals: Optional[torch.FloatTensor] = None,
+ garment_features=None,
+ curr_garment_feat_idx=0,
+ ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+ output_states = ()
+
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+
+ blocks = list(zip(self.resnets, self.attentions))
+ # print("len(self.resnets)")
+ # print(len(self.resnets))
+ # print("len(self.attentions)")
+ # print(len(self.attentions))
+ for i, (resnet, attn) in enumerate(blocks):
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet),
+ hidden_states,
+ temb,
+ **ckpt_kwargs,
+ )
+ hidden_states,curr_garment_feat_idx = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ attention_mask=attention_mask,
+ encoder_attention_mask=encoder_attention_mask,
+ return_dict=False,
+ garment_features=garment_features,
+ curr_garment_feat_idx=curr_garment_feat_idx,
+ )
+ hidden_states=hidden_states[0]
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+ hidden_states,curr_garment_feat_idx = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ attention_mask=attention_mask,
+ encoder_attention_mask=encoder_attention_mask,
+ return_dict=False,
+ garment_features=garment_features,
+ curr_garment_feat_idx=curr_garment_feat_idx,
+ )
+ hidden_states=hidden_states[0]
+
+
+ # apply additional residuals to the output of the last pair of resnet and attention blocks
+ if i == len(blocks) - 1 and additional_residuals is not None:
+ hidden_states = hidden_states + additional_residuals
+
+ output_states = output_states + (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states, scale=lora_scale)
+
+ output_states = output_states + (hidden_states,)
+
+ return hidden_states, output_states,curr_garment_feat_idx
+
+
+class DownBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor: float = 1.0,
+ add_downsample: bool = True,
+ downsample_padding: int = 1,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.ModuleList(
+ [
+ Downsample2D(
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
+ ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+ output_states = ()
+
+ for resnet in self.resnets:
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ if is_torch_version(">=", "1.11.0"):
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+ )
+ else:
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=scale)
+
+ output_states = output_states + (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states, scale=scale)
+
+ output_states = output_states + (hidden_states,)
+
+ return hidden_states, output_states
+
+
+class DownEncoderBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor: float = 1.0,
+ add_downsample: bool = True,
+ downsample_padding: int = 1,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=None,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.ModuleList(
+ [
+ Downsample2D(
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
+ for resnet in self.resnets:
+ hidden_states = resnet(hidden_states, temb=None, scale=scale)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states, scale)
+
+ return hidden_states
+
+
+class AttnDownEncoderBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attention_head_dim: int = 1,
+ output_scale_factor: float = 1.0,
+ add_downsample: bool = True,
+ downsample_padding: int = 1,
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
+ )
+ attention_head_dim = out_channels
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=None,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ attentions.append(
+ Attention(
+ out_channels,
+ heads=out_channels // attention_head_dim,
+ dim_head=attention_head_dim,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=resnet_groups,
+ residual_connection=True,
+ bias=True,
+ upcast_softmax=True,
+ _from_deprecated_attn_block=True,
+ )
+ )
+
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.ModuleList(
+ [
+ Downsample2D(
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
+ for resnet, attn in zip(self.resnets, self.attentions):
+ hidden_states = resnet(hidden_states, temb=None, scale=scale)
+ cross_attention_kwargs = {"scale": scale}
+ hidden_states = attn(hidden_states, **cross_attention_kwargs)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states, scale)
+
+ return hidden_states
+
+
+class AttnSkipDownBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_pre_norm: bool = True,
+ attention_head_dim: int = 1,
+ output_scale_factor: float = np.sqrt(2.0),
+ add_downsample: bool = True,
+ ):
+ super().__init__()
+ self.attentions = nn.ModuleList([])
+ self.resnets = nn.ModuleList([])
+
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
+ )
+ attention_head_dim = out_channels
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ self.resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(in_channels // 4, 32),
+ groups_out=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ self.attentions.append(
+ Attention(
+ out_channels,
+ heads=out_channels // attention_head_dim,
+ dim_head=attention_head_dim,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=32,
+ residual_connection=True,
+ bias=True,
+ upcast_softmax=True,
+ _from_deprecated_attn_block=True,
+ )
+ )
+
+ if add_downsample:
+ self.resnet_down = ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ use_in_shortcut=True,
+ down=True,
+ kernel="fir",
+ )
+ self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
+ self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
+ else:
+ self.resnet_down = None
+ self.downsamplers = None
+ self.skip_conv = None
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ temb: Optional[torch.FloatTensor] = None,
+ skip_sample: Optional[torch.FloatTensor] = None,
+ scale: float = 1.0,
+ ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]:
+ output_states = ()
+
+ for resnet, attn in zip(self.resnets, self.attentions):
+ hidden_states = resnet(hidden_states, temb, scale=scale)
+ cross_attention_kwargs = {"scale": scale}
+ hidden_states = attn(hidden_states, **cross_attention_kwargs)
+ output_states += (hidden_states,)
+
+ if self.downsamplers is not None:
+ hidden_states = self.resnet_down(hidden_states, temb, scale=scale)
+ for downsampler in self.downsamplers:
+ skip_sample = downsampler(skip_sample)
+
+ hidden_states = self.skip_conv(skip_sample) + hidden_states
+
+ output_states += (hidden_states,)
+
+ return hidden_states, output_states, skip_sample
+
+
+class SkipDownBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_pre_norm: bool = True,
+ output_scale_factor: float = np.sqrt(2.0),
+ add_downsample: bool = True,
+ downsample_padding: int = 1,
+ ):
+ super().__init__()
+ self.resnets = nn.ModuleList([])
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ self.resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(in_channels // 4, 32),
+ groups_out=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ if add_downsample:
+ self.resnet_down = ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ use_in_shortcut=True,
+ down=True,
+ kernel="fir",
+ )
+ self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
+ self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
+ else:
+ self.resnet_down = None
+ self.downsamplers = None
+ self.skip_conv = None
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ temb: Optional[torch.FloatTensor] = None,
+ skip_sample: Optional[torch.FloatTensor] = None,
+ scale: float = 1.0,
+ ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]:
+ output_states = ()
+
+ for resnet in self.resnets:
+ hidden_states = resnet(hidden_states, temb, scale)
+ output_states += (hidden_states,)
+
+ if self.downsamplers is not None:
+ hidden_states = self.resnet_down(hidden_states, temb, scale)
+ for downsampler in self.downsamplers:
+ skip_sample = downsampler(skip_sample)
+
+ hidden_states = self.skip_conv(skip_sample) + hidden_states
+
+ output_states += (hidden_states,)
+
+ return hidden_states, output_states, skip_sample
+
+
+class ResnetDownsampleBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor: float = 1.0,
+ add_downsample: bool = True,
+ skip_time_act: bool = False,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.ModuleList(
+ [
+ ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ down=True,
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
+ ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+ output_states = ()
+
+ for resnet in self.resnets:
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ if is_torch_version(">=", "1.11.0"):
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+ )
+ else:
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale)
+
+ output_states = output_states + (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states, temb, scale)
+
+ output_states = output_states + (hidden_states,)
+
+ return hidden_states, output_states
+
+
+class SimpleCrossAttnDownBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attention_head_dim: int = 1,
+ cross_attention_dim: int = 1280,
+ output_scale_factor: float = 1.0,
+ add_downsample: bool = True,
+ skip_time_act: bool = False,
+ only_cross_attention: bool = False,
+ cross_attention_norm: Optional[str] = None,
+ ):
+ super().__init__()
+
+ self.has_cross_attention = True
+
+ resnets = []
+ attentions = []
+
+ self.attention_head_dim = attention_head_dim
+ self.num_heads = out_channels // self.attention_head_dim
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ )
+ )
+
+ processor = (
+ AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
+ )
+
+ attentions.append(
+ Attention(
+ query_dim=out_channels,
+ cross_attention_dim=out_channels,
+ heads=self.num_heads,
+ dim_head=attention_head_dim,
+ added_kv_proj_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ bias=True,
+ upcast_softmax=True,
+ only_cross_attention=only_cross_attention,
+ cross_attention_norm=cross_attention_norm,
+ processor=processor,
+ )
+ )
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.ModuleList(
+ [
+ ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ down=True,
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ temb: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+ output_states = ()
+ cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+
+ lora_scale = cross_attention_kwargs.get("scale", 1.0)
+
+ if attention_mask is None:
+ # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
+ mask = None if encoder_hidden_states is None else encoder_attention_mask
+ else:
+ # when attention_mask is defined: we don't even check for encoder_attention_mask.
+ # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
+ # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
+ # then we can simplify this whole if/else block to:
+ # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
+ mask = attention_mask
+
+ for resnet, attn in zip(self.resnets, self.attentions):
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=mask,
+ **cross_attention_kwargs,
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=mask,
+ **cross_attention_kwargs,
+ )
+
+ output_states = output_states + (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states, temb, scale=lora_scale)
+
+ output_states = output_states + (hidden_states,)
+
+ return hidden_states, output_states
+
+
+class KDownBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 4,
+ resnet_eps: float = 1e-5,
+ resnet_act_fn: str = "gelu",
+ resnet_group_size: int = 32,
+ add_downsample: bool = False,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ groups = in_channels // resnet_group_size
+ groups_out = out_channels // resnet_group_size
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ dropout=dropout,
+ temb_channels=temb_channels,
+ groups=groups,
+ groups_out=groups_out,
+ eps=resnet_eps,
+ non_linearity=resnet_act_fn,
+ time_embedding_norm="ada_group",
+ conv_shortcut_bias=False,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_downsample:
+ # YiYi's comments- might be able to use FirDownsample2D, look into details later
+ self.downsamplers = nn.ModuleList([KDownsample2D()])
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
+ ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+ output_states = ()
+
+ for resnet in self.resnets:
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ if is_torch_version(">=", "1.11.0"):
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+ )
+ else:
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale)
+
+ output_states += (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states)
+
+ return hidden_states, output_states
+
+
+class KCrossAttnDownBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ cross_attention_dim: int,
+ dropout: float = 0.0,
+ num_layers: int = 4,
+ resnet_group_size: int = 32,
+ add_downsample: bool = True,
+ attention_head_dim: int = 64,
+ add_self_attention: bool = False,
+ resnet_eps: float = 1e-5,
+ resnet_act_fn: str = "gelu",
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ self.has_cross_attention = True
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ groups = in_channels // resnet_group_size
+ groups_out = out_channels // resnet_group_size
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ dropout=dropout,
+ temb_channels=temb_channels,
+ groups=groups,
+ groups_out=groups_out,
+ eps=resnet_eps,
+ non_linearity=resnet_act_fn,
+ time_embedding_norm="ada_group",
+ conv_shortcut_bias=False,
+ )
+ )
+ attentions.append(
+ KAttentionBlock(
+ out_channels,
+ out_channels // attention_head_dim,
+ attention_head_dim,
+ cross_attention_dim=cross_attention_dim,
+ temb_channels=temb_channels,
+ attention_bias=True,
+ add_self_attention=add_self_attention,
+ cross_attention_norm="layer_norm",
+ group_size=resnet_group_size,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+ self.attentions = nn.ModuleList(attentions)
+
+ if add_downsample:
+ self.downsamplers = nn.ModuleList([KDownsample2D()])
+ else:
+ self.downsamplers = None
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ temb: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+ output_states = ()
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+
+ for resnet, attn in zip(self.resnets, self.attentions):
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet),
+ hidden_states,
+ temb,
+ **ckpt_kwargs,
+ )
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ emb=temb,
+ attention_mask=attention_mask,
+ cross_attention_kwargs=cross_attention_kwargs,
+ encoder_attention_mask=encoder_attention_mask,
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ emb=temb,
+ attention_mask=attention_mask,
+ cross_attention_kwargs=cross_attention_kwargs,
+ encoder_attention_mask=encoder_attention_mask,
+ )
+
+ if self.downsamplers is None:
+ output_states += (None,)
+ else:
+ output_states += (hidden_states,)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states)
+
+ return hidden_states, output_states
+
+
+class AttnUpBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ prev_output_channel: int,
+ out_channels: int,
+ temb_channels: int,
+ resolution_idx: int = None,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attention_head_dim: int = 1,
+ output_scale_factor: float = 1.0,
+ upsample_type: str = "conv",
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ self.upsample_type = upsample_type
+
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
+ )
+ attention_head_dim = out_channels
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ attentions.append(
+ Attention(
+ out_channels,
+ heads=out_channels // attention_head_dim,
+ dim_head=attention_head_dim,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=resnet_groups,
+ residual_connection=True,
+ bias=True,
+ upcast_softmax=True,
+ _from_deprecated_attn_block=True,
