From 2ed12510ba73e02e8b4ae7dff90708bbce02cab9 Mon Sep 17 00:00:00 2001 From: lllyasviel Date: Wed, 24 Jan 2024 10:51:36 -0800 Subject: [PATCH] Update devices.py --- modules/devices.py | 193 ++++++--------------------------------------- 1 file changed, 26 insertions(+), 167 deletions(-) diff --git a/modules/devices.py b/modules/devices.py index edac6c02..53c37a9b 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -1,188 +1,81 @@ -import sys import contextlib -from functools import lru_cache - import torch -from modules import errors, shared -from modules import torch_utils - -if sys.platform == "darwin": - from modules import mac_specific - -if shared.cmd_opts.use_ipex: - from modules import xpu_specific +import ldm_patched.modules.model_management as model_management def has_xpu() -> bool: - return shared.cmd_opts.use_ipex and xpu_specific.has_xpu + return model_management.xpu_available def has_mps() -> bool: - if sys.platform != "darwin": - return False - else: - return mac_specific.has_mps + return model_management.mps_mode() def cuda_no_autocast(device_id=None) -> bool: - if device_id is None: - device_id = get_cuda_device_id() - return ( - torch.cuda.get_device_capability(device_id) == (7, 5) - and torch.cuda.get_device_name(device_id).startswith("NVIDIA GeForce GTX 16") - ) + return False def get_cuda_device_id(): - return ( - int(shared.cmd_opts.device_id) - if shared.cmd_opts.device_id is not None and shared.cmd_opts.device_id.isdigit() - else 0 - ) or torch.cuda.current_device() + return model_management.get_torch_device().index def get_cuda_device_string(): - if shared.cmd_opts.device_id is not None: - return f"cuda:{shared.cmd_opts.device_id}" - - return "cuda" + return str(model_management.get_torch_device()) def get_optimal_device_name(): - if torch.cuda.is_available(): - return get_cuda_device_string() - - if has_mps(): - return "mps" - - if has_xpu(): - return xpu_specific.get_xpu_device_string() - - return "cpu" + return model_management.get_torch_device().type def get_optimal_device(): - return torch.device(get_optimal_device_name()) + return model_management.get_torch_device() def get_device_for(task): - if task in shared.cmd_opts.use_cpu or "all" in shared.cmd_opts.use_cpu: - return cpu - return get_optimal_device() def torch_gc(): - - if torch.cuda.is_available(): - with torch.cuda.device(get_cuda_device_string()): - torch.cuda.empty_cache() - torch.cuda.ipc_collect() - - if has_mps(): - mac_specific.torch_mps_gc() - - if has_xpu(): - xpu_specific.torch_xpu_gc() + model_management.soft_empty_cache() def enable_tf32(): - if torch.cuda.is_available(): + return - # enabling benchmark option seems to enable a range of cards to do fp16 when they otherwise can't - # see https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4407 - if cuda_no_autocast(): - torch.backends.cudnn.benchmark = True - - torch.backends.cuda.matmul.allow_tf32 = True - torch.backends.cudnn.allow_tf32 = True - - -errors.run(enable_tf32, "Enabling TF32") cpu: torch.device = torch.device("cpu") fp8: bool = False -device: torch.device = None -device_interrogate: torch.device = None -device_gfpgan: torch.device = None -device_esrgan: torch.device = None -device_codeformer: torch.device = None -dtype: torch.dtype = torch.float16 -dtype_vae: torch.dtype = torch.float16 -dtype_unet: torch.dtype = torch.float16 -dtype_inference: torch.dtype = torch.float16 +device: torch.device = model_management.get_torch_device() +device_interrogate: torch.device = model_management.text_encoder_device() +device_gfpgan: torch.device = model_management.get_torch_device() +device_esrgan: torch.device = model_management.get_torch_device() +device_codeformer: torch.device = model_management.get_torch_device() +dtype: torch.dtype = model_management.unet_dtype() +dtype_vae: torch.dtype = model_management.vae_dtype() +dtype_unet: torch.dtype = model_management.unet_dtype() +dtype_inference: torch.dtype = model_management.unet_dtype() unet_needs_upcast = False def cond_cast_unet(input): - return input.to(dtype_unet) if unet_needs_upcast else input + return input def cond_cast_float(input): - return input.float() if unet_needs_upcast else input + return input nv_rng = None -patch_module_list = [ - torch.nn.Linear, - torch.nn.Conv2d, - torch.nn.MultiheadAttention, - torch.nn.GroupNorm, - torch.nn.LayerNorm, -] +patch_module_list = [] def manual_cast_forward(target_dtype): - def forward_wrapper(self, *args, **kwargs): - if any( - isinstance(arg, torch.Tensor) and arg.dtype != target_dtype - for arg in args - ): - args = [arg.to(target_dtype) if isinstance(arg, torch.Tensor) else arg for arg in args] - kwargs = {k: v.to(target_dtype) if isinstance(v, torch.Tensor) else v for k, v in kwargs.items()} - - org_dtype = torch_utils.get_param(self).dtype - if org_dtype != target_dtype: - self.to(target_dtype) - result = self.org_forward(*args, **kwargs) - if org_dtype != target_dtype: - self.to(org_dtype) - - if target_dtype != dtype_inference: - if isinstance(result, tuple): - result = tuple( - i.to(dtype_inference) - if isinstance(i, torch.Tensor) - else i - for i in result - ) - elif isinstance(result, torch.Tensor): - result = result.to(dtype_inference) - return result - return forward_wrapper + return @contextlib.contextmanager def manual_cast(target_dtype): - applied = False - for module_type in patch_module_list: - if hasattr(module_type, "org_forward"): - continue - applied = True - org_forward = module_type.forward - if module_type == torch.nn.MultiheadAttention and has_xpu(): - module_type.forward = manual_cast_forward(torch.float32) - else: - module_type.forward = manual_cast_forward(target_dtype) - module_type.org_forward = org_forward - try: - yield None - finally: - if applied: - for module_type in patch_module_list: - if hasattr(module_type, "org_forward"): - module_type.forward = module_type.org_forward - delattr(module_type, "org_forward") + return def autocast(disable=False): @@ -198,43 +91,9 @@ class NansException(Exception): def test_for_nans(x, where): - if shared.cmd_opts.disable_nan_check: - return - - if not torch.all(torch.isnan(x)).item(): - return - - if where == "unet": - message = "A tensor with all NaNs was produced in Unet." - - if not shared.cmd_opts.no_half: - message += " This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try setting the \"Upcast cross attention layer to float32\" option in Settings > Stable Diffusion or using the --no-half commandline argument to fix this." - - elif where == "vae": - message = "A tensor with all NaNs was produced in VAE." - - if not shared.cmd_opts.no_half and not shared.cmd_opts.no_half_vae: - message += " This could be because there's not enough precision to represent the picture. Try adding --no-half-vae commandline argument to fix this." - else: - message = "A tensor with all NaNs was produced." - - message += " Use --disable-nan-check commandline argument to disable this check." - - raise NansException(message) + return -@lru_cache def first_time_calculation(): - """ - just do any calculation with pytorch layers - the first time this is done it allocaltes about 700MB of memory and - spends about 2.7 seconds doing that, at least wih NVidia. - """ - - x = torch.zeros((1, 1)).to(device, dtype) - linear = torch.nn.Linear(1, 1).to(device, dtype) - linear(x) - - x = torch.zeros((1, 1, 3, 3)).to(device, dtype) - conv2d = torch.nn.Conv2d(1, 1, (3, 3)).to(device, dtype) - conv2d(x) + return