diff --git a/modules/ui.py b/modules/ui.py index b7200fb8..676132ff 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -22,9 +22,6 @@ from modules.ui_gradio_extensions import reload_javascript from modules.shared import opts, cmd_opts import modules.infotext_utils as parameters_copypaste -import modules.hypernetworks.ui as hypernetworks_ui -import modules.textual_inversion.ui as textual_inversion_ui -import modules.textual_inversion.textual_inversion as textual_inversion import modules.shared as shared from modules import prompt_parser from modules.sd_hijack import model_hijack @@ -887,217 +884,6 @@ def create_ui(): modelmerger_ui = ui_checkpoint_merger.UiCheckpointMerger() - with gr.Blocks(analytics_enabled=False, head=canvas_head) as train_interface: - with gr.Row(equal_height=False): - gr.HTML(value="

See wiki for detailed explanation.

") - - with ResizeHandleRow(variant="compact", equal_height=False): - with gr.Tabs(elem_id="train_tabs"): - - with gr.Tab(label="Create embedding", id="create_embedding"): - new_embedding_name = gr.Textbox(label="Name", elem_id="train_new_embedding_name") - initialization_text = gr.Textbox(label="Initialization text", value="*", elem_id="train_initialization_text") - nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1, elem_id="train_nvpt") - overwrite_old_embedding = gr.Checkbox(value=False, label="Overwrite Old Embedding", elem_id="train_overwrite_old_embedding") - - with gr.Row(): - with gr.Column(scale=3): - gr.HTML(value="") - - with gr.Column(): - create_embedding = gr.Button(value="Create embedding", variant='primary', elem_id="train_create_embedding") - - with gr.Tab(label="Create hypernetwork", id="create_hypernetwork"): - new_hypernetwork_name = gr.Textbox(label="Name", elem_id="train_new_hypernetwork_name") - new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "1024", "320", "640", "1280"], elem_id="train_new_hypernetwork_sizes") - new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'", elem_id="train_new_hypernetwork_layer_structure") - new_hypernetwork_activation_func = gr.Dropdown(value="linear", label="Select activation function of hypernetwork. Recommended : Swish / Linear(none)", choices=hypernetworks_ui.keys, elem_id="train_new_hypernetwork_activation_func") - new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. Recommended: Kaiming for relu-like, Xavier for sigmoid-like, Normal otherwise", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"], elem_id="train_new_hypernetwork_initialization_option") - new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization", elem_id="train_new_hypernetwork_add_layer_norm") - new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout", elem_id="train_new_hypernetwork_use_dropout") - new_hypernetwork_dropout_structure = gr.Textbox("0, 0, 0", label="Enter hypernetwork Dropout structure (or empty). Recommended : 0~0.35 incrementing sequence: 0, 0.05, 0.15", placeholder="1st and last digit must be 0 and values should be between 0 and 1. ex:'0, 0.01, 0'") - overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork", elem_id="train_overwrite_old_hypernetwork") - - with gr.Row(): - with gr.Column(scale=3): - gr.HTML(value="") - - with gr.Column(): - create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary', elem_id="train_create_hypernetwork") - - def get_textual_inversion_template_names(): - return sorted(textual_inversion.textual_inversion_templates) - - with gr.Tab(label="Train", id="train"): - gr.HTML(value="

Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images [wiki]