+ )
+ )
+
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ if upsample_type == "conv":
+ self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+ elif upsample_type == "resnet":
+ self.upsamplers = nn.ModuleList(
+ [
+ ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ up=True,
+ )
+ ]
+ )
+ else:
+ self.upsamplers = None
+
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+ temb: Optional[torch.FloatTensor] = None,
+ upsample_size: Optional[int] = None,
+ scale: float = 1.0,
+ ) -> torch.FloatTensor:
+ for resnet, attn in zip(self.resnets, self.attentions):
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+ hidden_states = resnet(hidden_states, temb, scale=scale)
+ cross_attention_kwargs = {"scale": scale}
+ hidden_states = attn(hidden_states, **cross_attention_kwargs)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ if self.upsample_type == "resnet":
+ hidden_states = upsampler(hidden_states, temb=temb, scale=scale)
+ else:
+ hidden_states = upsampler(hidden_states, scale=scale)
+
+ return hidden_states
+
+
+class CrossAttnUpBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ prev_output_channel: int,
+ temb_channels: int,
+ resolution_idx: Optional[int] = None,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ transformer_layers_per_block: Union[int, Tuple[int]] = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ num_attention_heads: int = 1,
+ cross_attention_dim: int = 1280,
+ output_scale_factor: float = 1.0,
+ add_upsample: bool = True,
+ dual_cross_attention: bool = False,
+ use_linear_projection: bool = False,
+ only_cross_attention: bool = False,
+ upcast_attention: bool = False,
+ attention_type: str = "default",
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ self.has_cross_attention = True
+ self.num_attention_heads = num_attention_heads
+
+ if isinstance(transformer_layers_per_block, int):
+ transformer_layers_per_block = [transformer_layers_per_block] * num_layers
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ if not dual_cross_attention:
+ attentions.append(
+ Transformer2DModel(
+ num_attention_heads,
+ out_channels // num_attention_heads,
+ in_channels=out_channels,
+ num_layers=transformer_layers_per_block[i],
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention,
+ upcast_attention=upcast_attention,
+ attention_type=attention_type,
+ )
+ )
+ else:
+ attentions.append(
+ DualTransformer2DModel(
+ num_attention_heads,
+ out_channels // num_attention_heads,
+ in_channels=out_channels,
+ num_layers=1,
+ cross_attention_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ )
+ )
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+ temb: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ upsample_size: Optional[int] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ garment_features=None,
+ curr_garment_feat_idx=0,
+ ) -> torch.FloatTensor:
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+ is_freeu_enabled = (
+ getattr(self, "s1", None)
+ and getattr(self, "s2", None)
+ and getattr(self, "b1", None)
+ and getattr(self, "b2", None)
+ )
+
+ for resnet, attn in zip(self.resnets, self.attentions):
+
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+
+ # FreeU: Only operate on the first two stages
+ if is_freeu_enabled:
+ hidden_states, res_hidden_states = apply_freeu(
+ self.resolution_idx,
+ hidden_states,
+ res_hidden_states,
+ s1=self.s1,
+ s2=self.s2,
+ b1=self.b1,
+ b2=self.b2,
+ )
+
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+ # print(hidden_states.shape)
+ # print(encoder_hidden_states.shape)
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet),
+ hidden_states,
+ temb,
+ **ckpt_kwargs,
+ )
+ hidden_states,curr_garment_feat_idx = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ attention_mask=attention_mask,
+ encoder_attention_mask=encoder_attention_mask,
+ return_dict=False,
+ garment_features=garment_features,
+ curr_garment_feat_idx=curr_garment_feat_idx,
+ )
+ hidden_states=hidden_states[0]
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+ hidden_states,curr_garment_feat_idx = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ attention_mask=attention_mask,
+ encoder_attention_mask=encoder_attention_mask,
+ return_dict=False,
+ garment_features=garment_features,
+ curr_garment_feat_idx=curr_garment_feat_idx,
+ )
+ hidden_states=hidden_states[0]
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
+
+
+
+ return hidden_states,curr_garment_feat_idx
+
+
+class UpBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ prev_output_channel: int,
+ out_channels: int,
+ temb_channels: int,
+ resolution_idx: Optional[int] = None,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor: float = 1.0,
+ add_upsample: bool = True,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+ temb: Optional[torch.FloatTensor] = None,
+ upsample_size: Optional[int] = None,
+ scale: float = 1.0,
+ ) -> torch.FloatTensor:
+ is_freeu_enabled = (
+ getattr(self, "s1", None)
+ and getattr(self, "s2", None)
+ and getattr(self, "b1", None)
+ and getattr(self, "b2", None)
+ )
+
+ for resnet in self.resnets:
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+
+ # FreeU: Only operate on the first two stages
+ if is_freeu_enabled:
+ hidden_states, res_hidden_states = apply_freeu(
+ self.resolution_idx,
+ hidden_states,
+ res_hidden_states,
+ s1=self.s1,
+ s2=self.s2,
+ b1=self.b1,
+ b2=self.b2,
+ )
+
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ if is_torch_version(">=", "1.11.0"):
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+ )
+ else:
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=scale)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
+
+ return hidden_states
+
+
+
+class UpDecoderBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ resolution_idx: Optional[int] = None,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default", # default, spatial
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor: float = 1.0,
+ add_upsample: bool = True,
+ temb_channels: Optional[int] = None,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ input_channels = in_channels if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=input_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+ else:
+ self.upsamplers = None
+
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
+ ) -> torch.FloatTensor:
+ for resnet in self.resnets:
+ hidden_states = resnet(hidden_states, temb=temb, scale=scale)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states)
+
+ return hidden_states
+
+
+class AttnUpDecoderBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ resolution_idx: Optional[int] = None,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attention_head_dim: int = 1,
+ output_scale_factor: float = 1.0,
+ add_upsample: bool = True,
+ temb_channels: Optional[int] = None,
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
+ )
+ attention_head_dim = out_channels
+
+ for i in range(num_layers):
+ input_channels = in_channels if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=input_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+ attentions.append(
+ Attention(
+ out_channels,
+ heads=out_channels // attention_head_dim,
+ dim_head=attention_head_dim,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None,
+ spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
+ residual_connection=True,
+ bias=True,
+ upcast_softmax=True,
+ _from_deprecated_attn_block=True,
+ )
+ )
+
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+ else:
+ self.upsamplers = None
+
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
+ ) -> torch.FloatTensor:
+ for resnet, attn in zip(self.resnets, self.attentions):
+ hidden_states = resnet(hidden_states, temb=temb, scale=scale)
+ cross_attention_kwargs = {"scale": scale}
+ hidden_states = attn(hidden_states, temb=temb, **cross_attention_kwargs)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states, scale=scale)
+
+ return hidden_states
+
+
+class AttnSkipUpBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ prev_output_channel: int,
+ out_channels: int,
+ temb_channels: int,
+ resolution_idx: Optional[int] = None,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_pre_norm: bool = True,
+ attention_head_dim: int = 1,
+ output_scale_factor: float = np.sqrt(2.0),
+ add_upsample: bool = True,
+ ):
+ super().__init__()
+ self.attentions = nn.ModuleList([])
+ self.resnets = nn.ModuleList([])
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ self.resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(resnet_in_channels + res_skip_channels // 4, 32),
+ groups_out=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
+ )
+ attention_head_dim = out_channels
+
+ self.attentions.append(
+ Attention(
+ out_channels,
+ heads=out_channels // attention_head_dim,
+ dim_head=attention_head_dim,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=32,
+ residual_connection=True,
+ bias=True,
+ upcast_softmax=True,
+ _from_deprecated_attn_block=True,
+ )
+ )
+
+ self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
+ if add_upsample:
+ self.resnet_up = ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(out_channels // 4, 32),
+ groups_out=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ use_in_shortcut=True,
+ up=True,
+ kernel="fir",
+ )
+ self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
+ self.skip_norm = torch.nn.GroupNorm(
+ num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
+ )
+ self.act = nn.SiLU()
+ else:
+ self.resnet_up = None
+ self.skip_conv = None
+ self.skip_norm = None
+ self.act = None
+
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+ temb: Optional[torch.FloatTensor] = None,
+ skip_sample=None,
+ scale: float = 1.0,
+ ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
+ for resnet in self.resnets:
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+ hidden_states = resnet(hidden_states, temb, scale=scale)
+
+ cross_attention_kwargs = {"scale": scale}
+ hidden_states = self.attentions[0](hidden_states, **cross_attention_kwargs)
+
+ if skip_sample is not None:
+ skip_sample = self.upsampler(skip_sample)
+ else:
+ skip_sample = 0
+
+ if self.resnet_up is not None:
+ skip_sample_states = self.skip_norm(hidden_states)
+ skip_sample_states = self.act(skip_sample_states)
+ skip_sample_states = self.skip_conv(skip_sample_states)
+
+ skip_sample = skip_sample + skip_sample_states
+
+ hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
+
+ return hidden_states, skip_sample
+
+
+class SkipUpBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ prev_output_channel: int,
+ out_channels: int,
+ temb_channels: int,
+ resolution_idx: Optional[int] = None,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_pre_norm: bool = True,
+ output_scale_factor: float = np.sqrt(2.0),
+ add_upsample: bool = True,
+ upsample_padding: int = 1,
+ ):
+ super().__init__()
+ self.resnets = nn.ModuleList([])
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ self.resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
+ groups_out=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ )
+ )
+
+ self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
+ if add_upsample:
+ self.resnet_up = ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=min(out_channels // 4, 32),
+ groups_out=min(out_channels // 4, 32),
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ use_in_shortcut=True,
+ up=True,
+ kernel="fir",
+ )
+ self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
+ self.skip_norm = torch.nn.GroupNorm(
+ num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
+ )
+ self.act = nn.SiLU()
+ else:
+ self.resnet_up = None
+ self.skip_conv = None
+ self.skip_norm = None
+ self.act = None
+
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+ temb: Optional[torch.FloatTensor] = None,
+ skip_sample=None,
+ scale: float = 1.0,
+ ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
+ for resnet in self.resnets:
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+ hidden_states = resnet(hidden_states, temb, scale=scale)
+
+ if skip_sample is not None:
+ skip_sample = self.upsampler(skip_sample)
+ else:
+ skip_sample = 0
+
+ if self.resnet_up is not None:
+ skip_sample_states = self.skip_norm(hidden_states)
+ skip_sample_states = self.act(skip_sample_states)
+ skip_sample_states = self.skip_conv(skip_sample_states)
+
+ skip_sample = skip_sample + skip_sample_states
+
+ hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
+
+ return hidden_states, skip_sample
+
+
+class ResnetUpsampleBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ prev_output_channel: int,
+ out_channels: int,
+ temb_channels: int,
+ resolution_idx: Optional[int] = None,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor: float = 1.0,
+ add_upsample: bool = True,
+ skip_time_act: bool = False,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.ModuleList(
+ [
+ ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ up=True,
+ )
+ ]
+ )
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+ temb: Optional[torch.FloatTensor] = None,
+ upsample_size: Optional[int] = None,
+ scale: float = 1.0,
+ ) -> torch.FloatTensor:
+ for resnet in self.resnets:
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ if is_torch_version(">=", "1.11.0"):
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+ )
+ else:
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=scale)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states, temb, scale=scale)
+
+ return hidden_states
+
+
+class SimpleCrossAttnUpBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ prev_output_channel: int,
+ temb_channels: int,
+ resolution_idx: Optional[int] = None,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ attention_head_dim: int = 1,
+ cross_attention_dim: int = 1280,
+ output_scale_factor: float = 1.0,
+ add_upsample: bool = True,
+ skip_time_act: bool = False,
+ only_cross_attention: bool = False,
+ cross_attention_norm: Optional[str] = None,
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ self.has_cross_attention = True
+ self.attention_head_dim = attention_head_dim
+
+ self.num_heads = out_channels // self.attention_head_dim
+
+ for i in range(num_layers):
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=resnet_in_channels + res_skip_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ )
+ )
+
+ processor = (
+ AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
+ )
+
+ attentions.append(
+ Attention(
+ query_dim=out_channels,
+ cross_attention_dim=out_channels,
+ heads=self.num_heads,
+ dim_head=self.attention_head_dim,
+ added_kv_proj_dim=cross_attention_dim,
+ norm_num_groups=resnet_groups,
+ bias=True,
+ upcast_softmax=True,
+ only_cross_attention=only_cross_attention,
+ cross_attention_norm=cross_attention_norm,
+ processor=processor,
+ )
+ )
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.ModuleList(
+ [
+ ResnetBlock2D(
+ in_channels=out_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ skip_time_act=skip_time_act,
+ up=True,
+ )
+ ]
+ )
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+ temb: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ upsample_size: Optional[int] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ ) -> torch.FloatTensor:
+ cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+
+ lora_scale = cross_attention_kwargs.get("scale", 1.0)
+ if attention_mask is None:
+ # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
+ mask = None if encoder_hidden_states is None else encoder_attention_mask
+ else:
+ # when attention_mask is defined: we don't even check for encoder_attention_mask.
+ # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
+ # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
+ # then we can simplify this whole if/else block to:
+ # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
+ mask = attention_mask
+
+ for resnet, attn in zip(self.resnets, self.attentions):
+ # resnet
+ # pop res hidden states
+ res_hidden_states = res_hidden_states_tuple[-1]
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=mask,
+ **cross_attention_kwargs,
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=mask,
+ **cross_attention_kwargs,
+ )
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states, temb, scale=lora_scale)
+
+ return hidden_states
+
+
+class KUpBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ resolution_idx: int,
+ dropout: float = 0.0,
+ num_layers: int = 5,
+ resnet_eps: float = 1e-5,
+ resnet_act_fn: str = "gelu",
+ resnet_group_size: Optional[int] = 32,
+ add_upsample: bool = True,
+ ):
+ super().__init__()
+ resnets = []
+ k_in_channels = 2 * out_channels
+ k_out_channels = in_channels
+ num_layers = num_layers - 1
+
+ for i in range(num_layers):
+ in_channels = k_in_channels if i == 0 else out_channels
+ groups = in_channels // resnet_group_size
+ groups_out = out_channels // resnet_group_size
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=k_out_channels if (i == num_layers - 1) else out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=groups,
+ groups_out=groups_out,
+ dropout=dropout,
+ non_linearity=resnet_act_fn,
+ time_embedding_norm="ada_group",
+ conv_shortcut_bias=False,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.ModuleList([KUpsample2D()])
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+ temb: Optional[torch.FloatTensor] = None,
+ upsample_size: Optional[int] = None,
+ scale: float = 1.0,
+ ) -> torch.FloatTensor:
+ res_hidden_states_tuple = res_hidden_states_tuple[-1]
+ if res_hidden_states_tuple is not None:
+ hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)
+
+ for resnet in self.resnets:
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ if is_torch_version(">=", "1.11.0"):
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+ )
+ else:
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet), hidden_states, temb
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=scale)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states)
+
+ return hidden_states
+
+
+class KCrossAttnUpBlock2D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ resolution_idx: int,
+ dropout: float = 0.0,
+ num_layers: int = 4,
+ resnet_eps: float = 1e-5,
+ resnet_act_fn: str = "gelu",
+ resnet_group_size: int = 32,
+ attention_head_dim: int = 1, # attention dim_head
+ cross_attention_dim: int = 768,
+ add_upsample: bool = True,
+ upcast_attention: bool = False,
+ ):
+ super().__init__()
+ resnets = []
+ attentions = []
+
+ is_first_block = in_channels == out_channels == temb_channels
+ is_middle_block = in_channels != out_channels
+ add_self_attention = True if is_first_block else False
+
+ self.has_cross_attention = True
+ self.attention_head_dim = attention_head_dim
+
+ # in_channels, and out_channels for the block (k-unet)
+ k_in_channels = out_channels if is_first_block else 2 * out_channels
+ k_out_channels = in_channels
+
+ num_layers = num_layers - 1
+
+ for i in range(num_layers):
+ in_channels = k_in_channels if i == 0 else out_channels
+ groups = in_channels // resnet_group_size
+ groups_out = out_channels // resnet_group_size
+
+ if is_middle_block and (i == num_layers - 1):
+ conv_2d_out_channels = k_out_channels
+ else:
+ conv_2d_out_channels = None
+
+ resnets.append(
+ ResnetBlock2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ conv_2d_out_channels=conv_2d_out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=groups,
+ groups_out=groups_out,
+ dropout=dropout,
+ non_linearity=resnet_act_fn,
+ time_embedding_norm="ada_group",
+ conv_shortcut_bias=False,
+ )
+ )
+ attentions.append(
+ KAttentionBlock(
+ k_out_channels if (i == num_layers - 1) else out_channels,
+ k_out_channels // attention_head_dim
+ if (i == num_layers - 1)
+ else out_channels // attention_head_dim,
+ attention_head_dim,
+ cross_attention_dim=cross_attention_dim,
+ temb_channels=temb_channels,
+ attention_bias=True,
+ add_self_attention=add_self_attention,
+ cross_attention_norm="layer_norm",
+ upcast_attention=upcast_attention,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+ self.attentions = nn.ModuleList(attentions)
+
+ if add_upsample:
+ self.upsamplers = nn.ModuleList([KUpsample2D()])
+ else:
+ self.upsamplers = None
+
+ self.gradient_checkpointing = False
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+ temb: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ upsample_size: Optional[int] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ ) -> torch.FloatTensor:
+ res_hidden_states_tuple = res_hidden_states_tuple[-1]
+ if res_hidden_states_tuple is not None:
+ hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)
+
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+ for resnet, attn in zip(self.resnets, self.attentions):
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module, return_dict=None):
+ def custom_forward(*inputs):
+ if return_dict is not None:
+ return module(*inputs, return_dict=return_dict)
+ else:
+ return module(*inputs)
+
+ return custom_forward
+
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
+ hidden_states = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(resnet),
+ hidden_states,
+ temb,
+ **ckpt_kwargs,
+ )
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ emb=temb,
+ attention_mask=attention_mask,
+ cross_attention_kwargs=cross_attention_kwargs,
+ encoder_attention_mask=encoder_attention_mask,
+ )
+ else:
+ hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+ hidden_states = attn(
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ emb=temb,
+ attention_mask=attention_mask,
+ cross_attention_kwargs=cross_attention_kwargs,
+ encoder_attention_mask=encoder_attention_mask,
+ )
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states)
+
+ return hidden_states
+
+
+# can potentially later be renamed to `No-feed-forward` attention
+class KAttentionBlock(nn.Module):
+ r"""
+ A basic Transformer block.
+
+ Parameters:
+ dim (`int`): The number of channels in the input and output.
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
+ attention_head_dim (`int`): The number of channels in each head.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
+ cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
+ attention_bias (`bool`, *optional*, defaults to `False`):
+ Configure if the attention layers should contain a bias parameter.
+ upcast_attention (`bool`, *optional*, defaults to `False`):
+ Set to `True` to upcast the attention computation to `float32`.
+ temb_channels (`int`, *optional*, defaults to 768):
+ The number of channels in the token embedding.
+ add_self_attention (`bool`, *optional*, defaults to `False`):
+ Set to `True` to add self-attention to the block.
+ cross_attention_norm (`str`, *optional*, defaults to `None`):
+ The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
+ group_size (`int`, *optional*, defaults to 32):
+ The number of groups to separate the channels into for group normalization.
+ """
+
+ def __init__(
+ self,
+ dim: int,
+ num_attention_heads: int,
+ attention_head_dim: int,
+ dropout: float = 0.0,
+ cross_attention_dim: Optional[int] = None,
+ attention_bias: bool = False,
+ upcast_attention: bool = False,
+ temb_channels: int = 768, # for ada_group_norm
+ add_self_attention: bool = False,
+ cross_attention_norm: Optional[str] = None,
+ group_size: int = 32,
+ ):
+ super().__init__()
+ self.add_self_attention = add_self_attention
+
+ # 1. Self-Attn
+ if add_self_attention:
+ self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
+ self.attn1 = Attention(
+ query_dim=dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ dropout=dropout,
+ bias=attention_bias,
+ cross_attention_dim=None,
+ cross_attention_norm=None,
+ )
+
+ # 2. Cross-Attn
+ self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
+ self.attn2 = Attention(
+ query_dim=dim,
+ cross_attention_dim=cross_attention_dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ dropout=dropout,
+ bias=attention_bias,
+ upcast_attention=upcast_attention,
+ cross_attention_norm=cross_attention_norm,
+ )
+
+ def _to_3d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor:
+ return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1)
+
+ def _to_4d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor:
+ return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight)
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ # TODO: mark emb as non-optional (self.norm2 requires it).
+ # requires assessing impact of change to positional param interface.
+ emb: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ ) -> torch.FloatTensor:
+ cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+
+ # 1. Self-Attention
+ if self.add_self_attention:
+ norm_hidden_states = self.norm1(hidden_states, emb)
+
+ height, weight = norm_hidden_states.shape[2:]
+ norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
+
+ attn_output = self.attn1(
+ norm_hidden_states,
+ encoder_hidden_states=None,
+ attention_mask=attention_mask,
+ **cross_attention_kwargs,
+ )
+ attn_output = self._to_4d(attn_output, height, weight)
+
+ hidden_states = attn_output + hidden_states
+
+ # 2. Cross-Attention/None
+ norm_hidden_states = self.norm2(hidden_states, emb)
+
+ height, weight = norm_hidden_states.shape[2:]
+ norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
+ attn_output = self.attn2(
+ norm_hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask,
+ **cross_attention_kwargs,
+ )
+ attn_output = self._to_4d(attn_output, height, weight)
+
+ hidden_states = attn_output + hidden_states
+
+ return hidden_states
diff --git a/extensions-builtin/forge_space_idm_vton/src/unet_hacked_garmnet.py b/extensions-builtin/forge_space_idm_vton/src/unet_hacked_garmnet.py
new file mode 100644
index 00000000..53b1f857
--- /dev/null
+++ b/extensions-builtin/forge_space_idm_vton/src/unet_hacked_garmnet.py
@@ -0,0 +1,1284 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from dataclasses import dataclass
+from typing import Any, Dict, List, Optional, Tuple, Union
+
+import torch
+import torch.nn as nn
+import torch.utils.checkpoint
+
+from diffusers.configuration_utils import ConfigMixin, register_to_config
+from diffusers.loaders import UNet2DConditionLoadersMixin
+from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
+from diffusers.models.activations import get_activation
+from diffusers.models.attention_processor import (
+ ADDED_KV_ATTENTION_PROCESSORS,
+ CROSS_ATTENTION_PROCESSORS,
+ Attention,
+ AttentionProcessor,
+ AttnAddedKVProcessor,
+ AttnProcessor,
+)
+from einops import rearrange
+
+from diffusers.models.embeddings import (
+ GaussianFourierProjection,
+ ImageHintTimeEmbedding,
+ ImageProjection,
+ ImageTimeEmbedding,
+ PositionNet,
+ TextImageProjection,
+ TextImageTimeEmbedding,
+ TextTimeEmbedding,
+ TimestepEmbedding,
+ Timesteps,
+)
+from diffusers.models.modeling_utils import ModelMixin
+from src.unet_block_hacked_garmnet import (
+ UNetMidBlock2D,
+ UNetMidBlock2DCrossAttn,
+ UNetMidBlock2DSimpleCrossAttn,
+ get_down_block,
+ get_up_block,
+)
+from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
+from diffusers.models.transformer_2d import Transformer2DModel
+
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+def zero_module(module):
+ for p in module.parameters():
+ nn.init.zeros_(p)
+ return module
+
+@dataclass
+class UNet2DConditionOutput(BaseOutput):
+ """
+ The output of [`UNet2DConditionModel`].
+
+ Args:
+ sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
+ """
+
+ sample: torch.FloatTensor = None
+
+
+class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
+ r"""
+ A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
+ shaped output.
+
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
+ for all models (such as downloading or saving).
+
+ Parameters:
+ sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
+ Height and width of input/output sample.
+ in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
+ out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
+ center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
+ flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
+ Whether to flip the sin to cos in the time embedding.
+ freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
+ The tuple of downsample blocks to use.
+ mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
+ Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
+ `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
+ The tuple of upsample blocks to use.
+ only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
+ Whether to include self-attention in the basic transformer blocks, see
+ [`~models.attention.BasicTransformerBlock`].
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
+ The tuple of output channels for each block.
+ layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
+ downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
+ mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
+ norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
+ If `None`, normalization and activation layers is skipped in post-processing.
+ norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
+ cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
+ The dimension of the cross attention features.
+ transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
+ reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
+ blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
+ encoder_hid_dim (`int`, *optional*, defaults to None):
+ If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
+ dimension to `cross_attention_dim`.
+ encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
+ If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
+ embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
+ attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
+ num_attention_heads (`int`, *optional*):
+ The number of attention heads. If not defined, defaults to `attention_head_dim`
+ resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
+ for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
+ class_embed_type (`str`, *optional*, defaults to `None`):
+ The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
+ `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
+ addition_embed_type (`str`, *optional*, defaults to `None`):
+ Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
+ "text". "text" will use the `TextTimeEmbedding` layer.
+ addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
+ Dimension for the timestep embeddings.
+ num_class_embeds (`int`, *optional*, defaults to `None`):
+ Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
+ class conditioning with `class_embed_type` equal to `None`.
+ time_embedding_type (`str`, *optional*, defaults to `positional`):
+ The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
+ time_embedding_dim (`int`, *optional*, defaults to `None`):
+ An optional override for the dimension of the projected time embedding.
+ time_embedding_act_fn (`str`, *optional*, defaults to `None`):
+ Optional activation function to use only once on the time embeddings before they are passed to the rest of
+ the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
+ timestep_post_act (`str`, *optional*, defaults to `None`):
+ The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
+ time_cond_proj_dim (`int`, *optional*, defaults to `None`):
+ The dimension of `cond_proj` layer in the timestep embedding.
+ conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
+ *optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
+ *optional*): The dimension of the `class_labels` input when
+ `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
+ class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
+ embeddings with the class embeddings.
+ mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
+ Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
+ `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
+ `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
+ otherwise.
+ """
+
+ _supports_gradient_checkpointing = True
+
+ @register_to_config
+ def __init__(
+ self,
+ sample_size: Optional[int] = None,
+ in_channels: int = 4,
+ out_channels: int = 4,
+ center_input_sample: bool = False,
+ flip_sin_to_cos: bool = True,
+ freq_shift: int = 0,
+ down_block_types: Tuple[str] = (
+ "CrossAttnDownBlock2D",
+ "CrossAttnDownBlock2D",
+ "CrossAttnDownBlock2D",
+ "DownBlock2D",
+ ),
+ mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
+ up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
+ layers_per_block: Union[int, Tuple[int]] = 2,
+ downsample_padding: int = 1,
+ mid_block_scale_factor: float = 1,
+ dropout: float = 0.0,
+ act_fn: str = "silu",
+ norm_num_groups: Optional[int] = 32,
+ norm_eps: float = 1e-5,
+ cross_attention_dim: Union[int, Tuple[int]] = 1280,
+ transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
+ reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
+ encoder_hid_dim: Optional[int] = None,
+ encoder_hid_dim_type: Optional[str] = None,
+ attention_head_dim: Union[int, Tuple[int]] = 8,
+ num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
+ dual_cross_attention: bool = False,
+ use_linear_projection: bool = False,
+ class_embed_type: Optional[str] = None,
+ addition_embed_type: Optional[str] = None,
+ addition_time_embed_dim: Optional[int] = None,
+ num_class_embeds: Optional[int] = None,
+ upcast_attention: bool = False,
+ resnet_time_scale_shift: str = "default",
+ resnet_skip_time_act: bool = False,
+ resnet_out_scale_factor: int = 1.0,
+ time_embedding_type: str = "positional",
+ time_embedding_dim: Optional[int] = None,
+ time_embedding_act_fn: Optional[str] = None,
+ timestep_post_act: Optional[str] = None,
+ time_cond_proj_dim: Optional[int] = None,
+ conv_in_kernel: int = 3,
+ conv_out_kernel: int = 3,
+ projection_class_embeddings_input_dim: Optional[int] = None,
+ attention_type: str = "default",
+ class_embeddings_concat: bool = False,
+ mid_block_only_cross_attention: Optional[bool] = None,
+ cross_attention_norm: Optional[str] = None,
+ addition_embed_type_num_heads=64,
+ ):
+ super().__init__()
+
+ self.sample_size = sample_size
+
+ if num_attention_heads is not None:
+ raise ValueError(
+ "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
+ )
+
+ # If `num_attention_heads` is not defined (which is the case for most models)
+ # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
+ # The reason for this behavior is to correct for incorrectly named variables that were introduced
+ # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
+ # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
+ # which is why we correct for the naming here.
