From 6d8522b014c08820417d6681c888b21908840d1f Mon Sep 17 00:00:00 2001 From: layerdiffusion <19834515+lllyasviel@users.noreply.github.com> Date: Mon, 5 Aug 2024 11:31:02 -0700 Subject: [PATCH] remove unused --- modules/models/diffusion/ddpm_edit.py | 2920 ++++++++++++------------- 1 file changed, 1460 insertions(+), 1460 deletions(-) diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py index 7b51c83c..aa894eac 100644 --- a/modules/models/diffusion/ddpm_edit.py +++ b/modules/models/diffusion/ddpm_edit.py @@ -1,1460 +1,1460 @@ -""" -wild mixture of -https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py -https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py -https://github.com/CompVis/taming-transformers --- merci -""" - -# File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion). -# See more details in LICENSE. - -import torch -import torch.nn as nn -import numpy as np -import pytorch_lightning as pl -from torch.optim.lr_scheduler import LambdaLR -from einops import rearrange, repeat -from contextlib import contextmanager -from functools import partial -from tqdm import tqdm -from torchvision.utils import make_grid -from pytorch_lightning.utilities.distributed import rank_zero_only - -from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config -from ldm.modules.ema import LitEma -from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution -from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL -from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like -from ldm.models.diffusion.ddim import DDIMSampler - -try: - from ldm.models.autoencoder import VQModelInterface -except Exception: - class VQModelInterface: - pass - -__conditioning_keys__ = {'concat': 'c_concat', - 'crossattn': 'c_crossattn', - 'adm': 'y'} - - -def disabled_train(self, mode=True): - """Overwrite model.train with this function to make sure train/eval mode - does not change anymore.""" - return self - - -def uniform_on_device(r1, r2, shape, device): - return (r1 - r2) * torch.rand(*shape, device=device) + r2 - - -class DDPM(pl.LightningModule): - # classic DDPM with Gaussian diffusion, in image space - def __init__(self, - unet_config, - timesteps=1000, - beta_schedule="linear", - loss_type="l2", - ckpt_path=None, - ignore_keys=None, - load_only_unet=False, - monitor="val/loss", - use_ema=True, - first_stage_key="image", - image_size=256, - channels=3, - log_every_t=100, - clip_denoised=True, - linear_start=1e-4, - linear_end=2e-2, - cosine_s=8e-3, - given_betas=None, - original_elbo_weight=0., - v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta - l_simple_weight=1., - conditioning_key=None, - parameterization="eps", # all assuming fixed variance schedules - scheduler_config=None, - use_positional_encodings=False, - learn_logvar=False, - logvar_init=0., - load_ema=True, - ): - super().__init__() - assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"' - self.parameterization = parameterization - print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode") - self.cond_stage_model = None - self.clip_denoised = clip_denoised - self.log_every_t = log_every_t - self.first_stage_key = first_stage_key - self.image_size = image_size # try conv? - self.channels = channels - self.use_positional_encodings = use_positional_encodings - self.model = DiffusionWrapper(unet_config, conditioning_key) - count_params(self.model, verbose=True) - self.use_ema = use_ema - - self.use_scheduler = scheduler_config is not None - if self.use_scheduler: - self.scheduler_config = scheduler_config - - self.v_posterior = v_posterior - self.original_elbo_weight = original_elbo_weight - self.l_simple_weight = l_simple_weight - - if monitor is not None: - self.monitor = monitor - - if self.use_ema and load_ema: - self.model_ema = LitEma(self.model) - print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") - - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet) - - # If initialing from EMA-only checkpoint, create EMA model after loading. - if self.use_ema and not load_ema: - self.model_ema = LitEma(self.model) - print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") - - self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, - linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) - - self.loss_type = loss_type - - self.learn_logvar = learn_logvar - self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) - if self.learn_logvar: - self.logvar = nn.Parameter(self.logvar, requires_grad=True) - - - def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, - linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): - if exists(given_betas): - betas = given_betas - else: - betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, - cosine_s=cosine_s) - alphas = 1. - betas - alphas_cumprod = np.cumprod(alphas, axis=0) - alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) - - timesteps, = betas.shape - self.num_timesteps = int(timesteps) - self.linear_start = linear_start - self.linear_end = linear_end - assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' - - to_torch = partial(torch.tensor, dtype=torch.float32) - - self.register_buffer('betas', to_torch(betas)) - self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) - self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) - - # calculations for diffusion q(x_t | x_{t-1}) and others - self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) - self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) - self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) - self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) - self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) - - # calculations for posterior q(x_{t-1} | x_t, x_0) - posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( - 1. - alphas_cumprod) + self.v_posterior * betas - # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) - self.register_buffer('posterior_variance', to_torch(posterior_variance)) - # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain - self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) - self.register_buffer('posterior_mean_coef1', to_torch( - betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) - self.register_buffer('posterior_mean_coef2', to_torch( - (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) - - if self.parameterization == "eps": - lvlb_weights = self.betas ** 2 / ( - 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) - elif self.parameterization == "x0": - lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) - else: - raise NotImplementedError("mu not supported") - # TODO how to choose this term - lvlb_weights[0] = lvlb_weights[1] - self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) - assert not torch.isnan(self.lvlb_weights).all() - - @contextmanager - def ema_scope(self, context=None): - if self.use_ema: - self.model_ema.store(self.model.parameters()) - self.model_ema.copy_to(self.model) - if context is not None: - print(f"{context}: Switched to EMA weights") - try: - yield None - finally: - if self.use_ema: - self.model_ema.restore(self.model.parameters()) - if context is not None: - print(f"{context}: Restored training weights") - - def init_from_ckpt(self, path, ignore_keys=None, only_model=False): - ignore_keys = ignore_keys or [] - - sd = torch.load(path, map_location="cpu") - if "state_dict" in list(sd.keys()): - sd = sd["state_dict"] - keys = list(sd.keys()) - - # Our model adds additional channels to the first layer to condition on an input image. - # For the first layer, copy existing channel weights and initialize new channel weights to zero. - input_keys = [ - "model.diffusion_model.input_blocks.0.0.weight", - "model_ema.diffusion_modelinput_blocks00weight", - ] - - self_sd = self.state_dict() - for input_key in input_keys: - if input_key not in sd or input_key not in self_sd: - continue - - input_weight = self_sd[input_key] - - if input_weight.size() != sd[input_key].size(): - print(f"Manual init: {input_key}") - input_weight.zero_() - input_weight[:, :4, :, :].copy_(sd[input_key]) - ignore_keys.append(input_key) - - for k in keys: - for ik in ignore_keys: - if k.startswith(ik): - print(f"Deleting key {k} from state_dict.") - del sd[k] - missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( - sd, strict=False) - print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") - if missing: - print(f"Missing Keys: {missing}") - if unexpected: - print(f"Unexpected Keys: {unexpected}") - - def q_mean_variance(self, x_start, t): - """ - Get the distribution q(x_t | x_0). - :param x_start: the [N x C x ...] tensor of noiseless inputs. - :param t: the number of diffusion steps (minus 1). Here, 0 means one step. - :return: A tuple (mean, variance, log_variance), all of x_start's shape. - """ - mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) - variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) - log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) - return mean, variance, log_variance - - def predict_start_from_noise(self, x_t, t, noise): - return ( - extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise - ) - - def q_posterior(self, x_start, x_t, t): - posterior_mean = ( - extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + - extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t - ) - posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) - posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) - return posterior_mean, posterior_variance, posterior_log_variance_clipped - - def p_mean_variance(self, x, t, clip_denoised: bool): - model_out = self.model(x, t) - if self.parameterization == "eps": - x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) - elif self.parameterization == "x0": - x_recon = model_out - if clip_denoised: - x_recon.clamp_(-1., 1.) - - model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) - return model_mean, posterior_variance, posterior_log_variance - - @torch.no_grad() - def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): - b, *_, device = *x.shape, x.device - model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised) - noise = noise_like(x.shape, device, repeat_noise) - # no noise when t == 0 - nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise - - @torch.no_grad() - def p_sample_loop(self, shape, return_intermediates=False): - device = self.betas.device - b = shape[0] - img = torch.randn(shape, device=device) - intermediates = [img] - for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps): - img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long), - clip_denoised=self.clip_denoised) - if i % self.log_every_t == 0 or i == self.num_timesteps - 1: - intermediates.append(img) - if return_intermediates: - return img, intermediates - return img - - @torch.no_grad() - def sample(self, batch_size=16, return_intermediates=False): - image_size = self.image_size - channels = self.channels - return self.p_sample_loop((batch_size, channels, image_size, image_size), - return_intermediates=return_intermediates) - - def q_sample(self, x_start, t, noise=None): - noise = default(noise, lambda: torch.randn_like(x_start)) - return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) - - def get_loss(self, pred, target, mean=True): - if self.loss_type == 'l1': - loss = (target - pred).abs() - if mean: - loss = loss.mean() - elif self.loss_type == 'l2': - if mean: - loss = torch.nn.functional.mse_loss(target, pred) - else: - loss = torch.nn.functional.mse_loss(target, pred, reduction='none') - else: - raise NotImplementedError("unknown loss type '{loss_type}'") - - return loss - - def p_losses(self, x_start, t, noise=None): - noise = default(noise, lambda: torch.randn_like(x_start)) - x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) - model_out = self.model(x_noisy, t) - - loss_dict = {} - if self.parameterization == "eps": - target = noise - elif self.parameterization == "x0": - target = x_start - else: - raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported") - - loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3]) - - log_prefix = 'train' if self.training else 'val' - - loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()}) - loss_simple = loss.mean() * self.l_simple_weight - - loss_vlb = (self.lvlb_weights[t] * loss).mean() - loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb}) - - loss = loss_simple + self.original_elbo_weight * loss_vlb - - loss_dict.update({f'{log_prefix}/loss': loss}) - - return loss, loss_dict - - def forward(self, x, *args, **kwargs): - # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size - # assert h == img_size and w == img_size, f'height and width of image must be {img_size}' - t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() - return self.p_losses(x, t, *args, **kwargs) - - def get_input(self, batch, k): - return batch[k] - - def shared_step(self, batch): - x = self.get_input(batch, self.first_stage_key) - loss, loss_dict = self(x) - return loss, loss_dict - - def training_step(self, batch, batch_idx): - loss, loss_dict = self.shared_step(batch) - - self.log_dict(loss_dict, prog_bar=True, - logger=True, on_step=True, on_epoch=True) - - self.log("global_step", self.global_step, - prog_bar=True, logger=True, on_step=True, on_epoch=False) - - if self.use_scheduler: - lr = self.optimizers().param_groups[0]['lr'] - self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) - - return loss - - @torch.no_grad() - def validation_step(self, batch, batch_idx): - _, loss_dict_no_ema = self.shared_step(batch) - with self.ema_scope(): - _, loss_dict_ema = self.shared_step(batch) - loss_dict_ema = {f"{key}_ema": loss_dict_ema[key] for key in loss_dict_ema} - self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) - self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) - - def on_train_batch_end(self, *args, **kwargs): - if self.use_ema: - self.model_ema(self.model) - - def _get_rows_from_list(self, samples): - n_imgs_per_row = len(samples) - denoise_grid = rearrange(samples, 'n b c h w -> b n c h w') - denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') - denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) - return denoise_grid - - @torch.no_grad() - def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): - log = {} - x = self.get_input(batch, self.first_stage_key) - N = min(x.shape[0], N) - n_row = min(x.shape[0], n_row) - x = x.to(self.device)[:N] - log["inputs"] = x - - # get diffusion row - diffusion_row = [] - x_start = x[:n_row] - - for t in range(self.num_timesteps): - if t % self.log_every_t == 0 or t == self.num_timesteps - 1: - t = repeat(torch.tensor([t]), '1 -> b', b=n_row) - t = t.to(self.device).long() - noise = torch.randn_like(x_start) - x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) - diffusion_row.append(x_noisy) - - log["diffusion_row"] = self._get_rows_from_list(diffusion_row) - - if sample: - # get denoise row - with self.ema_scope("Plotting"): - samples, denoise_row = self.sample(batch_size=N, return_intermediates=True) - - log["samples"] = samples - log["denoise_row"] = self._get_rows_from_list(denoise_row) - - if return_keys: - if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: - return log - else: - return {key: log[key] for key in return_keys} - return log - - def configure_optimizers(self): - lr = self.learning_rate - params = list(self.model.parameters()) - if self.learn_logvar: - params = params + [self.logvar] - opt = torch.optim.AdamW(params, lr=lr) - return opt - - -class LatentDiffusion(DDPM): - """main class""" - def __init__(self, - first_stage_config, - cond_stage_config, - num_timesteps_cond=None, - cond_stage_key="image", - cond_stage_trainable=False, - concat_mode=True, - cond_stage_forward=None, - conditioning_key=None, - scale_factor=1.0, - scale_by_std=False, - load_ema=True, - *args, **kwargs): - self.num_timesteps_cond = default(num_timesteps_cond, 1) - self.scale_by_std = scale_by_std - assert self.num_timesteps_cond <= kwargs['timesteps'] - # for backwards compatibility after implementation of DiffusionWrapper - if conditioning_key is None: - conditioning_key = 'concat' if concat_mode else 'crossattn' - if cond_stage_config == '__is_unconditional__': - conditioning_key = None - ckpt_path = kwargs.pop("ckpt_path", None) - ignore_keys = kwargs.pop("ignore_keys", []) - super().__init__(*args, conditioning_key=conditioning_key, load_ema=load_ema, **kwargs) - self.concat_mode = concat_mode - self.cond_stage_trainable = cond_stage_trainable - self.cond_stage_key = cond_stage_key - try: - self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 - except Exception: - self.num_downs = 0 - if not scale_by_std: - self.scale_factor = scale_factor - else: - self.register_buffer('scale_factor', torch.tensor(scale_factor)) - self.instantiate_first_stage(first_stage_config) - self.instantiate_cond_stage(cond_stage_config) - self.cond_stage_forward = cond_stage_forward - self.clip_denoised = False - self.bbox_tokenizer = None - - self.restarted_from_ckpt = False - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys) - self.restarted_from_ckpt = True - - if self.use_ema and not load_ema: - self.model_ema = LitEma(self.model) - print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") - - def make_cond_schedule(self, ): - self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) - ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() - self.cond_ids[:self.num_timesteps_cond] = ids - - @rank_zero_only - @torch.no_grad() - def on_train_batch_start(self, batch, batch_idx, dataloader_idx): - # only for very first batch - if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt: - assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' - # set rescale weight to 1./std of encodings - print("### USING STD-RESCALING ###") - x = super().get_input(batch, self.first_stage_key) - x = x.to(self.device) - encoder_posterior = self.encode_first_stage(x) - z = self.get_first_stage_encoding(encoder_posterior).detach() - del self.scale_factor - self.register_buffer('scale_factor', 1. / z.flatten().std()) - print(f"setting self.scale_factor to {self.scale_factor}") - print("### USING STD-RESCALING ###") - - def register_schedule(self, - given_betas=None, beta_schedule="linear", timesteps=1000, - linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): - super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s) - - self.shorten_cond_schedule = self.num_timesteps_cond > 1 - if self.shorten_cond_schedule: - self.make_cond_schedule() - - def instantiate_first_stage(self, config): - model = instantiate_from_config(config) - self.first_stage_model = model.eval() - self.first_stage_model.train = disabled_train - for param in self.first_stage_model.parameters(): - param.requires_grad = False - - def instantiate_cond_stage(self, config): - if not self.cond_stage_trainable: - if config == "__is_first_stage__": - print("Using first stage also as cond stage.") - self.cond_stage_model = self.first_stage_model - elif config == "__is_unconditional__": - print(f"Training {self.__class__.__name__} as an unconditional model.") - self.cond_stage_model = None - # self.be_unconditional = True - else: - model = instantiate_from_config(config) - self.cond_stage_model = model.eval() - self.cond_stage_model.train = disabled_train - for param in self.cond_stage_model.parameters(): - param.requires_grad = False - else: - assert config != '__is_first_stage__' - assert config != '__is_unconditional__' - model = instantiate_from_config(config) - self.cond_stage_model = model - - def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False): - denoise_row = [] - for zd in tqdm(samples, desc=desc): - denoise_row.append(self.decode_first_stage(zd.to(self.device), - force_not_quantize=force_no_decoder_quantization)) - n_imgs_per_row = len(denoise_row) - denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W - denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') - denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') - denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) - return denoise_grid - - def get_first_stage_encoding(self, encoder_posterior): - if isinstance(encoder_posterior, DiagonalGaussianDistribution): - z = encoder_posterior.sample() - elif isinstance(encoder_posterior, torch.Tensor): - z = encoder_posterior - else: - raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") - return self.scale_factor * z - - def get_learned_conditioning(self, c): - if self.cond_stage_forward is None: - if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): - c = self.cond_stage_model.encode(c) - if isinstance(c, DiagonalGaussianDistribution): - c = c.mode() - else: - c = self.cond_stage_model(c) - else: - assert hasattr(self.cond_stage_model, self.cond_stage_forward) - c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) - return c - - def meshgrid(self, h, w): - y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) - x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) - - arr = torch.cat([y, x], dim=-1) - return arr - - def delta_border(self, h, w): - """ - :param h: height - :param w: width - :return: normalized distance to image border, - wtith min distance = 0 at border and max dist = 0.5 at image center - """ - lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) - arr = self.meshgrid(h, w) / lower_right_corner - dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] - dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] - edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0] - return edge_dist - - def get_weighting(self, h, w, Ly, Lx, device): - weighting = self.delta_border(h, w) - weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"], - self.split_input_params["clip_max_weight"], ) - weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) - - if self.split_input_params["tie_braker"]: - L_weighting = self.delta_border(Ly, Lx) - L_weighting = torch.clip(L_weighting, - self.split_input_params["clip_min_tie_weight"], - self.split_input_params["clip_max_tie_weight"]) - - L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) - weighting = weighting * L_weighting - return weighting - - def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code - """ - :param x: img of size (bs, c, h, w) - :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) - """ - bs, nc, h, w = x.shape - - # number of crops in image - Ly = (h - kernel_size[0]) // stride[0] + 1 - Lx = (w - kernel_size[1]) // stride[1] + 1 - - if uf == 1 and df == 1: - fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) - unfold = torch.nn.Unfold(**fold_params) - - fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) - - weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype) - normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap - weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) - - elif uf > 1 and df == 1: - fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) - unfold = torch.nn.Unfold(**fold_params) - - fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), - dilation=1, padding=0, - stride=(stride[0] * uf, stride[1] * uf)) - fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2) - - weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype) - normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap - weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)) - - elif df > 1 and uf == 1: - fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) - unfold = torch.nn.Unfold(**fold_params) - - fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df), - dilation=1, padding=0, - stride=(stride[0] // df, stride[1] // df)) - fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2) - - weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype) - normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap - weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)) - - else: - raise NotImplementedError - - return fold, unfold, normalization, weighting - - @torch.no_grad() - def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False, - cond_key=None, return_original_cond=False, bs=None, uncond=0.05): - x = super().get_input(batch, k) - if bs is not None: - x = x[:bs] - x = x.to(self.device) - encoder_posterior = self.encode_first_stage(x) - z = self.get_first_stage_encoding(encoder_posterior).detach() - cond_key = cond_key or self.cond_stage_key - xc = super().get_input(batch, cond_key) - if bs is not None: - xc["c_crossattn"] = xc["c_crossattn"][:bs] - xc["c_concat"] = xc["c_concat"][:bs] - cond = {} - - # To support classifier-free guidance, randomly drop out only text conditioning 5%, only image conditioning 5%, and both 5%. - random = torch.rand(x.size(0), device=x.device) - prompt_mask = rearrange(random < 2 * uncond, "n -> n 1 1") - input_mask = 1 - rearrange((random >= uncond).float() * (random < 3 * uncond).float(), "n -> n 1 1 1") - - null_prompt = self.get_learned_conditioning([""]) - cond["c_crossattn"] = [torch.where(prompt_mask, null_prompt, self.get_learned_conditioning(xc["c_crossattn"]).detach())] - cond["c_concat"] = [input_mask * self.encode_first_stage((xc["c_concat"].to(self.device))).mode().detach()] - - out = [z, cond] - if return_first_stage_outputs: - xrec = self.decode_first_stage(z) - out.extend([x, xrec]) - if return_original_cond: - out.append(xc) - return out - - @torch.no_grad() - def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): - if predict_cids: - if z.dim() == 4: - z = torch.argmax(z.exp(), dim=1).long() - z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) - z = rearrange(z, 'b h w c -> b c h w').contiguous() - - z = 1. / self.scale_factor * z - - if hasattr(self, "split_input_params"): - if self.split_input_params["patch_distributed_vq"]: - ks = self.split_input_params["ks"] # eg. (128, 128) - stride = self.split_input_params["stride"] # eg. (64, 64) - uf = self.split_input_params["vqf"] - bs, nc, h, w = z.shape - if ks[0] > h or ks[1] > w: - ks = (min(ks[0], h), min(ks[1], w)) - print("reducing Kernel") - - if stride[0] > h or stride[1] > w: - stride = (min(stride[0], h), min(stride[1], w)) - print("reducing stride") - - fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) - - z = unfold(z) # (bn, nc * prod(**ks), L) - # 1. Reshape to img shape - z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - - # 2. apply model loop over last dim - if isinstance(self.first_stage_model, VQModelInterface): - output_list = [self.first_stage_model.decode(z[:, :, :, :, i], - force_not_quantize=predict_cids or force_not_quantize) - for i in range(z.shape[-1])] - else: - - output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) - for i in range(z.shape[-1])] - - o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) - o = o * weighting - # Reverse 1. reshape to img shape - o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) - # stitch crops together - decoded = fold(o) - decoded = decoded / normalization # norm is shape (1, 1, h, w) - return decoded - else: - if isinstance(self.first_stage_model, VQModelInterface): - return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) - else: - return self.first_stage_model.decode(z) - - else: - if isinstance(self.first_stage_model, VQModelInterface): - return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) - else: - return self.first_stage_model.decode(z) - - # same as above but without decorator - def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): - if predict_cids: - if z.dim() == 4: - z = torch.argmax(z.exp(), dim=1).long() - z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) - z = rearrange(z, 'b h w c -> b c h w').contiguous() - - z = 1. / self.scale_factor * z - - if hasattr(self, "split_input_params"): - if self.split_input_params["patch_distributed_vq"]: - ks = self.split_input_params["ks"] # eg. (128, 128) - stride = self.split_input_params["stride"] # eg. (64, 64) - uf = self.split_input_params["vqf"] - bs, nc, h, w = z.shape - if ks[0] > h or ks[1] > w: - ks = (min(ks[0], h), min(ks[1], w)) - print("reducing Kernel") - - if stride[0] > h or stride[1] > w: - stride = (min(stride[0], h), min(stride[1], w)) - print("reducing stride") - - fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) - - z = unfold(z) # (bn, nc * prod(**ks), L) - # 1. Reshape to img shape - z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - - # 2. apply model loop over last dim - if isinstance(self.first_stage_model, VQModelInterface): - output_list = [self.first_stage_model.decode(z[:, :, :, :, i], - force_not_quantize=predict_cids or force_not_quantize) - for i in range(z.shape[-1])] - else: - - output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) - for i in range(z.shape[-1])] - - o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) - o = o * weighting - # Reverse 1. reshape to img shape - o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) - # stitch crops together - decoded = fold(o) - decoded = decoded / normalization # norm is shape (1, 1, h, w) - return decoded - else: - if isinstance(self.first_stage_model, VQModelInterface): - return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) - else: - return self.first_stage_model.decode(z) - - else: - if isinstance(self.first_stage_model, VQModelInterface): - return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) - else: - return self.first_stage_model.decode(z) - - @torch.no_grad() - def encode_first_stage(self, x): - if hasattr(self, "split_input_params"): - if self.split_input_params["patch_distributed_vq"]: - ks = self.split_input_params["ks"] # eg. (128, 128) - stride = self.split_input_params["stride"] # eg. (64, 64) - df = self.split_input_params["vqf"] - self.split_input_params['original_image_size'] = x.shape[-2:] - bs, nc, h, w = x.shape - if ks[0] > h or ks[1] > w: - ks = (min(ks[0], h), min(ks[1], w)) - print("reducing Kernel") - - if stride[0] > h or stride[1] > w: - stride = (min(stride[0], h), min(stride[1], w)) - print("reducing stride") - - fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df) - z = unfold(x) # (bn, nc * prod(**ks), L) - # Reshape to img shape - z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - - output_list = [self.first_stage_model.encode(z[:, :, :, :, i]) - for i in range(z.shape[-1])] - - o = torch.stack(output_list, axis=-1) - o = o * weighting - - # Reverse reshape to img shape - o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) - # stitch crops together - decoded = fold(o) - decoded = decoded / normalization - return decoded - - else: - return self.first_stage_model.encode(x) - else: - return self.first_stage_model.encode(x) - - def shared_step(self, batch, **kwargs): - x, c = self.get_input(batch, self.first_stage_key) - loss = self(x, c) - return loss - - def forward(self, x, c, *args, **kwargs): - t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() - if self.model.conditioning_key is not None: - assert c is not None - if self.cond_stage_trainable: - c = self.get_learned_conditioning(c) - if self.shorten_cond_schedule: # TODO: drop this option - tc = self.cond_ids[t].to(self.device) - c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) - return self.p_losses(x, c, t, *args, **kwargs) - - def apply_model(self, x_noisy, t, cond, return_ids=False): - - if isinstance(cond, dict): - # hybrid case, cond is expected to be a dict - pass - else: - if not isinstance(cond, list): - cond = [cond] - key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' - cond = {key: cond} - - if hasattr(self, "split_input_params"): - assert len(cond) == 1 # todo can only deal with one conditioning atm - assert not return_ids - ks = self.split_input_params["ks"] # eg. (128, 128) - stride = self.split_input_params["stride"] # eg. (64, 64) - - h, w = x_noisy.shape[-2:] - - fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride) - - z = unfold(x_noisy) # (bn, nc * prod(**ks), L) - # Reshape to img shape - z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])] - - if self.cond_stage_key in ["image", "LR_image", "segmentation", - 'bbox_img'] and self.model.conditioning_key: # todo check for completeness - c_key = next(iter(cond.keys())) # get key - c = next(iter(cond.values())) # get value - assert (len(c) == 1) # todo extend to list with more than one elem - c = c[0] # get element - - c = unfold(c) - c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - - cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])] - - elif self.cond_stage_key == 'coordinates_bbox': - assert 'original_image_size' in self.split_input_params, 'BoundingBoxRescaling is missing original_image_size' - - # assuming padding of unfold is always 0 and its dilation is always 1 - n_patches_per_row = int((w - ks[0]) / stride[0] + 1) - full_img_h, full_img_w = self.split_input_params['original_image_size'] - # as we are operating on latents, we need the factor from the original image size to the - # spatial latent size to properly rescale the crops for regenerating the bbox annotations - num_downs = self.first_stage_model.encoder.num_resolutions - 1 - rescale_latent = 2 ** (num_downs) - - # get top left positions of patches as conforming for the bbbox tokenizer, therefore we - # need to rescale the tl patch coordinates to be in between (0,1) - tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w, - rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h) - for patch_nr in range(z.shape[-1])] - - # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w) - patch_limits = [(x_tl, y_tl, - rescale_latent * ks[0] / full_img_w, - rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates] - # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates] - - # tokenize crop coordinates for the bounding boxes of the respective patches - patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device) - for bbox in patch_limits] # list of length l with tensors of shape (1, 2) - print(patch_limits_tknzd[0].shape) - # cut tknzd crop position from conditioning - assert isinstance(cond, dict), 'cond must be dict to be fed into model' - cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device) - print(cut_cond.shape) - - adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd]) - adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n') - print(adapted_cond.shape) - adapted_cond = self.get_learned_conditioning(adapted_cond) - print(adapted_cond.shape) - adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1]) - print(adapted_cond.shape) - - cond_list = [{'c_crossattn': [e]} for e in adapted_cond] - - else: - cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient - - # apply model by loop over crops - output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])] - assert not isinstance(output_list[0], - tuple) # todo cant deal with multiple model outputs check this never happens - - o = torch.stack(output_list, axis=-1) - o = o * weighting - # Reverse reshape to img shape - o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) - # stitch crops together - x_recon = fold(o) / normalization - - else: - x_recon = self.model(x_noisy, t, **cond) - - if isinstance(x_recon, tuple) and not return_ids: - return x_recon[0] - else: - return x_recon - - def _predict_eps_from_xstart(self, x_t, t, pred_xstart): - return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \ - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) - - def _prior_bpd(self, x_start): - """ - Get the prior KL term for the variational lower-bound, measured in - bits-per-dim. - This term can't be optimized, as it only depends on the encoder. - :param x_start: the [N x C x ...] tensor of inputs. - :return: a batch of [N] KL values (in bits), one per batch element. - """ - batch_size = x_start.shape[0] - t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) - qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) - kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) - return mean_flat(kl_prior) / np.log(2.0) - - def p_losses(self, x_start, cond, t, noise=None): - noise = default(noise, lambda: torch.randn_like(x_start)) - x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) - model_output = self.apply_model(x_noisy, t, cond) - - loss_dict = {} - prefix = 'train' if self.training else 'val' - - if self.parameterization == "x0": - target = x_start - elif self.parameterization == "eps": - target = noise - else: - raise NotImplementedError() - - loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) - loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) - - logvar_t = self.logvar[t].to(self.device) - loss = loss_simple / torch.exp(logvar_t) + logvar_t - # loss = loss_simple / torch.exp(self.logvar) + self.logvar - if self.learn_logvar: - loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) - loss_dict.update({'logvar': self.logvar.data.mean()}) - - loss = self.l_simple_weight * loss.mean() - - loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) - loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() - loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) - loss += (self.original_elbo_weight * loss_vlb) - loss_dict.update({f'{prefix}/loss': loss}) - - return loss, loss_dict - - def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False, - return_x0=False, score_corrector=None, corrector_kwargs=None): - t_in = t - model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) - - if score_corrector is not None: - assert self.parameterization == "eps" - model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) - - if return_codebook_ids: - model_out, logits = model_out - - if self.parameterization == "eps": - x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) - elif self.parameterization == "x0": - x_recon = model_out - else: - raise NotImplementedError() - - if clip_denoised: - x_recon.clamp_(-1., 1.) - if quantize_denoised: - x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) - model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) - if return_codebook_ids: - return model_mean, posterior_variance, posterior_log_variance, logits - elif return_x0: - return model_mean, posterior_variance, posterior_log_variance, x_recon - else: - return model_mean, posterior_variance, posterior_log_variance - - @torch.no_grad() - def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, - return_codebook_ids=False, quantize_denoised=False, return_x0=False, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): - b, *_, device = *x.shape, x.device - outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, - return_codebook_ids=return_codebook_ids, - quantize_denoised=quantize_denoised, - return_x0=return_x0, - score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) - if return_codebook_ids: - raise DeprecationWarning("Support dropped.") - model_mean, _, model_log_variance, logits = outputs - elif return_x0: - model_mean, _, model_log_variance, x0 = outputs - else: - model_mean, _, model_log_variance = outputs - - noise = noise_like(x.shape, device, repeat_noise) * temperature - if noise_dropout > 0.: - noise = torch.nn.functional.dropout(noise, p=noise_dropout) - # no noise when t == 0 - nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) - - if return_codebook_ids: - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1) - if return_x0: - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 - else: - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise - - @torch.no_grad() - def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False, - img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0., - score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None, - log_every_t=None): - if not log_every_t: - log_every_t = self.log_every_t - timesteps = self.num_timesteps - if batch_size is not None: - b = batch_size if batch_size is not None else shape[0] - shape = [batch_size] + list(shape) - else: - b = batch_size = shape[0] - if x_T is None: - img = torch.randn(shape, device=self.device) - else: - img = x_T - intermediates = [] - if cond is not None: - if isinstance(cond, dict): - cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - [x[:batch_size] for x in cond[key]] for key in cond} - else: - cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] - - if start_T is not None: - timesteps = min(timesteps, start_T) - iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation', - total=timesteps) if verbose else reversed( - range(0, timesteps)) - if type(temperature) == float: - temperature = [temperature] * timesteps - - for i in iterator: - ts = torch.full((b,), i, device=self.device, dtype=torch.long) - if self.shorten_cond_schedule: - assert self.model.conditioning_key != 'hybrid' - tc = self.cond_ids[ts].to(cond.device) - cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) - - img, x0_partial = self.p_sample(img, cond, ts, - clip_denoised=self.clip_denoised, - quantize_denoised=quantize_denoised, return_x0=True, - temperature=temperature[i], noise_dropout=noise_dropout, - score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) - if mask is not None: - assert x0 is not None - img_orig = self.q_sample(x0, ts) - img = img_orig * mask + (1. - mask) * img - - if i % log_every_t == 0 or i == timesteps - 1: - intermediates.append(x0_partial) - if callback: - callback(i) - if img_callback: - img_callback(img, i) - return img, intermediates - - @torch.no_grad() - def p_sample_loop(self, cond, shape, return_intermediates=False, - x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False, - mask=None, x0=None, img_callback=None, start_T=None, - log_every_t=None): - - if not log_every_t: - log_every_t = self.log_every_t - device = self.betas.device - b = shape[0] - if x_T is None: - img = torch.randn(shape, device=device) - else: - img = x_T - - intermediates = [img] - if timesteps is None: - timesteps = self.num_timesteps - - if start_T is not None: - timesteps = min(timesteps, start_T) - iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed( - range(0, timesteps)) - - if mask is not None: - assert x0 is not None - assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match - - for i in iterator: - ts = torch.full((b,), i, device=device, dtype=torch.long) - if self.shorten_cond_schedule: - assert self.model.conditioning_key != 'hybrid' - tc = self.cond_ids[ts].to(cond.device) - cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) - - img = self.p_sample(img, cond, ts, - clip_denoised=self.clip_denoised, - quantize_denoised=quantize_denoised) - if mask is not None: - img_orig = self.q_sample(x0, ts) - img = img_orig * mask + (1. - mask) * img - - if i % log_every_t == 0 or i == timesteps - 1: - intermediates.append(img) - if callback: - callback(i) - if img_callback: - img_callback(img, i) - - if return_intermediates: - return img, intermediates - return img - - @torch.no_grad() - def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, - verbose=True, timesteps=None, quantize_denoised=False, - mask=None, x0=None, shape=None,**kwargs): - if shape is None: - shape = (batch_size, self.channels, self.image_size, self.image_size) - if cond is not None: - if isinstance(cond, dict): - cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - [x[:batch_size] for x in cond[key]] for key in cond} - else: - cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] - return self.p_sample_loop(cond, - shape, - return_intermediates=return_intermediates, x_T=x_T, - verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised, - mask=mask, x0=x0) - - @torch.no_grad() - def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs): - - if ddim: - ddim_sampler = DDIMSampler(self) - shape = (self.channels, self.image_size, self.image_size) - samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size, - shape,cond,verbose=False,**kwargs) - - else: - samples, intermediates = self.sample(cond=cond, batch_size=batch_size, - return_intermediates=True,**kwargs) - - return samples, intermediates - - - @torch.no_grad() - def log_images(self, batch, N=4, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, - quantize_denoised=True, inpaint=False, plot_denoise_rows=False, plot_progressive_rows=False, - plot_diffusion_rows=False, **kwargs): - - use_ddim = False - - log = {} - z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, - return_first_stage_outputs=True, - force_c_encode=True, - return_original_cond=True, - bs=N, uncond=0) - N = min(x.shape[0], N) - n_row = min(x.shape[0], n_row) - log["inputs"] = x - log["reals"] = xc["c_concat"] - log["reconstruction"] = xrec - if self.model.conditioning_key is not None: - if hasattr(self.cond_stage_model, "decode"): - xc = self.cond_stage_model.decode(c) - log["conditioning"] = xc - elif self.cond_stage_key in ["caption"]: - xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"]) - log["conditioning"] = xc - elif self.cond_stage_key == 'class_label': - xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) - log['conditioning'] = xc - elif isimage(xc): - log["conditioning"] = xc - if ismap(xc): - log["original_conditioning"] = self.to_rgb(xc) - - if plot_diffusion_rows: - # get diffusion row - diffusion_row = [] - z_start = z[:n_row] - for t in range(self.num_timesteps): - if t % self.log_every_t == 0 or t == self.num_timesteps - 1: - t = repeat(torch.tensor([t]), '1 -> b', b=n_row) - t = t.to(self.device).long() - noise = torch.randn_like(z_start) - z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) - diffusion_row.append(self.decode_first_stage(z_noisy)) - - diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W - diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') - diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') - diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) - log["diffusion_row"] = diffusion_grid - - if sample: - # get denoise row - with self.ema_scope("Plotting"): - samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, - ddim_steps=ddim_steps,eta=ddim_eta) - # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) - x_samples = self.decode_first_stage(samples) - log["samples"] = x_samples - if plot_denoise_rows: - denoise_grid = self._get_denoise_row_from_list(z_denoise_row) - log["denoise_row"] = denoise_grid - - if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance( - self.first_stage_model, IdentityFirstStage): - # also display when quantizing x0 while sampling - with self.ema_scope("Plotting Quantized Denoised"): - samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, - ddim_steps=ddim_steps,eta=ddim_eta, - quantize_denoised=True) - # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True, - # quantize_denoised=True) - x_samples = self.decode_first_stage(samples.to(self.device)) - log["samples_x0_quantized"] = x_samples - - if inpaint: - # make a simple center square - h, w = z.shape[2], z.shape[3] - mask = torch.ones(N, h, w).to(self.device) - # zeros will be filled in - mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. - mask = mask[:, None, ...] - with self.ema_scope("Plotting Inpaint"): - - samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta, - ddim_steps=ddim_steps, x0=z[:N], mask=mask) - x_samples = self.decode_first_stage(samples.to(self.device)) - log["samples_inpainting"] = x_samples - log["mask"] = mask - - # outpaint - with self.ema_scope("Plotting Outpaint"): - samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta, - ddim_steps=ddim_steps, x0=z[:N], mask=mask) - x_samples = self.decode_first_stage(samples.to(self.device)) - log["samples_outpainting"] = x_samples - - if plot_progressive_rows: - with self.ema_scope("Plotting Progressives"): - img, progressives = self.progressive_denoising(c, - shape=(self.channels, self.image_size, self.image_size), - batch_size=N) - prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") - log["progressive_row"] = prog_row - - if return_keys: - if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: - return log - else: - return {key: log[key] for key in return_keys} - return log - - def configure_optimizers(self): - lr = self.learning_rate - params = list(self.model.parameters()) - if self.cond_stage_trainable: - print(f"{self.__class__.__name__}: Also optimizing conditioner params!") - params = params + list(self.cond_stage_model.parameters()) - if self.learn_logvar: - print('Diffusion model optimizing logvar') - params.append(self.logvar) - opt = torch.optim.AdamW(params, lr=lr) - if self.use_scheduler: - assert 'target' in self.scheduler_config - scheduler = instantiate_from_config(self.scheduler_config) - - print("Setting up LambdaLR scheduler...") - scheduler = [ - { - 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), - 'interval': 'step', - 'frequency': 1 - }] - return [opt], scheduler - return opt - - @torch.no_grad() - def to_rgb(self, x): - x = x.float() - if not hasattr(self, "colorize"): - self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) - x = nn.functional.conv2d(x, weight=self.colorize) - x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. - return x - - -class DiffusionWrapper(pl.LightningModule): - def __init__(self, diff_model_config, conditioning_key): - super().