") - with FormRow(): - train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) - create_refresh_button(train_embedding_name, sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: {"choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())}, "refresh_train_embedding_name") - - train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=sorted(shared.hypernetworks)) - create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted(shared.hypernetworks)}, "refresh_train_hypernetwork_name") - - with FormRow(): - embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005", elem_id="train_embedding_learn_rate") - hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001", elem_id="train_hypernetwork_learn_rate") - - with FormRow(): - clip_grad_mode = gr.Dropdown(value="disabled", label="Gradient Clipping", choices=["disabled", "value", "norm"]) - clip_grad_value = gr.Textbox(placeholder="Gradient clip value", value="0.1", show_label=False) - - with FormRow(): - batch_size = gr.Number(label='Batch size', value=1, precision=0, elem_id="train_batch_size") - gradient_step = gr.Number(label='Gradient accumulation steps', value=1, precision=0, elem_id="train_gradient_step") - - dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images", elem_id="train_dataset_directory") - log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion", elem_id="train_log_directory") - - with FormRow(): - template_file = gr.Dropdown(label='Prompt template', value="style_filewords.txt", elem_id="train_template_file", choices=get_textual_inversion_template_names()) - create_refresh_button(template_file, textual_inversion.list_textual_inversion_templates, lambda: {"choices": get_textual_inversion_template_names()}, "refrsh_train_template_file") - - training_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="train_training_width") - training_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="train_training_height") - varsize = gr.Checkbox(label="Do not resize images", value=False, elem_id="train_varsize") - steps = gr.Number(label='Max steps', value=100000, precision=0, elem_id="train_steps") - - with FormRow(): - create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_create_image_every") - save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_save_embedding_every") - - use_weight = gr.Checkbox(label="Use PNG alpha channel as loss weight", value=False, elem_id="use_weight") - - save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True, elem_id="train_save_image_with_stored_embedding") - preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False, elem_id="train_preview_from_txt2img") - - shuffle_tags = gr.Checkbox(label="Shuffle tags by ',' when creating prompts.", value=False, elem_id="train_shuffle_tags") - tag_drop_out = gr.Slider(minimum=0, maximum=1, step=0.1, label="Drop out tags when creating prompts.", value=0, elem_id="train_tag_drop_out") - - latent_sampling_method = gr.Radio(label='Choose latent sampling method', value="once", choices=['once', 'deterministic', 'random'], elem_id="train_latent_sampling_method") - - with gr.Row(): - train_embedding = gr.Button(value="Train Embedding", variant='primary', elem_id="train_train_embedding") - interrupt_training = gr.Button(value="Interrupt", elem_id="train_interrupt_training") - train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary', elem_id="train_train_hypernetwork") - - params = script_callbacks.UiTrainTabParams(txt2img_preview_params) - - script_callbacks.ui_train_tabs_callback(params) - - with gr.Column(elem_id='ti_gallery_container'): - ti_output = gr.Text(elem_id="ti_output", value="", show_label=False) - gr.Gallery(label='Output', show_label=False, elem_id='ti_gallery', columns=4, object_fit="contain") - gr.HTML(elem_id="ti_progress", value="") - ti_outcome = gr.HTML(elem_id="ti_error", value="") - - create_embedding.click( - fn=textual_inversion_ui.create_embedding, - inputs=[ - new_embedding_name, - initialization_text, - nvpt, - overwrite_old_embedding, - ], - outputs=[ - train_embedding_name, - ti_output, - ti_outcome, - ] - ) - - create_hypernetwork.click( - fn=hypernetworks_ui.create_hypernetwork, - inputs=[ - new_hypernetwork_name, - new_hypernetwork_sizes, - overwrite_old_hypernetwork, - new_hypernetwork_layer_structure, - new_hypernetwork_activation_func, - new_hypernetwork_initialization_option, - new_hypernetwork_add_layer_norm, - new_hypernetwork_use_dropout, - new_hypernetwork_dropout_structure - ], - outputs=[ - train_hypernetwork_name, - ti_output, - ti_outcome, - ] - ) - - train_embedding.click( - fn=wrap_gradio_gpu_call(textual_inversion_ui.train_embedding, extra_outputs=[gr.update()]), - _js="start_training_textual_inversion", - inputs=[ - dummy_component, - train_embedding_name, - embedding_learn_rate, - batch_size, - gradient_step, - dataset_directory, - log_directory, - training_width, - training_height, - varsize, - steps, - clip_grad_mode, - clip_grad_value, - shuffle_tags, - tag_drop_out, - latent_sampling_method, - use_weight, - create_image_every, - save_embedding_every, - template_file, - save_image_with_stored_embedding, - preview_from_txt2img, - *txt2img_preview_params, - ], - outputs=[ - ti_output, - ti_outcome, - ] - ) - - train_hypernetwork.click( - fn=wrap_gradio_gpu_call(hypernetworks_ui.train_hypernetwork, extra_outputs=[gr.update()]), - _js="start_training_textual_inversion", - inputs=[ - dummy_component, - train_hypernetwork_name, - hypernetwork_learn_rate, - batch_size, - gradient_step, - dataset_directory, - log_directory, - training_width, - training_height, - varsize, - steps, - clip_grad_mode, - clip_grad_value, - shuffle_tags, - tag_drop_out, - latent_sampling_method, - use_weight, - create_image_every, - save_embedding_every, - template_file, - preview_from_txt2img, - *txt2img_preview_params, - ], - outputs=[ - ti_output, - ti_outcome, - ] - ) - - interrupt_training.click( - fn=lambda: shared.state.interrupt(), - inputs=[], - outputs=[], - ) - loadsave = ui_loadsave.UiLoadsave(cmd_opts.ui_config_file) ui_settings_from_file = loadsave.ui_settings.copy() @@ -1109,7 +895,6 @@ def create_ui(): (extras_interface, "Extras", "extras"), (pnginfo_interface, "PNG Info", "pnginfo"), (modelmerger_ui.blocks, "Checkpoint Merger", "modelmerger"), - (train_interface, "Train", "train"), ] interfaces += script_callbacks.ui_tabs_callback()