+ num_attention_heads = num_attention_heads or attention_head_dim
+
+ # Check inputs
+ if len(down_block_types) != len(up_block_types):
+ raise ValueError(
+ f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
+ )
+
+ if len(block_out_channels) != len(down_block_types):
+ raise ValueError(
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
+ )
+
+ if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
+ raise ValueError(
+ f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
+ )
+
+ if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
+ raise ValueError(
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
+ )
+
+ if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
+ raise ValueError(
+ f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
+ )
+
+ if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
+ raise ValueError(
+ f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
+ )
+
+ if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
+ raise ValueError(
+ f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
+ )
+ if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
+ for layer_number_per_block in transformer_layers_per_block:
+ if isinstance(layer_number_per_block, list):
+ raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
+
+ # input
+ conv_in_padding = (conv_in_kernel - 1) // 2
+ self.conv_in = nn.Conv2d(
+ in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
+ )
+
+ # time
+ if time_embedding_type == "fourier":
+ time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
+ if time_embed_dim % 2 != 0:
+ raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
+ self.time_proj = GaussianFourierProjection(
+ time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
+ )
+ timestep_input_dim = time_embed_dim
+ elif time_embedding_type == "positional":
+ time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
+
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
+ timestep_input_dim = block_out_channels[0]
+ else:
+ raise ValueError(
+ f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
+ )
+
+ self.time_embedding = TimestepEmbedding(
+ timestep_input_dim,
+ time_embed_dim,
+ act_fn=act_fn,
+ post_act_fn=timestep_post_act,
+ cond_proj_dim=time_cond_proj_dim,
+ )
+
+ if encoder_hid_dim_type is None and encoder_hid_dim is not None:
+ encoder_hid_dim_type = "text_proj"
+ self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
+ logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
+
+ if encoder_hid_dim is None and encoder_hid_dim_type is not None:
+ raise ValueError(
+ f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
+ )
+
+ if encoder_hid_dim_type == "text_proj":
+ self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
+ elif encoder_hid_dim_type == "text_image_proj":
+ # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
+ # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
+ self.encoder_hid_proj = TextImageProjection(
+ text_embed_dim=encoder_hid_dim,
+ image_embed_dim=cross_attention_dim,
+ cross_attention_dim=cross_attention_dim,
+ )
+ elif encoder_hid_dim_type == "image_proj":
+ # Kandinsky 2.2
+ self.encoder_hid_proj = ImageProjection(
+ image_embed_dim=encoder_hid_dim,
+ cross_attention_dim=cross_attention_dim,
+ )
+ elif encoder_hid_dim_type is not None:
+ raise ValueError(
+ f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
+ )
+ else:
+ self.encoder_hid_proj = None
+
+ # class embedding
+ if class_embed_type is None and num_class_embeds is not None:
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
+ elif class_embed_type == "timestep":
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
+ elif class_embed_type == "identity":
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
+ elif class_embed_type == "projection":
+ if projection_class_embeddings_input_dim is None:
+ raise ValueError(
+ "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
+ )
+ # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
+ # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
+ # 2. it projects from an arbitrary input dimension.
+ #
+ # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
+ # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
+ # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
+ self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
+ elif class_embed_type == "simple_projection":
+ if projection_class_embeddings_input_dim is None:
+ raise ValueError(
+ "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
+ )
+ self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
+ else:
+ self.class_embedding = None
+
+ if addition_embed_type == "text":
+ if encoder_hid_dim is not None:
+ text_time_embedding_from_dim = encoder_hid_dim
+ else:
+ text_time_embedding_from_dim = cross_attention_dim
+
+ self.add_embedding = TextTimeEmbedding(
+ text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
+ )
+ elif addition_embed_type == "text_image":
+ # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
+ # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
+ self.add_embedding = TextImageTimeEmbedding(
+ text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
+ )
+ elif addition_embed_type == "text_time":
+ self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
+ self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
+ elif addition_embed_type == "image":
+ # Kandinsky 2.2
+ self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
+ elif addition_embed_type == "image_hint":
+ # Kandinsky 2.2 ControlNet
+ self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
+ elif addition_embed_type is not None:
+ raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
+
+ if time_embedding_act_fn is None:
+ self.time_embed_act = None
+ else:
+ self.time_embed_act = get_activation(time_embedding_act_fn)
+
+ self.down_blocks = nn.ModuleList([])
+ self.up_blocks = nn.ModuleList([])
+
+ if isinstance(only_cross_attention, bool):
+ if mid_block_only_cross_attention is None:
+ mid_block_only_cross_attention = only_cross_attention
+
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
+
+ if mid_block_only_cross_attention is None:
+ mid_block_only_cross_attention = False
+
+ if isinstance(num_attention_heads, int):
+ num_attention_heads = (num_attention_heads,) * len(down_block_types)
+
+ if isinstance(attention_head_dim, int):
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
+
+ if isinstance(cross_attention_dim, int):
+ cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
+
+ if isinstance(layers_per_block, int):
+ layers_per_block = [layers_per_block] * len(down_block_types)
+
+ if isinstance(transformer_layers_per_block, int):
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
+ if class_embeddings_concat:
+ # The time embeddings are concatenated with the class embeddings. The dimension of the
+ # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
+ # regular time embeddings
+ blocks_time_embed_dim = time_embed_dim * 2
+ else:
+ blocks_time_embed_dim = time_embed_dim
+
+ # down
+ output_channel = block_out_channels[0]
+ for i, down_block_type in enumerate(down_block_types):
+ input_channel = output_channel
+ output_channel = block_out_channels[i]
+ is_final_block = i == len(block_out_channels) - 1
+
+ down_block = get_down_block(
+ down_block_type,
+ num_layers=layers_per_block[i],
+ transformer_layers_per_block=transformer_layers_per_block[i],
+ in_channels=input_channel,
+ out_channels=output_channel,
+ temb_channels=blocks_time_embed_dim,
+ add_downsample=not is_final_block,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ resnet_groups=norm_num_groups,
+ cross_attention_dim=cross_attention_dim[i],
+ num_attention_heads=num_attention_heads[i],
+ downsample_padding=downsample_padding,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention[i],
+ upcast_attention=upcast_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ attention_type=attention_type,
+ resnet_skip_time_act=resnet_skip_time_act,
+ resnet_out_scale_factor=resnet_out_scale_factor,
+ cross_attention_norm=cross_attention_norm,
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
+ dropout=dropout,
+ )
+ self.down_blocks.append(down_block)
+
+ # mid
+ if mid_block_type == "UNetMidBlock2DCrossAttn":
+ self.mid_block = UNetMidBlock2DCrossAttn(
+ transformer_layers_per_block=transformer_layers_per_block[-1],
+ in_channels=block_out_channels[-1],
+ temb_channels=blocks_time_embed_dim,
+ dropout=dropout,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ output_scale_factor=mid_block_scale_factor,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ cross_attention_dim=cross_attention_dim[-1],
+ num_attention_heads=num_attention_heads[-1],
+ resnet_groups=norm_num_groups,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ upcast_attention=upcast_attention,
+ attention_type=attention_type,
+ )
+ elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
+ self.mid_block = UNetMidBlock2DSimpleCrossAttn(
+ in_channels=block_out_channels[-1],
+ temb_channels=blocks_time_embed_dim,
+ dropout=dropout,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ output_scale_factor=mid_block_scale_factor,
+ cross_attention_dim=cross_attention_dim[-1],
+ attention_head_dim=attention_head_dim[-1],
+ resnet_groups=norm_num_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ skip_time_act=resnet_skip_time_act,
+ only_cross_attention=mid_block_only_cross_attention,
+ cross_attention_norm=cross_attention_norm,
+ )
+ elif mid_block_type == "UNetMidBlock2D":
+ self.mid_block = UNetMidBlock2D(
+ in_channels=block_out_channels[-1],
+ temb_channels=blocks_time_embed_dim,
+ dropout=dropout,
+ num_layers=0,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ output_scale_factor=mid_block_scale_factor,
+ resnet_groups=norm_num_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ add_attention=False,
+ )
+ elif mid_block_type is None:
+ self.mid_block = None
+ else:
+ raise ValueError(f"unknown mid_block_type : {mid_block_type}")
+
+ # count how many layers upsample the images
+ self.num_upsamplers = 0
+
+ # up
+ reversed_block_out_channels = list(reversed(block_out_channels))
+ reversed_num_attention_heads = list(reversed(num_attention_heads))
+ reversed_layers_per_block = list(reversed(layers_per_block))
+ reversed_cross_attention_dim = list(reversed(cross_attention_dim))
+ reversed_transformer_layers_per_block = (
+ list(reversed(transformer_layers_per_block))
+ if reverse_transformer_layers_per_block is None
+ else reverse_transformer_layers_per_block
+ )
+ only_cross_attention = list(reversed(only_cross_attention))
+
+ output_channel = reversed_block_out_channels[0]
+ for i, up_block_type in enumerate(up_block_types):
+ is_final_block = i == len(block_out_channels) - 1
+
+ prev_output_channel = output_channel
+ output_channel = reversed_block_out_channels[i]
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
+
+ # add upsample block for all BUT final layer
+ if not is_final_block:
+ add_upsample = True
+ self.num_upsamplers += 1
+ else:
+ add_upsample = False
+ up_block = get_up_block(
+ up_block_type,
+ num_layers=reversed_layers_per_block[i] + 1,
+ transformer_layers_per_block=reversed_transformer_layers_per_block[i],
+ in_channels=input_channel,
+ out_channels=output_channel,
+ prev_output_channel=prev_output_channel,
+ temb_channels=blocks_time_embed_dim,
+ add_upsample=add_upsample,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ resolution_idx=i,
+ resnet_groups=norm_num_groups,
+ cross_attention_dim=reversed_cross_attention_dim[i],
+ num_attention_heads=reversed_num_attention_heads[i],
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention[i],
+ upcast_attention=upcast_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ attention_type=attention_type,
+ resnet_skip_time_act=resnet_skip_time_act,
+ resnet_out_scale_factor=resnet_out_scale_factor,
+ cross_attention_norm=cross_attention_norm,
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
+ dropout=dropout,
+ )
+
+ self.up_blocks.append(up_block)
+ prev_output_channel = output_channel
+
+
+
+
+ # encode_output_chs = [
+ # # 320,
+ # # 320,
+ # # 320,
+ # 1280,
+ # 1280,
+ # 1280,
+ # 1280,
+ # 640,
+ # 640
+ # ]
+
+ # encode_output_chs2 = [
+ # # 320,
+ # # 320,
+ # # 320,
+ # 1280,
+ # 1280,
+ # 640,
+ # 640,
+ # 640,
+ # 320
+ # ]
+
+ # encode_num_head_chs3 = [
+ # # 5,
+ # # 5,
+ # # 10,
+ # 20,
+ # 20,
+ # 20,
+ # 10,
+ # 10,
+ # 10
+ # ]
+
+
+ # encode_num_layers_chs4 = [
+ # # 1,
+ # # 1,
+ # # 2,
+ # 10,
+ # 10,
+ # 10,
+ # 2,
+ # 2,
+ # 2
+ # ]
+
+
+ # self.warp_blks = nn.ModuleList([])
+ # self.warp_zeros = nn.ModuleList([])
+
+ # for in_ch, cont_ch,num_head,num_layers in zip(encode_output_chs, encode_output_chs2,encode_num_head_chs3,encode_num_layers_chs4):
+ # # dim_head = in_ch // self.num_heads
+ # # dim_head = dim_head // dim_head_denorm
+
+ # self.warp_blks.append(Transformer2DModel(
+ # num_attention_heads=num_head,
+ # attention_head_dim=64,
+ # in_channels=in_ch,
+ # num_layers = num_layers,
+ # cross_attention_dim = cont_ch,
+ # ))
+
+ # self.warp_zeros.append(zero_module(nn.Conv2d(in_ch, in_ch, 1, padding=0)))
+
+
+
+ # out
+ if norm_num_groups is not None:
+ self.conv_norm_out = nn.GroupNorm(
+ num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
+ )
+
+ self.conv_act = get_activation(act_fn)
+
+ else:
+ self.conv_norm_out = None
+ self.conv_act = None
+
+ conv_out_padding = (conv_out_kernel - 1) // 2
+ self.conv_out = nn.Conv2d(
+ block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
+ )
+
+ if attention_type in ["gated", "gated-text-image"]:
+ positive_len = 768
+ if isinstance(cross_attention_dim, int):
+ positive_len = cross_attention_dim
+ elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
+ positive_len = cross_attention_dim[0]
+
+ feature_type = "text-only" if attention_type == "gated" else "text-image"
+ self.position_net = PositionNet(
+ positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
+ )
+
+
+
+
+ @property
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
+ r"""
+ Returns:
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
+ indexed by its weight name.
+ """
+ # set recursively
+ processors = {}
+
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
+ if hasattr(module, "get_processor"):
+ processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
+
+ for sub_name, child in module.named_children():
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
+
+ return processors
+
+ for name, module in self.named_children():
+ fn_recursive_add_processors(name, module, processors)
+
+ return processors
+
+ def set_attn_processor(
+ self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
+ ):
+ r"""
+ Sets the attention processor to use to compute attention.
+
+ Parameters:
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
+ for **all** `Attention` layers.
+
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
+ processor. This is strongly recommended when setting trainable attention processors.
+
+ """
+ count = len(self.attn_processors.keys())
+
+ if isinstance(processor, dict) and len(processor) != count:
+ raise ValueError(
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
+ )
+
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
+ if hasattr(module, "set_processor"):
+ if not isinstance(processor, dict):
+ module.set_processor(processor)
+ else:
+ module.set_processor(processor.pop(f"{name}.processor"))
+
+ for sub_name, child in module.named_children():
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
+
+ for name, module in self.named_children():
+ fn_recursive_attn_processor(name, module, processor)
+
+ def set_default_attn_processor(self):
+ """
+ Disables custom attention processors and sets the default attention implementation.
+ """
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
+ processor = AttnAddedKVProcessor()
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
+ processor = AttnProcessor()
+ else:
+ raise ValueError(
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
+ )
+
+ self.set_attn_processor(processor, _remove_lora=True)
+
+ def set_attention_slice(self, slice_size):
+ r"""
+ Enable sliced attention computation.
+
+ When this option is enabled, the attention module splits the input tensor in slices to compute attention in
+ several steps. This is useful for saving some memory in exchange for a small decrease in speed.
+
+ Args:
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
+ When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
+ `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
+ must be a multiple of `slice_size`.
+ """
+ sliceable_head_dims = []
+
+ def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
+ if hasattr(module, "set_attention_slice"):
+ sliceable_head_dims.append(module.sliceable_head_dim)
+
+ for child in module.children():
+ fn_recursive_retrieve_sliceable_dims(child)
+
+ # retrieve number of attention layers
+ for module in self.children():
+ fn_recursive_retrieve_sliceable_dims(module)
+
+ num_sliceable_layers = len(sliceable_head_dims)
+
+ if slice_size == "auto":
+ # half the attention head size is usually a good trade-off between
+ # speed and memory
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
+ elif slice_size == "max":
+ # make smallest slice possible
+ slice_size = num_sliceable_layers * [1]
+
+ slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
+
+ if len(slice_size) != len(sliceable_head_dims):
+ raise ValueError(
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
+ )
+
+ for i in range(len(slice_size)):
+ size = slice_size[i]
+ dim = sliceable_head_dims[i]
+ if size is not None and size > dim:
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
+
+ # Recursively walk through all the children.
+ # Any children which exposes the set_attention_slice method
+ # gets the message
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
+ if hasattr(module, "set_attention_slice"):
+ module.set_attention_slice(slice_size.pop())
+
+ for child in module.children():
+ fn_recursive_set_attention_slice(child, slice_size)
+
+ reversed_slice_size = list(reversed(slice_size))
+ for module in self.children():
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
+
+ def _set_gradient_checkpointing(self, module, value=False):
+ if hasattr(module, "gradient_checkpointing"):
+ module.gradient_checkpointing = value
+
+ def enable_freeu(self, s1, s2, b1, b2):
+ r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
+
+ The suffixes after the scaling factors represent the stage blocks where they are being applied.
+
+ Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
+ are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
+
+ Args:
+ s1 (`float`):
+ Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
+ s2 (`float`):
+ Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
+ b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
+ b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
+ """
+ for i, upsample_block in enumerate(self.up_blocks):
+ setattr(upsample_block, "s1", s1)
+ setattr(upsample_block, "s2", s2)
+ setattr(upsample_block, "b1", b1)
+ setattr(upsample_block, "b2", b2)
+
+ def disable_freeu(self):
+ """Disables the FreeU mechanism."""
+ freeu_keys = {"s1", "s2", "b1", "b2"}
+ for i, upsample_block in enumerate(self.up_blocks):
+ for k in freeu_keys:
+ if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
+ setattr(upsample_block, k, None)
+
+ def fuse_qkv_projections(self):
+ """
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
+ key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
+
+
+
+ This API is ๐งช experimental.
+
+
+ """
+ self.original_attn_processors = None
+
+ for _, attn_processor in self.attn_processors.items():
+ if "Added" in str(attn_processor.__class__.__name__):
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
+
+ self.original_attn_processors = self.attn_processors
+
+ for module in self.modules():
+ if isinstance(module, Attention):
+ module.fuse_projections(fuse=True)
+
+ def unfuse_qkv_projections(self):
+ """Disables the fused QKV projection if enabled.
+
+
+
+ This API is ๐งช experimental.
+
+
+
+ """
+ if self.original_attn_processors is not None:
+ self.set_attn_processor(self.original_attn_processors)
+
+ def forward(
+ self,
+ sample: torch.FloatTensor,
+ timestep: Union[torch.Tensor, float, int],
+ encoder_hidden_states: torch.Tensor,
+ class_labels: Optional[torch.Tensor] = None,
+ timestep_cond: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
+ down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
+ mid_block_additional_residual: Optional[torch.Tensor] = None,
+ down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ return_dict: bool = True,
+ ) -> Union[UNet2DConditionOutput, Tuple]:
+ r"""
+ The [`UNet2DConditionModel`] forward method.
+
+ Args:
+ sample (`torch.FloatTensor`):
+ The noisy input tensor with the following shape `(batch, channel, height, width)`.
+ timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
+ encoder_hidden_states (`torch.FloatTensor`):
+ The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
+ class_labels (`torch.Tensor`, *optional*, defaults to `None`):
+ Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
+ timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
+ Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
+ through the `self.time_embedding` layer to obtain the timestep embeddings.
+ attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
+ negative values to the attention scores corresponding to "discard" tokens.
+ cross_attention_kwargs (`dict`, *optional*):
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
+ `self.processor` in
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
+ added_cond_kwargs: (`dict`, *optional*):
+ A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
+ are passed along to the UNet blocks.
+ down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
+ A tuple of tensors that if specified are added to the residuals of down unet blocks.
+ mid_block_additional_residual: (`torch.Tensor`, *optional*):
+ A tensor that if specified is added to the residual of the middle unet block.
+ encoder_attention_mask (`torch.Tensor`):
+ A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
+ `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
+ which adds large negative values to the attention scores corresponding to "discard" tokens.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
+ tuple.
+ cross_attention_kwargs (`dict`, *optional*):
+ A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
+ added_cond_kwargs: (`dict`, *optional*):
+ A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
+ are passed along to the UNet blocks.
+ down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
+ additional residuals to be added to UNet long skip connections from down blocks to up blocks for
+ example from ControlNet side model(s)
+ mid_block_additional_residual (`torch.Tensor`, *optional*):
+ additional residual to be added to UNet mid block output, for example from ControlNet side model
+ down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
+ additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
+
+ Returns:
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
+ If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
+ a `tuple` is returned where the first element is the sample tensor.
+ """
+ # By default samples have to be AT least a multiple of the overall upsampling factor.
+ # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
+ # However, the upsampling interpolation output size can be forced to fit any upsampling size
+ # on the fly if necessary.
+ default_overall_up_factor = 2**self.num_upsamplers
+
+ # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
+ forward_upsample_size = False
+ upsample_size = None
+
+ for dim in sample.shape[-2:]:
+ if dim % default_overall_up_factor != 0:
+ # Forward upsample size to force interpolation output size.
+ forward_upsample_size = True
+ break
+
+ # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
+ # expects mask of shape:
+ # [batch, key_tokens]
+ # adds singleton query_tokens dimension:
+ # [batch, 1, key_tokens]
+ # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
+ # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
+ # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
+ if attention_mask is not None:
+ # assume that mask is expressed as:
+ # (1 = keep, 0 = discard)
+ # convert mask into a bias that can be added to attention scores:
+ # (keep = +0, discard = -10000.0)
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
+ attention_mask = attention_mask.unsqueeze(1)
+
+ # convert encoder_attention_mask to a bias the same way we do for attention_mask
+ if encoder_attention_mask is not None:
+ encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
+ encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
+
+ # 0. center input if necessary
+ if self.config.center_input_sample:
+ sample = 2 * sample - 1.0
+
+ # 1. time
+ timesteps = timestep
+ if not torch.is_tensor(timesteps):
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
+ # This would be a good case for the `match` statement (Python 3.10+)
+ is_mps = sample.device.type == "mps"
+ if isinstance(timestep, float):
+ dtype = torch.float32 if is_mps else torch.float64
+ else:
+ dtype = torch.int32 if is_mps else torch.int64
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
+ elif len(timesteps.shape) == 0:
+ timesteps = timesteps[None].to(sample.device)
+
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
+ timesteps = timesteps.expand(sample.shape[0])
+
+ t_emb = self.time_proj(timesteps)
+
+ # `Timesteps` does not contain any weights and will always return f32 tensors
+ # but time_embedding might actually be running in fp16. so we need to cast here.
+ # there might be better ways to encapsulate this.
+ t_emb = t_emb.to(dtype=sample.dtype)
+
+ emb = self.time_embedding(t_emb, timestep_cond)
+ aug_emb = None
+
+ if self.class_embedding is not None:
+ if class_labels is None:
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
+
+ if self.config.class_embed_type == "timestep":
+ class_labels = self.time_proj(class_labels)
+
+ # `Timesteps` does not contain any weights and will always return f32 tensors
+ # there might be better ways to encapsulate this.
+ class_labels = class_labels.to(dtype=sample.dtype)
+
+ class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
+
+ if self.config.class_embeddings_concat:
+ emb = torch.cat([emb, class_emb], dim=-1)
+ else:
+ emb = emb + class_emb
+
+ if self.config.addition_embed_type == "text":
+ aug_emb = self.add_embedding(encoder_hidden_states)
+ elif self.config.addition_embed_type == "text_image":
+ # Kandinsky 2.1 - style
+ if "image_embeds" not in added_cond_kwargs:
+ raise ValueError(
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
+ )
+
+ image_embs = added_cond_kwargs.get("image_embeds")
+ text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
+ aug_emb = self.add_embedding(text_embs, image_embs)
+ elif self.config.addition_embed_type == "text_time":
+ # SDXL - style
+ if "text_embeds" not in added_cond_kwargs:
+ raise ValueError(
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
+ )
+ text_embeds = added_cond_kwargs.get("text_embeds")
+ if "time_ids" not in added_cond_kwargs:
+ raise ValueError(
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
+ )
+ time_ids = added_cond_kwargs.get("time_ids")
+ time_embeds = self.add_time_proj(time_ids.flatten())
+ time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
+ add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
+ add_embeds = add_embeds.to(emb.dtype)
+ aug_emb = self.add_embedding(add_embeds)
+ elif self.config.addition_embed_type == "image":
+ # Kandinsky 2.2 - style
+ if "image_embeds" not in added_cond_kwargs:
+ raise ValueError(
+ f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
+ )
+ image_embs = added_cond_kwargs.get("image_embeds")
+ aug_emb = self.add_embedding(image_embs)
+ elif self.config.addition_embed_type == "image_hint":
+ # Kandinsky 2.2 - style
+ if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
+ raise ValueError(
+ f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
+ )
+ image_embs = added_cond_kwargs.get("image_embeds")
+ hint = added_cond_kwargs.get("hint")
+ aug_emb, hint = self.add_embedding(image_embs, hint)
+ sample = torch.cat([sample, hint], dim=1)
+
+ emb = emb + aug_emb if aug_emb is not None else emb
+
+ if self.time_embed_act is not None:
+ emb = self.time_embed_act(emb)
+
+ if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
+ encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
+ # Kadinsky 2.1 - style
+ if "image_embeds" not in added_cond_kwargs:
+ raise ValueError(
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
+ )
+
+ image_embeds = added_cond_kwargs.get("image_embeds")
+ encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
+ # Kandinsky 2.2 - style
+ if "image_embeds" not in added_cond_kwargs:
+ raise ValueError(
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
+ )
+ image_embeds = added_cond_kwargs.get("image_embeds")
+ encoder_hidden_states = self.encoder_hid_proj(image_embeds)
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
+ if "image_embeds" not in added_cond_kwargs:
+ raise ValueError(
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
+ )
+ image_embeds = added_cond_kwargs.get("image_embeds")
+ image_embeds = self.encoder_hid_proj(image_embeds).to(encoder_hidden_states.dtype)
+ encoder_hidden_states = torch.cat([encoder_hidden_states, image_embeds], dim=1)
+
+ # 2. pre-process
+ sample = self.conv_in(sample)
+ garment_features=[]
+
+ # 2.5 GLIGEN position net
+ if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
+ cross_attention_kwargs = cross_attention_kwargs.copy()
+ gligen_args = cross_attention_kwargs.pop("gligen")
+ cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
+
+
+ # 3. down
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+ if USE_PEFT_BACKEND:
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
+ scale_lora_layers(self, lora_scale)
+
+ is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
+ # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
+ is_adapter = down_intrablock_additional_residuals is not None
+ # maintain backward compatibility for legacy usage, where
+ # T2I-Adapter and ControlNet both use down_block_additional_residuals arg
+ # but can only use one or the other
+ if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
+ deprecate(
+ "T2I should not use down_block_additional_residuals",
+ "1.3.0",
+ "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
+ and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
+ for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
+ standard_warn=False,
+ )
+ down_intrablock_additional_residuals = down_block_additional_residuals
+ is_adapter = True
+
+ down_block_res_samples = (sample,)
+ for downsample_block in self.down_blocks:
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
+ # For t2i-adapter CrossAttnDownBlock2D
+ additional_residuals = {}
+ if is_adapter and len(down_intrablock_additional_residuals) > 0:
+ additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
+
+ sample, res_samples,out_garment_feat = downsample_block(
+ hidden_states=sample,
+ temb=emb,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=attention_mask,
+ cross_attention_kwargs=cross_attention_kwargs,
+ encoder_attention_mask=encoder_attention_mask,
+ **additional_residuals,
+ )
+ garment_features += out_garment_feat
+ else:
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
+ if is_adapter and len(down_intrablock_additional_residuals) > 0:
+ sample += down_intrablock_additional_residuals.pop(0)
+
+ down_block_res_samples += res_samples
+
+
+ if is_controlnet:
+ new_down_block_res_samples = ()
+
+ for down_block_res_sample, down_block_additional_residual in zip(
+ down_block_res_samples, down_block_additional_residuals
+ ):
+ down_block_res_sample = down_block_res_sample + down_block_additional_residual
+ new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
+
+ down_block_res_samples = new_down_block_res_samples
+
+ # 4. mid
+ if self.mid_block is not None:
+ if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
+ sample,out_garment_feat = self.mid_block(
+ sample,
+ emb,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=attention_mask,
+ cross_attention_kwargs=cross_attention_kwargs,
+ encoder_attention_mask=encoder_attention_mask,
+ )
+ garment_features += out_garment_feat
+
+ else:
+ sample = self.mid_block(sample, emb)
+
+ # To support T2I-Adapter-XL
+ if (
+ is_adapter
+ and len(down_intrablock_additional_residuals) > 0
+ and sample.shape == down_intrablock_additional_residuals[0].shape
+ ):
+ sample += down_intrablock_additional_residuals.pop(0)
+
+ if is_controlnet:
+ sample = sample + mid_block_additional_residual
+
+
+
+ # 5. up
+ for i, upsample_block in enumerate(self.up_blocks):
+ is_final_block = i == len(self.up_blocks) - 1
+
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
+
+ # if we have not reached the final block and need to forward the
+ # upsample size, we do it here
+ if not is_final_block and forward_upsample_size:
+ upsample_size = down_block_res_samples[-1].shape[2:]
+
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
+ sample,out_garment_feat = upsample_block(
+ hidden_states=sample,
+ temb=emb,
+ res_hidden_states_tuple=res_samples,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ upsample_size=upsample_size,
+ attention_mask=attention_mask,
+ encoder_attention_mask=encoder_attention_mask,
+ )
+ garment_features += out_garment_feat
+
+
+ if not return_dict:
+ return (sample,),garment_features
+
+ return UNet2DConditionOutput(sample=sample),garment_features
diff --git a/extensions-builtin/forge_space_idm_vton/src/unet_hacked_tryon.py b/extensions-builtin/forge_space_idm_vton/src/unet_hacked_tryon.py
new file mode 100644
index 00000000..c6c795ce
--- /dev/null
+++ b/extensions-builtin/forge_space_idm_vton/src/unet_hacked_tryon.py
@@ -0,0 +1,1395 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from dataclasses import dataclass
+from typing import Any, Dict, List, Optional, Tuple, Union
+
+import torch
+import torch.nn as nn
+import torch.utils.checkpoint
+
+from diffusers.configuration_utils import ConfigMixin, register_to_config
+from diffusers.loaders import UNet2DConditionLoadersMixin
+from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
+from diffusers.models.activations import get_activation
+from diffusers.models.attention_processor import (
+ ADDED_KV_ATTENTION_PROCESSORS,
+ CROSS_ATTENTION_PROCESSORS,
+ Attention,
+ AttentionProcessor,
+ AttnAddedKVProcessor,
+ AttnProcessor,
+)
+from einops import rearrange
+
+from diffusers.models.embeddings import (
+ GaussianFourierProjection,
+ ImageHintTimeEmbedding,
+ ImageProjection,
+ ImageTimeEmbedding,
+ PositionNet,
+ TextImageProjection,
+ TextImageTimeEmbedding,
+ TextTimeEmbedding,
+ TimestepEmbedding,
+ Timesteps,
+)
+
+
+from diffusers.models.modeling_utils import ModelMixin
+from src.unet_block_hacked_tryon import (
+ UNetMidBlock2D,
+ UNetMidBlock2DCrossAttn,
+ UNetMidBlock2DSimpleCrossAttn,
+ get_down_block,
+ get_up_block,
+)
+from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
+from diffusers.models.transformer_2d import Transformer2DModel
+import math
+
+from ip_adapter.ip_adapter import Resampler
+
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+# def FeedForward(dim, mult=4):
+# inner_dim = int(dim * mult)
+# return nn.Sequential(
+# nn.LayerNorm(dim),
+# nn.Linear(dim, inner_dim, bias=False),
+# nn.GELU(),
+# nn.Linear(inner_dim, dim, bias=False),
+# )
+
+
+
+# def reshape_tensor(x, heads):
+# bs, length, width = x.shape
+# # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
+# x = x.view(bs, length, heads, -1)
+# # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
+# x = x.transpose(1, 2)
+# # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
+# x = x.reshape(bs, heads, length, -1)
+# return x
+
+
+# class PerceiverAttention(nn.Module):
+# def __init__(self, *, dim, dim_head=64, heads=8):
+# super().__init__()
+# self.scale = dim_head**-0.5
+# self.dim_head = dim_head
+# self.heads = heads
+# inner_dim = dim_head * heads
+
+# self.norm1 = nn.LayerNorm(dim)
+# self.norm2 = nn.LayerNorm(dim)
+
+# self.to_q = nn.Linear(dim, inner_dim, bias=False)
+# self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
+# self.to_out = nn.Linear(inner_dim, dim, bias=False)
+
+# def forward(self, x, latents):
+# """
+# Args:
+# x (torch.Tensor): image features
+# shape (b, n1, D)
+# latent (torch.Tensor): latent features
+# shape (b, n2, D)
+# """
+# x = self.norm1(x)
+# latents = self.norm2(latents)
+
+# b, l, _ = latents.shape
+
+# q = self.to_q(latents)
+# kv_input = torch.cat((x, latents), dim=-2)
+# k, v = self.to_kv(kv_input).chunk(2, dim=-1)
+
+# q = reshape_tensor(q, self.heads)
+# k = reshape_tensor(k, self.heads)
+# v = reshape_tensor(v, self.heads)
+
+# # attention
+# scale = 1 / math.sqrt(math.sqrt(self.dim_head))
+# weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
+# weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
+# out = weight @ v
+
+# out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
+
+# return self.to_out(out)
+
+
+# class Resampler(nn.Module):
+# def __init__(
+# self,
+# dim=1024,
+# depth=8,
+# dim_head=64,
+# heads=16,
+# num_queries=8,
+# embedding_dim=768,
+# output_dim=1024,
+# ff_mult=4,
+# max_seq_len: int = 257, # CLIP tokens + CLS token
+# apply_pos_emb: bool = False,
+# num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
+# ):
+# super().__init__()
+
+# self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
+
+# self.proj_in = nn.Linear(embedding_dim, dim)
+
+# self.proj_out = nn.Linear(dim, output_dim)
+# self.norm_out = nn.LayerNorm(output_dim)
+
+# self.layers = nn.ModuleList([])
+# for _ in range(depth):
+# self.layers.append(
+# nn.ModuleList(
+# [
+# PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
+# FeedForward(dim=dim, mult=ff_mult),
+# ]
+# )
+# )
+
+# def forward(self, x):
+
+# latents = self.latents.repeat(x.size(0), 1, 1)
+
+# x = self.proj_in(x)
+
+
+# for attn, ff in self.layers:
+# latents = attn(x, latents) + latents
+# latents = ff(latents) + latents
+
+# latents = self.proj_out(latents)
+# return self.norm_out(latents)
+
+
+def zero_module(module):
+ for p in module.parameters():
+ nn.init.zeros_(p)
+ return module
+
+@dataclass
+class UNet2DConditionOutput(BaseOutput):
+ """
+ The output of [`UNet2DConditionModel`].
+
+ Args:
+ sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
+ """
+
+ sample: torch.FloatTensor = None
+
+
+class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
+ r"""
+ A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
+ shaped output.
+
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
+ for all models (such as downloading or saving).
+
+ Parameters:
+ sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
+ Height and width of input/output sample.
+ in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
+ out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
+ center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
+ flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
+ Whether to flip the sin to cos in the time embedding.
+ freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
+ The tuple of downsample blocks to use.
+ mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
+ Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
+ `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
+ The tuple of upsample blocks to use.
+ only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
+ Whether to include self-attention in the basic transformer blocks, see
+ [`~models.attention.BasicTransformerBlock`].
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
+ The tuple of output channels for each block.
+ layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
+ downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
+ mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
+ norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
+ If `None`, normalization and activation layers is skipped in post-processing.
+ norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
+ cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
+ The dimension of the cross attention features.
+ transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
+ reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
+ blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
+ encoder_hid_dim (`int`, *optional*, defaults to None):
+ If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
+ dimension to `cross_attention_dim`.
+ encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
+ If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
+ embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
+ attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
+ num_attention_heads (`int`, *optional*):
+ The number of attention heads. If not defined, defaults to `attention_head_dim`
+ resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
+ for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
+ class_embed_type (`str`, *optional*, defaults to `None`):
+ The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
+ `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
+ addition_embed_type (`str`, *optional*, defaults to `None`):
+ Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
+ "text". "text" will use the `TextTimeEmbedding` layer.
+ addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
+ Dimension for the timestep embeddings.
+ num_class_embeds (`int`, *optional*, defaults to `None`):
+ Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
+ class conditioning with `class_embed_type` equal to `None`.
+ time_embedding_type (`str`, *optional*, defaults to `positional`):
+ The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
+ time_embedding_dim (`int`, *optional*, defaults to `None`):
+ An optional override for the dimension of the projected time embedding.
+ time_embedding_act_fn (`str`, *optional*, defaults to `None`):
+ Optional activation function to use only once on the time embeddings before they are passed to the rest of
+ the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
+ timestep_post_act (`str`, *optional*, defaults to `None`):
+ The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
+ time_cond_proj_dim (`int`, *optional*, defaults to `None`):
+ The dimension of `cond_proj` layer in the timestep embedding.
+ conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
+ *optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
+ *optional*): The dimension of the `class_labels` input when
+ `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
+ class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
+ embeddings with the class embeddings.
+ mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
+ Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
+ `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
+ `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
+ otherwise.
+ """
+
+ _supports_gradient_checkpointing = True
+
+ @register_to_config
+ def __init__(
+ self,
+ sample_size: Optional[int] = None,
+ in_channels: int = 4,
+ out_channels: int = 4,
+ center_input_sample: bool = False,
+ flip_sin_to_cos: bool = True,
+ freq_shift: int = 0,
+ down_block_types: Tuple[str] = (
+ "CrossAttnDownBlock2D",
+ "CrossAttnDownBlock2D",
+ "CrossAttnDownBlock2D",
+ "DownBlock2D",
+ ),
+ mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
+ up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
+ layers_per_block: Union[int, Tuple[int]] = 2,
+ downsample_padding: int = 1,
+ mid_block_scale_factor: float = 1,
+ dropout: float = 0.0,
+ act_fn: str = "silu",
+ norm_num_groups: Optional[int] = 32,
+ norm_eps: float = 1e-5,
+ cross_attention_dim: Union[int, Tuple[int]] = 1280,
+ transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
+ reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
+ encoder_hid_dim: Optional[int] = None,
+ encoder_hid_dim_type: Optional[str] = None,
+ attention_head_dim: Union[int, Tuple[int]] = 8,
+ num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
+ dual_cross_attention: bool = False,
+ use_linear_projection: bool = False,
+ class_embed_type: Optional[str] = None,
+ addition_embed_type: Optional[str] = None,
+ addition_time_embed_dim: Optional[int] = None,
+ num_class_embeds: Optional[int] = None,
+ upcast_attention: bool = False,
+ resnet_time_scale_shift: str = "default",
+ resnet_skip_time_act: bool = False,
+ resnet_out_scale_factor: int = 1.0,
+ time_embedding_type: str = "positional",
+ time_embedding_dim: Optional[int] = None,
+ time_embedding_act_fn: Optional[str] = None,
+ timestep_post_act: Optional[str] = None,
+ time_cond_proj_dim: Optional[int] = None,
+ conv_in_kernel: int = 3,
+ conv_out_kernel: int = 3,
+ projection_class_embeddings_input_dim: Optional[int] = None,
+ attention_type: str = "default",
+ class_embeddings_concat: bool = False,
+ mid_block_only_cross_attention: Optional[bool] = None,
+ cross_attention_norm: Optional[str] = None,
+ addition_embed_type_num_heads=64,
+ ):
+ super().__init__()
+
+ self.sample_size = sample_size
+
+ if num_attention_heads is not None:
+ raise ValueError(
+ "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
+ )
+
+ # If `num_attention_heads` is not defined (which is the case for most models)
+ # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
+ # The reason for this behavior is to correct for incorrectly named variables that were introduced
+ # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
+ # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
+ # which is why we correct for the naming here.
+ num_attention_heads = num_attention_heads or attention_head_dim
+
+ # Check inputs
+ if len(down_block_types) != len(up_block_types):
+ raise ValueError(
+ f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
+ )
+
+ if len(block_out_channels) != len(down_block_types):
+ raise ValueError(
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
+ )
+
+ if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
+ raise ValueError(
+ f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
+ )
+
+ if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
+ raise ValueError(
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
+ )
+
+ if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
+ raise ValueError(
+ f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
+ )
+
+ if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
+ raise ValueError(
+ f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
+ )
+
+ if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
+ raise ValueError(
+ f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
+ )
+ if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
+ for layer_number_per_block in transformer_layers_per_block:
+ if isinstance(layer_number_per_block, list):
+ raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
+
+ # input
+ conv_in_padding = (conv_in_kernel - 1) // 2
+ self.conv_in = nn.Conv2d(
+ in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
+ )
+
+ # time
+ if time_embedding_type == "fourier":
+ time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
+ if time_embed_dim % 2 != 0:
+ raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
+ self.time_proj = GaussianFourierProjection(
+ time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
+ )
+ timestep_input_dim = time_embed_dim
+ elif time_embedding_type == "positional":
+ time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
+
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
+ timestep_input_dim = block_out_channels[0]
+ else:
+ raise ValueError(
+ f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
+ )
+
+ self.time_embedding = TimestepEmbedding(
+ timestep_input_dim,
+ time_embed_dim,
+ act_fn=act_fn,
+ post_act_fn=timestep_post_act,
+ cond_proj_dim=time_cond_proj_dim,
+ )
+
+ if encoder_hid_dim_type is None and encoder_hid_dim is not None:
+ encoder_hid_dim_type = "text_proj"
+ self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
+ logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
+
+ if encoder_hid_dim is None and encoder_hid_dim_type is not None:
+ raise ValueError(
+ f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
+ )
+
+ if encoder_hid_dim_type == "text_proj":
+ self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
+ elif encoder_hid_dim_type == "text_image_proj":
+ # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
+ # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
+ self.encoder_hid_proj = TextImageProjection(
+ text_embed_dim=encoder_hid_dim,
+ image_embed_dim=cross_attention_dim,
+ cross_attention_dim=cross_attention_dim,
+ )
+ elif encoder_hid_dim_type == "image_proj":
+ # Kandinsky 2.2
+ self.encoder_hid_proj = ImageProjection(
+ image_embed_dim=encoder_hid_dim,
+ cross_attention_dim=cross_attention_dim,
+ )
+ elif encoder_hid_dim_type == "ip_image_proj":
+ # Kandinsky 2.2
+ self.encoder_hid_proj = Resampler(
+ dim=1280,
+ depth=4,
+ dim_head=64,
+ heads=20,
+ num_queries=16,
+ embedding_dim=encoder_hid_dim,
+ output_dim=self.config.cross_attention_dim,
+ ff_mult=4,
+ )
+
+
+ elif encoder_hid_dim_type is not None:
+ raise ValueError(
+ f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
+ )
+ else:
+ self.encoder_hid_proj = None
+
+ # class embedding
+ if class_embed_type is None and num_class_embeds is not None:
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
+ elif class_embed_type == "timestep":
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
+ elif class_embed_type == "identity":
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
+ elif class_embed_type == "projection":
+ if projection_class_embeddings_input_dim is None:
+ raise ValueError(
+ "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
+ )
+ # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
+ # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
+ # 2. it projects from an arbitrary input dimension.
+ #
+ # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
+ # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
+ # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
+ self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
+ elif class_embed_type == "simple_projection":
+ if projection_class_embeddings_input_dim is None:
+ raise ValueError(
+ "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
+ )
+ self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
+ else:
+ self.class_embedding = None
+
+ if addition_embed_type == "text":
+ if encoder_hid_dim is not None:
+ text_time_embedding_from_dim = encoder_hid_dim
+ else:
+ text_time_embedding_from_dim = cross_attention_dim
+
+ self.add_embedding = TextTimeEmbedding(
+ text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
+ )
+ elif addition_embed_type == "text_image":
+ # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
+ # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
+ self.add_embedding = TextImageTimeEmbedding(
+ text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
+ )
+ elif addition_embed_type == "text_time":
+ self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
+ self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
+ elif addition_embed_type == "image":
+ # Kandinsky 2.2
+ self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
+ elif addition_embed_type == "image_hint":
+ # Kandinsky 2.2 ControlNet
+ self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
+ elif addition_embed_type is not None:
+ raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
+
+ if time_embedding_act_fn is None:
+ self.time_embed_act = None
+ else:
+ self.time_embed_act = get_activation(time_embedding_act_fn)
+
+ self.down_blocks = nn.ModuleList([])
+ self.up_blocks = nn.ModuleList([])
+
+ if isinstance(only_cross_attention, bool):
+ if mid_block_only_cross_attention is None:
+ mid_block_only_cross_attention = only_cross_attention
+
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
+
+ if mid_block_only_cross_attention is None:
+ mid_block_only_cross_attention = False
+
+ if isinstance(num_attention_heads, int):
+ num_attention_heads = (num_attention_heads,) * len(down_block_types)
+
+ if isinstance(attention_head_dim, int):
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
+
+ if isinstance(cross_attention_dim, int):
+ cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
+
+ if isinstance(layers_per_block, int):
+ layers_per_block = [layers_per_block] * len(down_block_types)
+
+ if isinstance(transformer_layers_per_block, int):
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
+ if class_embeddings_concat:
+ # The time embeddings are concatenated with the class embeddings. The dimension of the
+ # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
+ # regular time embeddings
+ blocks_time_embed_dim = time_embed_dim * 2
+ else:
+ blocks_time_embed_dim = time_embed_dim
+
+ # down
+ output_channel = block_out_channels[0]
+ for i, down_block_type in enumerate(down_block_types):
+ input_channel = output_channel
+ output_channel = block_out_channels[i]
+ is_final_block = i == len(block_out_channels) - 1
+
+ down_block = get_down_block(
+ down_block_type,
+ num_layers=layers_per_block[i],
+ transformer_layers_per_block=transformer_layers_per_block[i],
+ in_channels=input_channel,
+ out_channels=output_channel,
+ temb_channels=blocks_time_embed_dim,
+ add_downsample=not is_final_block,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ resnet_groups=norm_num_groups,
+ cross_attention_dim=cross_attention_dim[i],
+ num_attention_heads=num_attention_heads[i],
+ downsample_padding=downsample_padding,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention[i],
+ upcast_attention=upcast_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ attention_type=attention_type,
+ resnet_skip_time_act=resnet_skip_time_act,
+ resnet_out_scale_factor=resnet_out_scale_factor,
+ cross_attention_norm=cross_attention_norm,
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
+ dropout=dropout,
+ )
+ self.down_blocks.append(down_block)
+
+ # mid
+ if mid_block_type == "UNetMidBlock2DCrossAttn":
+ self.mid_block = UNetMidBlock2DCrossAttn(
+ transformer_layers_per_block=transformer_layers_per_block[-1],
+ in_channels=block_out_channels[-1],
+ temb_channels=blocks_time_embed_dim,
+ dropout=dropout,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ output_scale_factor=mid_block_scale_factor,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ cross_attention_dim=cross_attention_dim[-1],
+ num_attention_heads=num_attention_heads[-1],
+ resnet_groups=norm_num_groups,
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ upcast_attention=upcast_attention,
+ attention_type=attention_type,
+ )
+ elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
+ self.mid_block = UNetMidBlock2DSimpleCrossAttn(
+ in_channels=block_out_channels[-1],
+ temb_channels=blocks_time_embed_dim,
+ dropout=dropout,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ output_scale_factor=mid_block_scale_factor,
+ cross_attention_dim=cross_attention_dim[-1],
+ attention_head_dim=attention_head_dim[-1],
+ resnet_groups=norm_num_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ skip_time_act=resnet_skip_time_act,
+ only_cross_attention=mid_block_only_cross_attention,
+ cross_attention_norm=cross_attention_norm,
+ )
+ elif mid_block_type == "UNetMidBlock2D":
+ self.mid_block = UNetMidBlock2D(
+ in_channels=block_out_channels[-1],
+ temb_channels=blocks_time_embed_dim,
+ dropout=dropout,
+ num_layers=0,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ output_scale_factor=mid_block_scale_factor,
+ resnet_groups=norm_num_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ add_attention=False,
+ )
+ elif mid_block_type is None:
+ self.mid_block = None
+ else:
+ raise ValueError(f"unknown mid_block_type : {mid_block_type}")
+
+ # count how many layers upsample the images
+ self.num_upsamplers = 0
+
+ # up
+ reversed_block_out_channels = list(reversed(block_out_channels))
+ reversed_num_attention_heads = list(reversed(num_attention_heads))
+ reversed_layers_per_block = list(reversed(layers_per_block))
+ reversed_cross_attention_dim = list(reversed(cross_attention_dim))
+ reversed_transformer_layers_per_block = (
+ list(reversed(transformer_layers_per_block))
+ if reverse_transformer_layers_per_block is None
+ else reverse_transformer_layers_per_block
+ )
+ only_cross_attention = list(reversed(only_cross_attention))
+
+ output_channel = reversed_block_out_channels[0]
+ for i, up_block_type in enumerate(up_block_types):
+ is_final_block = i == len(block_out_channels) - 1
+
+ prev_output_channel = output_channel
+ output_channel = reversed_block_out_channels[i]
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
+
+ # add upsample block for all BUT final layer
+ if not is_final_block:
+ add_upsample = True
+ self.num_upsamplers += 1
+ else:
+ add_upsample = False
+ up_block = get_up_block(
+ up_block_type,
+ num_layers=reversed_layers_per_block[i] + 1,
+ transformer_layers_per_block=reversed_transformer_layers_per_block[i],
+ in_channels=input_channel,
+ out_channels=output_channel,
+ prev_output_channel=prev_output_channel,
+ temb_channels=blocks_time_embed_dim,
+ add_upsample=add_upsample,
+ resnet_eps=norm_eps,
+ resnet_act_fn=act_fn,
+ resolution_idx=i,
+ resnet_groups=norm_num_groups,
+ cross_attention_dim=reversed_cross_attention_dim[i],
+ num_attention_heads=reversed_num_attention_heads[i],
+ dual_cross_attention=dual_cross_attention,
+ use_linear_projection=use_linear_projection,
+ only_cross_attention=only_cross_attention[i],
+ upcast_attention=upcast_attention,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ attention_type=attention_type,
+ resnet_skip_time_act=resnet_skip_time_act,
+ resnet_out_scale_factor=resnet_out_scale_factor,
+ cross_attention_norm=cross_attention_norm,
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
+ dropout=dropout,
+ )
+
+ self.up_blocks.append(up_block)
+ prev_output_channel = output_channel
+
+
+
+
+ # out
+ if norm_num_groups is not None:
+ self.conv_norm_out = nn.GroupNorm(
+ num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
+ )
+
+ self.conv_act = get_activation(act_fn)
+
+ else:
+ self.conv_norm_out = None
+ self.conv_act = None
+
+ conv_out_padding = (conv_out_kernel - 1) // 2
+ self.conv_out = nn.Conv2d(
+ block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
+ )
+
+ if attention_type in ["gated", "gated-text-image"]:
+ positive_len = 768
+ if isinstance(cross_attention_dim, int):
+ positive_len = cross_attention_dim
+ elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
+ positive_len = cross_attention_dim[0]
+
+ feature_type = "text-only" if attention_type == "gated" else "text-image"
+ self.position_net = PositionNet(
+ positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
+ )
+
+
+
+ from ip_adapter.attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor
+
+ attn_procs = {}
+ for name in self.attn_processors.keys():
+ cross_attention_dim = None if name.endswith("attn1.processor") else self.config.cross_attention_dim
+ if name.startswith("mid_block"):
+ hidden_size = self.config.block_out_channels[-1]
+ elif name.startswith("up_blocks"):
+ block_id = int(name[len("up_blocks.")])
+ hidden_size = list(reversed(self.config.block_out_channels))[block_id]
+ elif name.startswith("down_blocks"):
+ block_id = int(name[len("down_blocks.")])
+ hidden_size = self.config.block_out_channels[block_id]
+ if cross_attention_dim is None:
+ attn_procs[name] = AttnProcessor()
+ else:
+ layer_name = name.split(".processor")[0]
+ attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, num_tokens=16)
+ self.set_attn_processor(attn_procs)
+
+
+ @property
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
+ r"""
+ Returns:
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
+ indexed by its weight name.
+ """
+ # set recursively
+ processors = {}
+
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
+ if hasattr(module, "get_processor"):
+ processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
+
+ for sub_name, child in module.named_children():
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
+
+ return processors
+
+ for name, module in self.named_children():
+ fn_recursive_add_processors(name, module, processors)
+
+ return processors
+
+ def set_attn_processor(
+ self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
+ ):
+ r"""
+ Sets the attention processor to use to compute attention.
+
+ Parameters:
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
+ for **all** `Attention` layers.
+
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
+ processor. This is strongly recommended when setting trainable attention processors.
+
+ """
+ count = len(self.attn_processors.keys())
+
+ if isinstance(processor, dict) and len(processor) != count:
+ raise ValueError(
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
+ )
+
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
+ if hasattr(module, "set_processor"):
+ if not isinstance(processor, dict):
+ module.set_processor(processor)
+ else:
+ module.set_processor(processor.pop(f"{name}.processor"))
+
+ for sub_name, child in module.named_children():
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
+
+ for name, module in self.named_children():
+ fn_recursive_attn_processor(name, module, processor)
+
+ def set_default_attn_processor(self):
+ """
+ Disables custom attention processors and sets the default attention implementation.
+ """
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
+ processor = AttnAddedKVProcessor()
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
+ processor = AttnProcessor()
+ else:
+ raise ValueError(
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
+ )
+
+ self.set_attn_processor(processor, _remove_lora=True)
+
+ def set_attention_slice(self, slice_size):
+ r"""
+ Enable sliced attention computation.
+
+ When this option is enabled, the attention module splits the input tensor in slices to compute attention in
+ several steps. This is useful for saving some memory in exchange for a small decrease in speed.
+
+ Args:
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
+ When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
+ `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
+ must be a multiple of `slice_size`.
+ """
+ sliceable_head_dims = []
+
+ def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
+ if hasattr(module, "set_attention_slice"):
+ sliceable_head_dims.append(module.sliceable_head_dim)
+
+ for child in module.children():
+ fn_recursive_retrieve_sliceable_dims(child)
+
+ # retrieve number of attention layers
+ for module in self.children():
+ fn_recursive_retrieve_sliceable_dims(module)
+
+ num_sliceable_layers = len(sliceable_head_dims)
+
+ if slice_size == "auto":
+ # half the attention head size is usually a good trade-off between
+ # speed and memory
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
+ elif slice_size == "max":
+ # make smallest slice possible
+ slice_size = num_sliceable_layers * [1]
+
+ slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
+
+ if len(slice_size) != len(sliceable_head_dims):
+ raise ValueError(
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
+ )
+
+ for i in range(len(slice_size)):
+ size = slice_size[i]
+ dim = sliceable_head_dims[i]
+ if size is not None and size > dim:
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
+
+ # Recursively walk through all the children.
+ # Any children which exposes the set_attention_slice method
+ # gets the message
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
+ if hasattr(module, "set_attention_slice"):
+ module.set_attention_slice(slice_size.pop())
+
+ for child in module.children():
+ fn_recursive_set_attention_slice(child, slice_size)
+
+ reversed_slice_size = list(reversed(slice_size))
+ for module in self.children():
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
+
+ def _set_gradient_checkpointing(self, module, value=False):
+ if hasattr(module, "gradient_checkpointing"):
+ module.gradient_checkpointing = value
+
+ def enable_freeu(self, s1, s2, b1, b2):
+ r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
+
+ The suffixes after the scaling factors represent the stage blocks where they are being applied.
+
+ Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
+ are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
+
+ Args:
+ s1 (`float`):
+ Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
+ s2 (`float`):
+ Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
+ b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
+ b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
+ """
+ for i, upsample_block in enumerate(self.up_blocks):
+ setattr(upsample_block, "s1", s1)
+ setattr(upsample_block, "s2", s2)
+ setattr(upsample_block, "b1", b1)
+ setattr(upsample_block, "b2", b2)
+
+ def disable_freeu(self):
+ """Disables the FreeU mechanism."""
+ freeu_keys = {"s1", "s2", "b1", "b2"}
+ for i, upsample_block in enumerate(self.up_blocks):
+ for k in freeu_keys:
+ if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
+ setattr(upsample_block, k, None)
+
+ def fuse_qkv_projections(self):
+ """
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
+ key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
+
+
+
+ This API is ๐งช experimental.
+
+
+ """
+ self.original_attn_processors = None
+
+ for _, attn_processor in self.attn_processors.items():
+ if "Added" in str(attn_processor.__class__.__name__):
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
+
+ self.original_attn_processors = self.attn_processors
+
+ for module in self.modules():
+ if isinstance(module, Attention):
+ module.fuse_projections(fuse=True)
+
+ def unfuse_qkv_projections(self):
+ """Disables the fused QKV projection if enabled.
+
+
+
+ This API is ๐งช experimental.
+
+
+
+ """
+ if self.original_attn_processors is not None:
+ self.set_attn_processor(self.original_attn_processors)
+
+ def forward(
+ self,
+ sample: torch.FloatTensor,
+ timestep: Union[torch.Tensor, float, int],
+ encoder_hidden_states: torch.Tensor,
+ class_labels: Optional[torch.Tensor] = None,
+ timestep_cond: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
+ down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
+ mid_block_additional_residual: Optional[torch.Tensor] = None,
+ down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ return_dict: bool = True,
+ garment_features: Optional[Tuple[torch.Tensor]] = None,
+ ) -> Union[UNet2DConditionOutput, Tuple]:
+ r"""
+ The [`UNet2DConditionModel`] forward method.
+
+ Args:
+ sample (`torch.FloatTensor`):
+ The noisy input tensor with the following shape `(batch, channel, height, width)`.
+ timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
+ encoder_hidden_states (`torch.FloatTensor`):
+ The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
+ class_labels (`torch.Tensor`, *optional*, defaults to `None`):
+ Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
+ timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
+ Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
+ through the `self.time_embedding` layer to obtain the timestep embeddings.
+ attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
+ negative values to the attention scores corresponding to "discard" tokens.
+ cross_attention_kwargs (`dict`, *optional*):
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
+ `self.processor` in
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
+ added_cond_kwargs: (`dict`, *optional*):
+ A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
+ are passed along to the UNet blocks.
+ down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
+ A tuple of tensors that if specified are added to the residuals of down unet blocks.
+ mid_block_additional_residual: (`torch.Tensor`, *optional*):
+ A tensor that if specified is added to the residual of the middle unet block.
+ encoder_attention_mask (`torch.Tensor`):
+ A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
+ `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
+ which adds large negative values to the attention scores corresponding to "discard" tokens.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
+ tuple.
+ cross_attention_kwargs (`dict`, *optional*):
+ A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
+ added_cond_kwargs: (`dict`, *optional*):
+ A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
+ are passed along to the UNet blocks.
+ down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
+ additional residuals to be added to UNet long skip connections from down blocks to up blocks for
+ example from ControlNet side model(s)
+ mid_block_additional_residual (`torch.Tensor`, *optional*):
+ additional residual to be added to UNet mid block output, for example from ControlNet side model
+ down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
+ additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
+
+ Returns:
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
+ If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
+ a `tuple` is returned where the first element is the sample tensor.
+ """
+ # By default samples have to be AT least a multiple of the overall upsampling factor.
+ # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
+ # However, the upsampling interpolation output size can be forced to fit any upsampling size
+ # on the fly if necessary.
+ default_overall_up_factor = 2**self.num_upsamplers
+
+ # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
+ forward_upsample_size = False
+ upsample_size = None
+
+ for dim in sample.shape[-2:]:
+ if dim % default_overall_up_factor != 0:
+ # Forward upsample size to force interpolation output size.
+ forward_upsample_size = True
+ break
+ # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
+ # expects mask of shape:
+ # [batch, key_tokens]
+ # adds singleton query_tokens dimension:
+ # [batch, 1, key_tokens]
+ # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
+ # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
+ # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
+ if attention_mask is not None:
+ # assume that mask is expressed as:
+ # (1 = keep, 0 = discard)
+ # convert mask into a bias that can be added to attention scores:
+ # (keep = +0, discard = -10000.0)
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
+ attention_mask = attention_mask.unsqueeze(1)
+
+ # convert encoder_attention_mask to a bias the same way we do for attention_mask
+ if encoder_attention_mask is not None:
+ encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
+ encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
+
+ # 0. center input if necessary
+ if self.config.center_input_sample:
+ sample = 2 * sample - 1.0
+
+ # 1. time
+ timesteps = timestep
+ if not torch.is_tensor(timesteps):
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
+ # This would be a good case for the `match` statement (Python 3.10+)
+ is_mps = sample.device.type == "mps"
+ if isinstance(timestep, float):
+ dtype = torch.float32 if is_mps else torch.float64
+ else:
+ dtype = torch.int32 if is_mps else torch.int64
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
+ elif len(timesteps.shape) == 0:
+ timesteps = timesteps[None].to(sample.device)
+
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
+ timesteps = timesteps.expand(sample.shape[0])
+
+ t_emb = self.time_proj(timesteps)
+
+ # `Timesteps` does not contain any weights and will always return f32 tensors
+ # but time_embedding might actually be running in fp16. so we need to cast here.
+ # there might be better ways to encapsulate this.
+ t_emb = t_emb.to(dtype=sample.dtype)
+
+ emb = self.time_embedding(t_emb, timestep_cond)
+ aug_emb = None
+
+ if self.class_embedding is not None:
+ if class_labels is None:
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
+
+ if self.config.class_embed_type == "timestep":
+ class_labels = self.time_proj(class_labels)
+
+ # `Timesteps` does not contain any weights and will always return f32 tensors
+ # there might be better ways to encapsulate this.
+ class_labels = class_labels.to(dtype=sample.dtype)
+
+ class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
+
+ if self.config.class_embeddings_concat:
+ emb = torch.cat([emb, class_emb], dim=-1)
+ else:
+ emb = emb + class_emb
+
+ if self.config.addition_embed_type == "text":
+ aug_emb = self.add_embedding(encoder_hidden_states)
+ elif self.config.addition_embed_type == "text_image":
+ # Kandinsky 2.1 - style
+ if "image_embeds" not in added_cond_kwargs:
+ raise ValueError(
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
+ )
+
+ image_embs = added_cond_kwargs.get("image_embeds")
+ text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
+ aug_emb = self.add_embedding(text_embs, image_embs)
+ elif self.config.addition_embed_type == "text_time":
+ # SDXL - style
+ if "text_embeds" not in added_cond_kwargs:
+ raise ValueError(
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
+ )
+ text_embeds = added_cond_kwargs.get("text_embeds")
+ if "time_ids" not in added_cond_kwargs:
+ raise ValueError(
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
+ )
+ time_ids = added_cond_kwargs.get("time_ids")
+ time_embeds = self.add_time_proj(time_ids.flatten())
+ time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
+ add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
+ add_embeds = add_embeds.to(emb.dtype)
+ aug_emb = self.add_embedding(add_embeds)
+ elif self.config.addition_embed_type == "image":
+ # Kandinsky 2.2 - style
+ if "image_embeds" not in added_cond_kwargs:
+ raise ValueError(
+ f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
+ )
+ image_embs = added_cond_kwargs.get("image_embeds")
+ aug_emb = self.add_embedding(image_embs)
+ elif self.config.addition_embed_type == "image_hint":
+ # Kandinsky 2.2 - style
+ if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
+ raise ValueError(
+ f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
+ )
+ image_embs = added_cond_kwargs.get("image_embeds")
+ hint = added_cond_kwargs.get("hint")
+ aug_emb, hint = self.add_embedding(image_embs, hint)
+ sample = torch.cat([sample, hint], dim=1)
+
+ emb = emb + aug_emb if aug_emb is not None else emb
+
+ if self.time_embed_act is not None:
+ emb = self.time_embed_act(emb)
+
+ if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
+ encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
+ # Kadinsky 2.1 - style
+ if "image_embeds" not in added_cond_kwargs:
+ raise ValueError(
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
+ )
+
+ image_embeds = added_cond_kwargs.get("image_embeds")
+ encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
+ # Kandinsky 2.2 - style
+ if "image_embeds" not in added_cond_kwargs:
+ raise ValueError(
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
+ )
+ image_embeds = added_cond_kwargs.get("image_embeds")
+ encoder_hidden_states = self.encoder_hid_proj(image_embeds)
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
+ if "image_embeds" not in added_cond_kwargs:
+ raise ValueError(
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
+ )
+ image_embeds = added_cond_kwargs.get("image_embeds")
+ # print(image_embeds.shape)
+ # image_embeds = self.encoder_hid_proj(image_embeds).to(encoder_hidden_states.dtype)
+ encoder_hidden_states = torch.cat([encoder_hidden_states, image_embeds], dim=1)
+
+ # 2. pre-process
+ sample = self.conv_in(sample)
+
+ # 2.5 GLIGEN position net
+ if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
+ cross_attention_kwargs = cross_attention_kwargs.copy()
+ gligen_args = cross_attention_kwargs.pop("gligen")
+ cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
+
+
+ curr_garment_feat_idx = 0
+
+
+ # 3. down
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+ if USE_PEFT_BACKEND:
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
+ scale_lora_layers(self, lora_scale)
+
+ is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
+ # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
+ is_adapter = down_intrablock_additional_residuals is not None
+ # maintain backward compatibility for legacy usage, where
+ # T2I-Adapter and ControlNet both use down_block_additional_residuals arg
+ # but can only use one or the other
+ if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
+ deprecate(
+ "T2I should not use down_block_additional_residuals",
+ "1.3.0",
+ "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
+ and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
+ for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
+ standard_warn=False,
+ )
+ down_intrablock_additional_residuals = down_block_additional_residuals
+ is_adapter = True
+
+ down_block_res_samples = (sample,)
+ for downsample_block in self.down_blocks:
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
+ # For t2i-adapter CrossAttnDownBlock2D
+ additional_residuals = {}
+ if is_adapter and len(down_intrablock_additional_residuals) > 0:
+ additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
+
+ sample, res_samples,curr_garment_feat_idx = downsample_block(
+ hidden_states=sample,
+ temb=emb,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=attention_mask,
+ cross_attention_kwargs=cross_attention_kwargs,
+ encoder_attention_mask=encoder_attention_mask,
+ garment_features=garment_features,
+ curr_garment_feat_idx=curr_garment_feat_idx,
+ **additional_residuals,
+ )
+ else:
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
+ if is_adapter and len(down_intrablock_additional_residuals) > 0:
+ sample += down_intrablock_additional_residuals.pop(0)
+
+ down_block_res_samples += res_samples
+
+
+ if is_controlnet:
+ new_down_block_res_samples = ()
+
+ for down_block_res_sample, down_block_additional_residual in zip(
+ down_block_res_samples, down_block_additional_residuals
+ ):
+ down_block_res_sample = down_block_res_sample + down_block_additional_residual
+ new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
+
+ down_block_res_samples = new_down_block_res_samples
+
+ # 4. mid
+ if self.mid_block is not None:
+ if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
+ sample ,curr_garment_feat_idx= self.mid_block(
+ sample,
+ emb,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=attention_mask,
+ cross_attention_kwargs=cross_attention_kwargs,
+ encoder_attention_mask=encoder_attention_mask,
+ garment_features=garment_features,
+ curr_garment_feat_idx=curr_garment_feat_idx,
+ )
+ else:
+ sample = self.mid_block(sample, emb)
+
+ # To support T2I-Adapter-XL
+ if (
+ is_adapter
+ and len(down_intrablock_additional_residuals) > 0
+ and sample.shape == down_intrablock_additional_residuals[0].shape
+ ):
+ sample += down_intrablock_additional_residuals.pop(0)
+
+ if is_controlnet:
+ sample = sample + mid_block_additional_residual
+
+
+
+ # 5. up
+ for i, upsample_block in enumerate(self.up_blocks):
+ is_final_block = i == len(self.up_blocks) - 1
+
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
+
+ # if we have not reached the final block and need to forward the
+ # upsample size, we do it here
+ if not is_final_block and forward_upsample_size:
+ upsample_size = down_block_res_samples[-1].shape[2:]
+
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
+ sample ,curr_garment_feat_idx= upsample_block(
+ hidden_states=sample,
+ temb=emb,
+ res_hidden_states_tuple=res_samples,
+ encoder_hidden_states=encoder_hidden_states,
+ cross_attention_kwargs=cross_attention_kwargs,
+ upsample_size=upsample_size,
+ attention_mask=attention_mask,
+ encoder_attention_mask=encoder_attention_mask,
+ garment_features=garment_features,
+ curr_garment_feat_idx=curr_garment_feat_idx,
+ )
+
+ else:
+ sample = upsample_block(
+ hidden_states=sample,
+ temb=emb,
+ res_hidden_states_tuple=res_samples,
+ upsample_size=upsample_size,
+ scale=lora_scale,
+ )
+ # 6. post-process
+ if self.conv_norm_out:
+ sample = self.conv_norm_out(sample)
+ sample = self.conv_act(sample)
+ sample = self.conv_out(sample)
+
+ if USE_PEFT_BACKEND:
+ # remove `lora_scale` from each PEFT layer
+ unscale_lora_layers(self, lora_scale)
+
+ if not return_dict:
+ return (sample,)
+
+ return UNet2DConditionOutput(sample=sample)