__init__() - self.diffusion_model = instantiate_from_config(diff_model_config) - self.conditioning_key = conditioning_key - assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm'] - - def forward(self, x, t, c_concat: list = None, c_crossattn: list = None): - if self.conditioning_key is None: - out = self.diffusion_model(x, t) - elif self.conditioning_key == 'concat': - xc = torch.cat([x] + c_concat, dim=1) - out = self.diffusion_model(xc, t) - elif self.conditioning_key == 'crossattn': - cc = torch.cat(c_crossattn, 1) - out = self.diffusion_model(x, t, context=cc) - elif self.conditioning_key == 'hybrid': - xc = torch.cat([x] + c_concat, dim=1) - cc = torch.cat(c_crossattn, 1) - out = self.diffusion_model(xc, t, context=cc) - elif self.conditioning_key == 'adm': - cc = c_crossattn[0] - out = self.diffusion_model(x, t, y=cc) - else: - raise NotImplementedError() - - return out - - -class Layout2ImgDiffusion(LatentDiffusion): - # TODO: move all layout-specific hacks to this class - def __init__(self, cond_stage_key, *args, **kwargs): - assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' - super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs) - - def log_images(self, batch, N=8, *args, **kwargs): - logs = super().log_images(*args, batch=batch, N=N, **kwargs) - - key = 'train' if self.training else 'validation' - dset = self.trainer.datamodule.datasets[key] - mapper = dset.conditional_builders[self.cond_stage_key] - - bbox_imgs = [] - map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno)) - for tknzd_bbox in batch[self.cond_stage_key][:N]: - bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256)) - bbox_imgs.append(bboximg) - - cond_img = torch.stack(bbox_imgs, dim=0) - logs['bbox_image'] = cond_img - return logs +# """ +# wild mixture of +# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py +# https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py +# https://github.com/CompVis/taming-transformers +# -- merci +# """ +# +# # File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion). +# # See more details in LICENSE. +# +# import torch +# import torch.nn as nn +# import numpy as np +# import pytorch_lightning as pl +# from torch.optim.lr_scheduler import LambdaLR +# from einops import rearrange, repeat +# from contextlib import contextmanager +# from functools import partial +# from tqdm import tqdm +# from torchvision.utils import make_grid +# from pytorch_lightning.utilities.distributed import rank_zero_only +# +# from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config +# from ldm.modules.ema import LitEma +# from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution +# from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL +# from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like +# from ldm.models.diffusion.ddim import DDIMSampler +# +# try: +# from ldm.models.autoencoder import VQModelInterface +# except Exception: +# class VQModelInterface: +# pass +# +# __conditioning_keys__ = {'concat': 'c_concat', +# 'crossattn': 'c_crossattn', +# 'adm': 'y'} +# +# +# def disabled_train(self, mode=True): +# """Overwrite model.train with this function to make sure train/eval mode +# does not change anymore.""" +# return self +# +# +# def uniform_on_device(r1, r2, shape, device): +# return (r1 - r2) * torch.rand(*shape, device=device) + r2 +# +# +# class DDPM(pl.LightningModule): +# # classic DDPM with Gaussian diffusion, in image space +# def __init__(self, +# unet_config, +# timesteps=1000, +# beta_schedule="linear", +# loss_type="l2", +# ckpt_path=None, +# ignore_keys=None, +# load_only_unet=False, +# monitor="val/loss", +# use_ema=True, +# first_stage_key="image", +# image_size=256, +# channels=3, +# log_every_t=100, +# clip_denoised=True, +# linear_start=1e-4, +# linear_end=2e-2, +# cosine_s=8e-3, +# given_betas=None, +# original_elbo_weight=0., +# v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta +# l_simple_weight=1., +# conditioning_key=None, +# parameterization="eps", # all assuming fixed variance schedules +# scheduler_config=None, +# use_positional_encodings=False, +# learn_logvar=False, +# logvar_init=0., +# load_ema=True, +# ): +# super().__init__() +# assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"' +# self.parameterization = parameterization +# print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode") +# self.cond_stage_model = None +# self.clip_denoised = clip_denoised +# self.log_every_t = log_every_t +# self.first_stage_key = first_stage_key +# self.image_size = image_size # try conv? +# self.channels = channels +# self.use_positional_encodings = use_positional_encodings +# self.model = DiffusionWrapper(unet_config, conditioning_key) +# count_params(self.model, verbose=True) +# self.use_ema = use_ema +# +# self.use_scheduler = scheduler_config is not None +# if self.use_scheduler: +# self.scheduler_config = scheduler_config +# +# self.v_posterior = v_posterior +# self.original_elbo_weight = original_elbo_weight +# self.l_simple_weight = l_simple_weight +# +# if monitor is not None: +# self.monitor = monitor +# +# if self.use_ema and load_ema: +# self.model_ema = LitEma(self.model) +# print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") +# +# if ckpt_path is not None: +# self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet) +# +# # If initialing from EMA-only checkpoint, create EMA model after loading. +# if self.use_ema and not load_ema: +# self.model_ema = LitEma(self.model) +# print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") +# +# self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, +# linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) +# +# self.loss_type = loss_type +# +# self.learn_logvar = learn_logvar +# self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) +# if self.learn_logvar: +# self.logvar = nn.Parameter(self.logvar, requires_grad=True) +# +# +# def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, +# linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): +# if exists(given_betas): +# betas = given_betas +# else: +# betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, +# cosine_s=cosine_s) +# alphas = 1. - betas +# alphas_cumprod = np.cumprod(alphas, axis=0) +# alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) +# +# timesteps, = betas.shape +# self.num_timesteps = int(timesteps) +# self.linear_start = linear_start +# self.linear_end = linear_end +# assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' +# +# to_torch = partial(torch.tensor, dtype=torch.float32) +# +# self.register_buffer('betas', to_torch(betas)) +# self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) +# self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) +# +# # calculations for diffusion q(x_t | x_{t-1}) and others +# self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) +# self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) +# self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) +# self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) +# self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) +# +# # calculations for posterior q(x_{t-1} | x_t, x_0) +# posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( +# 1. - alphas_cumprod) + self.v_posterior * betas +# # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) +# self.register_buffer('posterior_variance', to_torch(posterior_variance)) +# # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain +# self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) +# self.register_buffer('posterior_mean_coef1', to_torch( +# betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) +# self.register_buffer('posterior_mean_coef2', to_torch( +# (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) +# +# if self.parameterization == "eps": +# lvlb_weights = self.betas ** 2 / ( +# 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) +# elif self.parameterization == "x0": +# lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) +# else: +# raise NotImplementedError("mu not supported") +# # TODO how to choose this term +# lvlb_weights[0] = lvlb_weights[1] +# self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) +# assert not torch.isnan(self.lvlb_weights).all() +# +# @contextmanager +# def ema_scope(self, context=None): +# if self.use_ema: +# self.model_ema.store(self.model.parameters()) +# self.model_ema.copy_to(self.model) +# if context is not None: +# print(f"{context}: Switched to EMA weights") +# try: +# yield None +# finally: +# if self.use_ema: +# self.model_ema.restore(self.model.parameters()) +# if context is not None: +# print(f"{context}: Restored training weights") +# +# def init_from_ckpt(self, path, ignore_keys=None, only_model=False): +# ignore_keys = ignore_keys or [] +# +# sd = torch.load(path, map_location="cpu") +# if "state_dict" in list(sd.keys()): +# sd = sd["state_dict"] +# keys = list(sd.keys()) +# +# # Our model adds additional channels to the first layer to condition on an input image. +# # For the first layer, copy existing channel weights and initialize new channel weights to zero. +# input_keys = [ +# "model.diffusion_model.input_blocks.0.0.weight", +# "model_ema.diffusion_modelinput_blocks00weight", +# ] +# +# self_sd = self.state_dict() +# for input_key in input_keys: +# if input_key not in sd or input_key not in self_sd: +# continue +# +# input_weight = self_sd[input_key] +# +# if input_weight.size() != sd[input_key].size(): +# print(f"Manual init: {input_key}") +# input_weight.zero_() +# input_weight[:, :4, :, :].copy_(sd[input_key]) +# ignore_keys.append(input_key) +# +# for k in keys: +# for ik in ignore_keys: +# if k.startswith(ik): +# print(f"Deleting key {k} from state_dict.") +# del sd[k] +# missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( +# sd, strict=False) +# print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") +# if missing: +# print(f"Missing Keys: {missing}") +# if unexpected: +# print(f"Unexpected Keys: {unexpected}") +# +# def q_mean_variance(self, x_start, t): +# """ +# Get the distribution q(x_t | x_0). +# :param x_start: the [N x C x ...] tensor of noiseless inputs. +# :param t: the number of diffusion steps (minus 1). Here, 0 means one step. +# :return: A tuple (mean, variance, log_variance), all of x_start's shape. +# """ +# mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) +# variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) +# log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) +# return mean, variance, log_variance +# +# def predict_start_from_noise(self, x_t, t, noise): +# return ( +# extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - +# extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise +# ) +# +# def q_posterior(self, x_start, x_t, t): +# posterior_mean = ( +# extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + +# extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t +# ) +# posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) +# posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) +# return posterior_mean, posterior_variance, posterior_log_variance_clipped +# +# def p_mean_variance(self, x, t, clip_denoised: bool): +# model_out = self.model(x, t) +# if self.parameterization == "eps": +# x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) +# elif self.parameterization == "x0": +# x_recon = model_out +# if clip_denoised: +# x_recon.clamp_(-1., 1.) +# +# model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) +# return model_mean, posterior_variance, posterior_log_variance +# +# @torch.no_grad() +# def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): +# b, *_, device = *x.shape, x.device +# model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised) +# noise = noise_like(x.shape, device, repeat_noise) +# # no noise when t == 0 +# nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) +# return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise +# +# @torch.no_grad() +# def p_sample_loop(self, shape, return_intermediates=False): +# device = self.betas.device +# b = shape[0] +# img = torch.randn(shape, device=device) +# intermediates = [img] +# for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps): +# img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long), +# clip_denoised=self.clip_denoised) +# if i % self.log_every_t == 0 or i == self.num_timesteps - 1: +# intermediates.append(img) +# if return_intermediates: +# return img, intermediates +# return img +# +# @torch.no_grad() +# def sample(self, batch_size=16, return_intermediates=False): +# image_size = self.image_size +# channels = self.channels +# return self.p_sample_loop((batch_size, channels, image_size, image_size), +# return_intermediates=return_intermediates) +# +# def q_sample(self, x_start, t, noise=None): +# noise = default(noise, lambda: torch.randn_like(x_start)) +# return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + +# extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) +# +# def get_loss(self, pred, target, mean=True): +# if self.loss_type == 'l1': +# loss = (target - pred).abs() +# if mean: +# loss = loss.mean() +# elif self.loss_type == 'l2': +# if mean: +# loss = torch.nn.functional.mse_loss(target, pred) +# else: +# loss = torch.nn.functional.mse_loss(target, pred, reduction='none') +# else: +# raise NotImplementedError("unknown loss type '{loss_type}'") +# +# return loss +# +# def p_losses(self, x_start, t, noise=None): +# noise = default(noise, lambda: torch.randn_like(x_start)) +# x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) +# model_out = self.model(x_noisy, t) +# +# loss_dict = {} +# if self.parameterization == "eps": +# target = noise +# elif self.parameterization == "x0": +# target = x_start +# else: +# raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported") +# +# loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3]) +# +# log_prefix = 'train' if self.training else 'val' +# +# loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()}) +# loss_simple = loss.mean() * self.l_simple_weight +# +# loss_vlb = (self.lvlb_weights[t] * loss).mean() +# loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb}) +# +# loss = loss_simple + self.original_elbo_weight * loss_vlb +# +# loss_dict.update({f'{log_prefix}/loss': loss}) +# +# return loss, loss_dict +# +# def forward(self, x, *args, **kwargs): +# # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size +# # assert h == img_size and w == img_size, f'height and width of image must be {img_size}' +# t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() +# return self.p_losses(x, t, *args, **kwargs) +# +# def get_input(self, batch, k): +# return batch[k] +# +# def shared_step(self, batch): +# x = self.get_input(batch, self.first_stage_key) +# loss, loss_dict = self(x) +# return loss, loss_dict +# +# def training_step(self, batch, batch_idx): +# loss, loss_dict = self.shared_step(batch) +# +# self.log_dict(loss_dict, prog_bar=True, +# logger=True, on_step=True, on_epoch=True) +# +# self.log("global_step", self.global_step, +# prog_bar=True, logger=True, on_step=True, on_epoch=False) +# +# if self.use_scheduler: +# lr = self.optimizers().param_groups[0]['lr'] +# self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) +# +# return loss +# +# @torch.no_grad() +# def validation_step(self, batch, batch_idx): +# _, loss_dict_no_ema = self.shared_step(batch) +# with self.ema_scope(): +# _, loss_dict_ema = self.shared_step(batch) +# loss_dict_ema = {f"{key}_ema": loss_dict_ema[key] for key in loss_dict_ema} +# self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) +# self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) +# +# def on_train_batch_end(self, *args, **kwargs): +# if self.use_ema: +# self.model_ema(self.model) +# +# def _get_rows_from_list(self, samples): +# n_imgs_per_row = len(samples) +# denoise_grid = rearrange(samples, 'n b c h w -> b n c h w') +# denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') +# denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) +# return denoise_grid +# +# @torch.no_grad() +# def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): +# log = {} +# x = self.get_input(batch, self.first_stage_key) +# N = min(x.shape[0], N) +# n_row = min(x.shape[0], n_row) +# x = x.to(self.device)[:N] +# log["inputs"] = x +# +# # get diffusion row +# diffusion_row = [] +# x_start = x[:n_row] +# +# for t in range(self.num_timesteps): +# if t % self.log_every_t == 0 or t == self.num_timesteps - 1: +# t = repeat(torch.tensor([t]), '1 -> b', b=n_row) +# t = t.to(self.device).long() +# noise = torch.randn_like(x_start) +# x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) +# diffusion_row.append(x_noisy) +# +# log["diffusion_row"] = self._get_rows_from_list(diffusion_row) +# +# if sample: +# # get denoise row +# with self.ema_scope("Plotting"): +# samples, denoise_row = self.sample(batch_size=N, return_intermediates=True) +# +# log["samples"] = samples +# log["denoise_row"] = self._get_rows_from_list(denoise_row) +# +# if return_keys: +# if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: +# return log +# else: +# return {key: log[key] for key in return_keys} +# return log +# +# def configure_optimizers(self): +# lr = self.learning_rate +# params = list(self.model.parameters()) +# if self.learn_logvar: +# params = params + [self.logvar] +# opt = torch.optim.AdamW(params, lr=lr) +# return opt +# +# +# class LatentDiffusion(DDPM): +# """main class""" +# def __init__(self, +# first_stage_config, +# cond_stage_config, +# num_timesteps_cond=None, +# cond_stage_key="image", +# cond_stage_trainable=False, +# concat_mode=True, +# cond_stage_forward=None, +# conditioning_key=None, +# scale_factor=1.0, +# scale_by_std=False, +# load_ema=True, +# *args, **kwargs): +# self.num_timesteps_cond = default(num_timesteps_cond, 1) +# self.scale_by_std = scale_by_std +# assert self.num_timesteps_cond <= kwargs['timesteps'] +# # for backwards compatibility after implementation of DiffusionWrapper +# if conditioning_key is None: +# conditioning_key = 'concat' if concat_mode else 'crossattn' +# if cond_stage_config == '__is_unconditional__': +# conditioning_key = None +# ckpt_path = kwargs.pop("ckpt_path", None) +# ignore_keys = kwargs.pop("ignore_keys", []) +# super().__init__(*args, conditioning_key=conditioning_key, load_ema=load_ema, **kwargs) +# self.concat_mode = concat_mode +# self.cond_stage_trainable = cond_stage_trainable +# self.cond_stage_key = cond_stage_key +# try: +# self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 +# except Exception: +# self.num_downs = 0 +# if not scale_by_std: +# self.scale_factor = scale_factor +# else: +# self.register_buffer('scale_factor', torch.tensor(scale_factor)) +# self.instantiate_first_stage(first_stage_config) +# self.instantiate_cond_stage(cond_stage_config) +# self.cond_stage_forward = cond_stage_forward +# self.clip_denoised = False +# self.bbox_tokenizer = None +# +# self.restarted_from_ckpt = False +# if ckpt_path is not None: +# self.init_from_ckpt(ckpt_path, ignore_keys) +# self.restarted_from_ckpt = True +# +# if self.use_ema and not load_ema: +# self.model_ema = LitEma(self.model) +# print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") +# +# def make_cond_schedule(self, ): +# self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) +# ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() +# self.cond_ids[:self.num_timesteps_cond] = ids +# +# @rank_zero_only +# @torch.no_grad() +# def on_train_batch_start(self, batch, batch_idx, dataloader_idx): +# # only for very first batch +# if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt: +# assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' +# # set rescale weight to 1./std of encodings +# print("### USING STD-RESCALING ###") +# x = super().get_input(batch, self.first_stage_key) +# x = x.to(self.device) +# encoder_posterior = self.encode_first_stage(x) +# z = self.get_first_stage_encoding(encoder_posterior).detach() +# del self.scale_factor +# self.register_buffer('scale_factor', 1. / z.flatten().std()) +# print(f"setting self.scale_factor to {self.scale_factor}") +# print("### USING STD-RESCALING ###") +# +# def register_schedule(self, +# given_betas=None, beta_schedule="linear", timesteps=1000, +# linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): +# super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s) +# +# self.shorten_cond_schedule = self.num_timesteps_cond > 1 +# if self.shorten_cond_schedule: +# self.make_cond_schedule() +# +# def instantiate_first_stage(self, config): +# model = instantiate_from_config(config) +# self.first_stage_model = model.eval() +# self.first_stage_model.train = disabled_train +# for param in self.first_stage_model.parameters(): +# param.requires_grad = False +# +# def instantiate_cond_stage(self, config): +# if not self.cond_stage_trainable: +# if config == "__is_first_stage__": +# print("Using first stage also as cond stage.") +# self.cond_stage_model = self.first_stage_model +# elif config == "__is_unconditional__": +# print(f"Training {self.__class__.__name__} as an unconditional model.") +# self.cond_stage_model = None +# # self.be_unconditional = True +# else: +# model = instantiate_from_config(config) +# self.cond_stage_model = model.eval() +# self.cond_stage_model.train = disabled_train +# for param in self.cond_stage_model.parameters(): +# param.requires_grad = False +# else: +# assert config != '__is_first_stage__' +# assert config != '__is_unconditional__' +# model = instantiate_from_config(config) +# self.cond_stage_model = model +# +# def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False): +# denoise_row = [] +# for zd in tqdm(samples, desc=desc): +# denoise_row.append(self.decode_first_stage(zd.to(self.device), +# force_not_quantize=force_no_decoder_quantization)) +# n_imgs_per_row = len(denoise_row) +# denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W +# denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') +# denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') +# denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) +# return denoise_grid +# +# def get_first_stage_encoding(self, encoder_posterior): +# if isinstance(encoder_posterior, DiagonalGaussianDistribution): +# z = encoder_posterior.sample() +# elif isinstance(encoder_posterior, torch.Tensor): +# z = encoder_posterior +# else: +# raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") +# return self.scale_factor * z +# +# def get_learned_conditioning(self, c): +# if self.cond_stage_forward is None: +# if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): +# c = self.cond_stage_model.encode(c) +# if isinstance(c, DiagonalGaussianDistribution): +# c = c.mode() +# else: +# c = self.cond_stage_model(c) +# else: +# assert hasattr(self.cond_stage_model, self.cond_stage_forward) +# c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) +# return c +# +# def meshgrid(self, h, w): +# y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) +# x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) +# +# arr = torch.cat([y, x], dim=-1) +# return arr +# +# def delta_border(self, h, w): +# """ +# :param h: height +# :param w: width +# :return: normalized distance to image border, +# wtith min distance = 0 at border and max dist = 0.5 at image center +# """ +# lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) +# arr = self.meshgrid(h, w) / lower_right_corner +# dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] +# dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] +# edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0] +# return edge_dist +# +# def get_weighting(self, h, w, Ly, Lx, device): +# weighting = self.delta_border(h, w) +# weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"], +# self.split_input_params["clip_max_weight"], ) +# weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) +# +# if self.split_input_params["tie_braker"]: +# L_weighting = self.delta_border(Ly, Lx) +# L_weighting = torch.clip(L_weighting, +# self.split_input_params["clip_min_tie_weight"], +# self.split_input_params["clip_max_tie_weight"]) +# +# L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) +# weighting = weighting * L_weighting +# return weighting +# +# def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code +# """ +# :param x: img of size (bs, c, h, w) +# :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) +# """ +# bs, nc, h, w = x.shape +# +# # number of crops in image +# Ly = (h - kernel_size[0]) // stride[0] + 1 +# Lx = (w - kernel_size[1]) // stride[1] + 1 +# +# if uf == 1 and df == 1: +# fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) +# unfold = torch.nn.Unfold(**fold_params) +# +# fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) +# +# weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype) +# normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap +# weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) +# +# elif uf > 1 and df == 1: +# fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) +# unfold = torch.nn.Unfold(**fold_params) +# +# fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), +# dilation=1, padding=0, +# stride=(stride[0] * uf, stride[1] * uf)) +# fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2) +# +# weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype) +# normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap +# weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)) +# +# elif df > 1 and uf == 1: +# fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) +# unfold = torch.nn.Unfold(**fold_params) +# +# fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df), +# dilation=1, padding=0, +# stride=(stride[0] // df, stride[1] // df)) +# fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2) +# +# weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype) +# normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap +# weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)) +# +# else: +# raise NotImplementedError +# +# return fold, unfold, normalization, weighting +# +# @torch.no_grad() +# def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False, +# cond_key=None, return_original_cond=False, bs=None, uncond=0.05): +# x = super().get_input(batch, k) +# if bs is not None: +# x = x[:bs] +# x = x.to(self.device) +# encoder_posterior = self.encode_first_stage(x) +# z = self.get_first_stage_encoding(encoder_posterior).detach() +# cond_key = cond_key or self.cond_stage_key +# xc = super().get_input(batch, cond_key) +# if bs is not None: +# xc["c_crossattn"] = xc["c_crossattn"][:bs] +# xc["c_concat"] = xc["c_concat"][:bs] +# cond = {} +# +# # To support classifier-free guidance, randomly drop out only text conditioning 5%, only image conditioning 5%, and both 5%. +# random = torch.rand(x.size(0), device=x.device) +# prompt_mask = rearrange(random < 2 * uncond, "n -> n 1 1") +# input_mask = 1 - rearrange((random >= uncond).float() * (random < 3 * uncond).float(), "n -> n 1 1 1") +# +# null_prompt = self.get_learned_conditioning([""]) +# cond["c_crossattn"] = [torch.where(prompt_mask, null_prompt, self.get_learned_conditioning(xc["c_crossattn"]).detach())] +# cond["c_concat"] = [input_mask * self.encode_first_stage((xc["c_concat"].to(self.device))).mode().detach()] +# +# out = [z, cond] +# if return_first_stage_outputs: +# xrec = self.decode_first_stage(z) +# out.extend([x, xrec]) +# if return_original_cond: +# out.append(xc) +# return out +# +# @torch.no_grad() +# def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): +# if predict_cids: +# if z.dim() == 4: +# z = torch.argmax(z.exp(), dim=1).long() +# z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) +# z = rearrange(z, 'b h w c -> b c h w').contiguous() +# +# z = 1. / self.scale_factor * z +# +# if hasattr(self, "split_input_params"): +# if self.split_input_params["patch_distributed_vq"]: +# ks = self.split_input_params["ks"] # eg. (128, 128) +# stride = self.split_input_params["stride"] # eg. (64, 64) +# uf = self.split_input_params["vqf"] +# bs, nc, h, w = z.shape +# if ks[0] > h or ks[1] > w: +# ks = (min(ks[0], h), min(ks[1], w)) +# print("reducing Kernel") +# +# if stride[0] > h or stride[1] > w: +# stride = (min(stride[0], h), min(stride[1], w)) +# print("reducing stride") +# +# fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) +# +# z = unfold(z) # (bn, nc * prod(**ks), L) +# # 1. Reshape to img shape +# z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) +# +# # 2. apply model loop over last dim +# if isinstance(self.first_stage_model, VQModelInterface): +# output_list = [self.first_stage_model.decode(z[:, :, :, :, i], +# force_not_quantize=predict_cids or force_not_quantize) +# for i in range(z.shape[-1])] +# else: +# +# output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) +# for i in range(z.shape[-1])] +# +# o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) +# o = o * weighting +# # Reverse 1. reshape to img shape +# o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) +# # stitch crops together +# decoded = fold(o) +# decoded = decoded / normalization # norm is shape (1, 1, h, w) +# return decoded +# else: +# if isinstance(self.first_stage_model, VQModelInterface): +# return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) +# else: +# return self.first_stage_model.decode(z) +# +# else: +# if isinstance(self.first_stage_model, VQModelInterface): +# return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) +# else: +# return self.first_stage_model.decode(z) +# +# # same as above but without decorator +# def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): +# if predict_cids: +# if z.dim() == 4: +# z = torch.argmax(z.exp(), dim=1).long() +# z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) +# z = rearrange(z, 'b h w c -> b c h w').contiguous() +# +# z = 1. / self.scale_factor * z +# +# if hasattr(self, "split_input_params"): +# if self.split_input_params["patch_distributed_vq"]: +# ks = self.split_input_params["ks"] # eg. (128, 128) +# stride = self.split_input_params["stride"] # eg. (64, 64) +# uf = self.split_input_params["vqf"] +# bs, nc, h, w = z.shape +# if ks[0] > h or ks[1] > w: +# ks = (min(ks[0], h), min(ks[1], w)) +# print("reducing Kernel") +# +# if stride[0] > h or stride[1] > w: +# stride = (min(stride[0], h), min(stride[1], w)) +# print("reducing stride") +# +# fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) +# +# z = unfold(z) # (bn, nc * prod(**ks), L) +# # 1. Reshape to img shape +# z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) +# +# # 2. apply model loop over last dim +# if isinstance(self.first_stage_model, VQModelInterface): +# output_list = [self.first_stage_model.decode(z[:, :, :, :, i], +# force_not_quantize=predict_cids or force_not_quantize) +# for i in range(z.shape[-1])] +# else: +# +# output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) +# for i in range(z.shape[-1])] +# +# o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) +# o = o * weighting +# # Reverse 1. reshape to img shape +# o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) +# # stitch crops together +# decoded = fold(o) +# decoded = decoded / normalization # norm is shape (1, 1, h, w) +# return decoded +# else: +# if isinstance(self.first_stage_model, VQModelInterface): +# return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) +# else: +# return self.first_stage_model.decode(z) +# +# else: +# if isinstance(self.first_stage_model, VQModelInterface): +# return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) +# else: +# return self.first_stage_model.decode(z) +# +# @torch.no_grad() +# def encode_first_stage(self, x): +# if hasattr(self, "split_input_params"): +# if self.split_input_params["patch_distributed_vq"]: +# ks = self.split_input_params["ks"] # eg. (128, 128) +# stride = self.split_input_params["stride"] # eg. (64, 64) +# df = self.split_input_params["vqf"] +# self.split_input_params['original_image_size'] = x.shape[-2:] +# bs, nc, h, w = x.shape +# if ks[0] > h or ks[1] > w: +# ks = (min(ks[0], h), min(ks[1], w)) +# print("reducing Kernel") +# +# if stride[0] > h or stride[1] > w: +# stride = (min(stride[0], h), min(stride[1], w)) +# print("reducing stride") +# +# fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df) +# z = unfold(x) # (bn, nc * prod(**ks), L) +# # Reshape to img shape +# z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) +# +# output_list = [self.first_stage_model.encode(z[:, :, :, :, i]) +# for i in range(z.shape[-1])] +# +# o = torch.stack(output_list, axis=-1) +# o = o * weighting +# +# # Reverse reshape to img shape +# o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) +# # stitch crops together +# decoded = fold(o) +# decoded = decoded / normalization +# return decoded +# +# else: +# return self.first_stage_model.encode(x) +# else: +# return self.first_stage_model.encode(x) +# +# def shared_step(self, batch, **kwargs): +# x, c = self.get_input(batch, self.first_stage_key) +# loss = self(x, c) +# return loss +# +# def forward(self, x, c, *args, **kwargs): +# t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() +# if self.model.conditioning_key is not None: +# assert c is not None +# if self.cond_stage_trainable: +# c = self.get_learned_conditioning(c) +# if self.shorten_cond_schedule: # TODO: drop this option +# tc = self.cond_ids[t].to(self.device) +# c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) +# return self.p_losses(x, c, t, *args, **kwargs) +# +# def apply_model(self, x_noisy, t, cond, return_ids=False): +# +# if isinstance(cond, dict): +# # hybrid case, cond is expected to be a dict +# pass +# else: +# if not isinstance(cond, list): +# cond = [cond] +# key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' +# cond = {key: cond} +# +# if hasattr(self, "split_input_params"): +# assert len(cond) == 1 # todo can only deal with one conditioning atm +# assert not return_ids +# ks = self.split_input_params["ks"] # eg. (128, 128) +# stride = self.split_input_params["stride"] # eg. (64, 64) +# +# h, w = x_noisy.shape[-2:] +# +# fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride) +# +# z = unfold(x_noisy) # (bn, nc * prod(**ks), L) +# # Reshape to img shape +# z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) +# z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])] +# +# if self.cond_stage_key in ["image", "LR_image", "segmentation", +# 'bbox_img'] and self.model.conditioning_key: # todo check for completeness +# c_key = next(iter(cond.keys())) # get key +# c = next(iter(cond.values())) # get value +# assert (len(c) == 1) # todo extend to list with more than one elem +# c = c[0] # get element +# +# c = unfold(c) +# c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L ) +# +# cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])] +# +# elif self.cond_stage_key == 'coordinates_bbox': +# assert 'original_image_size' in self.split_input_params, 'BoundingBoxRescaling is missing original_image_size' +# +# # assuming padding of unfold is always 0 and its dilation is always 1 +# n_patches_per_row = int((w - ks[0]) / stride[0] + 1) +# full_img_h, full_img_w = self.split_input_params['original_image_size'] +# # as we are operating on latents, we need the factor from the original image size to the +# # spatial latent size to properly rescale the crops for regenerating the bbox annotations +# num_downs = self.first_stage_model.encoder.num_resolutions - 1 +# rescale_latent = 2 ** (num_downs) +# +# # get top left positions of patches as conforming for the bbbox tokenizer, therefore we +# # need to rescale the tl patch coordinates to be in between (0,1) +# tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w, +# rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h) +# for patch_nr in range(z.shape[-1])] +# +# # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w) +# patch_limits = [(x_tl, y_tl, +# rescale_latent * ks[0] / full_img_w, +# rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates] +# # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates] +# +# # tokenize crop coordinates for the bounding boxes of the respective patches +# patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device) +# for bbox in patch_limits] # list of length l with tensors of shape (1, 2) +# print(patch_limits_tknzd[0].shape) +# # cut tknzd crop position from conditioning +# assert isinstance(cond, dict), 'cond must be dict to be fed into model' +# cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device) +# print(cut_cond.shape) +# +# adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd]) +# adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n') +# print(adapted_cond.shape) +# adapted_cond = self.get_learned_conditioning(adapted_cond) +# print(adapted_cond.shape) +# adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1]) +# print(adapted_cond.shape) +# +# cond_list = [{'c_crossattn': [e]} for e in adapted_cond] +# +# else: +# cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient +# +# # apply model by loop over crops +# output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])] +# assert not isinstance(output_list[0], +# tuple) # todo cant deal with multiple model outputs check this never happens +# +# o = torch.stack(output_list, axis=-1) +# o = o * weighting +# # Reverse reshape to img shape +# o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) +# # stitch crops together +# x_recon = fold(o) / normalization +# +# else: +# x_recon = self.model(x_noisy, t, **cond) +# +# if isinstance(x_recon, tuple) and not return_ids: +# return x_recon[0] +# else: +# return x_recon +# +# def _predict_eps_from_xstart(self, x_t, t, pred_xstart): +# return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \ +# extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) +# +# def _prior_bpd(self, x_start): +# """ +# Get the prior KL term for the variational lower-bound, measured in +# bits-per-dim. +# This term can't be optimized, as it only depends on the encoder. +# :param x_start: the [N x C x ...] tensor of inputs. +# :return: a batch of [N] KL values (in bits), one per batch element. +# """ +# batch_size = x_start.shape[0] +# t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) +# qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) +# kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) +# return mean_flat(kl_prior) / np.log(2.0) +# +# def p_losses(self, x_start, cond, t, noise=None): +# noise = default(noise, lambda: torch.randn_like(x_start)) +# x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) +# model_output = self.apply_model(x_noisy, t, cond) +# +# loss_dict = {} +# prefix = 'train' if self.training else 'val' +# +# if self.parameterization == "x0": +# target = x_start +# elif self.parameterization == "eps": +# target = noise +# else: +# raise NotImplementedError() +# +# loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) +# loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) +# +# logvar_t = self.logvar[t].to(self.device) +# loss = loss_simple / torch.exp(logvar_t) + logvar_t +# # loss = loss_simple / torch.exp(self.logvar) + self.logvar +# if self.learn_logvar: +# loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) +# loss_dict.update({'logvar': self.logvar.data.mean()}) +# +# loss = self.l_simple_weight * loss.mean() +# +# loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) +# loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() +# loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) +# loss += (self.original_elbo_weight * loss_vlb) +# loss_dict.update({f'{prefix}/loss': loss}) +# +# return loss, loss_dict +# +# def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False, +# return_x0=False, score_corrector=None, corrector_kwargs=None): +# t_in = t +# model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) +# +# if score_corrector is not None: +# assert self.parameterization == "eps" +# model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) +# +# if return_codebook_ids: +# model_out, logits = model_out +# +# if self.parameterization == "eps": +# x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) +# elif self.parameterization == "x0": +# x_recon = model_out +# else: +# raise NotImplementedError() +# +# if clip_denoised: +# x_recon.clamp_(-1., 1.) +# if quantize_denoised: +# x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) +# model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) +# if return_codebook_ids: +# return model_mean, posterior_variance, posterior_log_variance, logits +# elif return_x0: +# return model_mean, posterior_variance, posterior_log_variance, x_recon +# else: +# return model_mean, posterior_variance, posterior_log_variance +# +# @torch.no_grad() +# def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, +# return_codebook_ids=False, quantize_denoised=False, return_x0=False, +# temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): +# b, *_, device = *x.shape, x.device +# outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, +# return_codebook_ids=return_codebook_ids, +# quantize_denoised=quantize_denoised, +# return_x0=return_x0, +# score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) +# if return_codebook_ids: +# raise DeprecationWarning("Support dropped.") +# model_mean, _, model_log_variance, logits = outputs +# elif return_x0: +# model_mean, _, model_log_variance, x0 = outputs +# else: +# model_mean, _, model_log_variance = outputs +# +# noise = noise_like(x.shape, device, repeat_noise) * temperature +# if noise_dropout > 0.: +# noise = torch.nn.functional.dropout(noise, p=noise_dropout) +# # no noise when t == 0 +# nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) +# +# if return_codebook_ids: +# return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1) +# if return_x0: +# return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 +# else: +# return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise +# +# @torch.no_grad() +# def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False, +# img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0., +# score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None, +# log_every_t=None): +# if not log_every_t: +# log_every_t = self.log_every_t +# timesteps = self.num_timesteps +# if batch_size is not None: +# b = batch_size if batch_size is not None else shape[0] +# shape = [batch_size] + list(shape) +# else: +# b = batch_size = shape[0] +# if x_T is None: +# img = torch.randn(shape, device=self.device) +# else: +# img = x_T +# intermediates = [] +# if cond is not None: +# if isinstance(cond, dict): +# cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else +# [x[:batch_size] for x in cond[key]] for key in cond} +# else: +# cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] +# +# if start_T is not None: +# timesteps = min(timesteps, start_T) +# iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation', +# total=timesteps) if verbose else reversed( +# range(0, timesteps)) +# if type(temperature) == float: +# temperature = [temperature] * timesteps +# +# for i in iterator: +# ts = torch.full((b,), i, device=self.device, dtype=torch.long) +# if self.shorten_cond_schedule: +# assert self.model.conditioning_key != 'hybrid' +# tc = self.cond_ids[ts].to(cond.device) +# cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) +# +# img, x0_partial = self.p_sample(img, cond, ts, +# clip_denoised=self.clip_denoised, +# quantize_denoised=quantize_denoised, return_x0=True, +# temperature=temperature[i], noise_dropout=noise_dropout, +# score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) +# if mask is not None: +# assert x0 is not None +# img_orig = self.q_sample(x0, ts) +# img = img_orig * mask + (1. - mask) * img +# +# if i % log_every_t == 0 or i == timesteps - 1: +# intermediates.append(x0_partial) +# if callback: +# callback(i) +# if img_callback: +# img_callback(img, i) +# return img, intermediates +# +# @torch.no_grad() +# def p_sample_loop(self, cond, shape, return_intermediates=False, +# x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False, +# mask=None, x0=None, img_callback=None, start_T=None, +# log_every_t=None): +# +# if not log_every_t: +# log_every_t = self.log_every_t +# device = self.betas.device +# b = shape[0] +# if x_T is None: +# img = torch.randn(shape, device=device) +# else: +# img = x_T +# +# intermediates = [img] +# if timesteps is None: +# timesteps = self.num_timesteps +# +# if start_T is not None: +# timesteps = min(timesteps, start_T) +# iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed( +# range(0, timesteps)) +# +# if mask is not None: +# assert x0 is not None +# assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match +# +# for i in iterator: +# ts = torch.full((b,), i, device=device, dtype=torch.long) +# if self.shorten_cond_schedule: +# assert self.model.conditioning_key != 'hybrid' +# tc = self.cond_ids[ts].to(cond.device) +# cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) +# +# img = self.p_sample(img, cond, ts, +# clip_denoised=self.clip_denoised, +# quantize_denoised=quantize_denoised) +# if mask is not None: +# img_orig = self.q_sample(x0, ts) +# img = img_orig * mask + (1. - mask) * img +# +# if i % log_every_t == 0 or i == timesteps - 1: +# intermediates.append(img) +# if callback: +# callback(i) +# if img_callback: +# img_callback(img, i) +# +# if return_intermediates: +# return img, intermediates +# return img +# +# @torch.no_grad() +# def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, +# verbose=True, timesteps=None, quantize_denoised=False, +# mask=None, x0=None, shape=None,**kwargs): +# if shape is None: +# shape = (batch_size, self.channels, self.image_size, self.image_size) +# if cond is not None: +# if isinstance(cond, dict): +# cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else +# [x[:batch_size] for x in cond[key]] for key in cond} +# else: +# cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] +# return self.p_sample_loop(cond, +# shape, +# return_intermediates=return_intermediates, x_T=x_T, +# verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised, +# mask=mask, x0=x0) +# +# @torch.no_grad() +# def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs): +# +# if ddim: +# ddim_sampler = DDIMSampler(self) +# shape = (self.channels, self.image_size, self.image_size) +# samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size, +# shape,cond,verbose=False,**kwargs) +# +# else: +# samples, intermediates = self.sample(cond=cond, batch_size=batch_size, +# return_intermediates=True,**kwargs) +# +# return samples, intermediates +# +# +# @torch.no_grad() +# def log_images(self, batch, N=4, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, +# quantize_denoised=True, inpaint=False, plot_denoise_rows=False, plot_progressive_rows=False, +# plot_diffusion_rows=False, **kwargs): +# +# use_ddim = False +# +# log = {} +# z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, +# return_first_stage_outputs=True, +# force_c_encode=True, +# return_original_cond=True, +# bs=N, uncond=0) +# N = min(x.shape[0], N) +# n_row = min(x.shape[0], n_row) +# log["inputs"] = x +# log["reals"] = xc["c_concat"] +# log["reconstruction"] = xrec +# if self.model.conditioning_key is not None: +# if hasattr(self.cond_stage_model, "decode"): +# xc = self.cond_stage_model.decode(c) +# log["conditioning"] = xc +# elif self.cond_stage_key in ["caption"]: +# xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"]) +# log["conditioning"] = xc +# elif self.cond_stage_key == 'class_label': +# xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) +# log['conditioning'] = xc +# elif isimage(xc): +# log["conditioning"] = xc +# if ismap(xc): +# log["original_conditioning"] = self.to_rgb(xc) +# +# if plot_diffusion_rows: +# # get diffusion row +# diffusion_row = [] +# z_start = z[:n_row] +# for t in range(self.num_timesteps): +# if t % self.log_every_t == 0 or t == self.num_timesteps - 1: +# t = repeat(torch.tensor([t]), '1 -> b', b=n_row) +# t = t.to(self.device).long() +# noise = torch.randn_like(z_start) +# z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) +# diffusion_row.append(self.decode_first_stage(z_noisy)) +# +# diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W +# diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') +# diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') +# diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) +# log["diffusion_row"] = diffusion_grid +# +# if sample: +# # get denoise row +# with self.ema_scope("Plotting"): +# samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, +# ddim_steps=ddim_steps,eta=ddim_eta) +# # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) +# x_samples = self.decode_first_stage(samples) +# log["samples"] = x_samples +# if plot_denoise_rows: +# denoise_grid = self._get_denoise_row_from_list(z_denoise_row) +# log["denoise_row"] = denoise_grid +# +# if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance( +# self.first_stage_model, IdentityFirstStage): +# # also display when quantizing x0 while sampling +# with self.ema_scope("Plotting Quantized Denoised"): +# samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, +# ddim_steps=ddim_steps,eta=ddim_eta, +# quantize_denoised=True) +# # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True, +# # quantize_denoised=True) +# x_samples = self.decode_first_stage(samples.to(self.device)) +# log["samples_x0_quantized"] = x_samples +# +# if inpaint: +# # make a simple center square +# h, w = z.shape[2], z.shape[3] +# mask = torch.ones(N, h, w).to(self.device) +# # zeros will be filled in +# mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. +# mask = mask[:, None, ...] +# with self.ema_scope("Plotting Inpaint"): +# +# samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta, +# ddim_steps=ddim_steps, x0=z[:N], mask=mask) +# x_samples = self.decode_first_stage(samples.to(self.device)) +# log["samples_inpainting"] = x_samples +# log["mask"] = mask +# +# # outpaint +# with self.ema_scope("Plotting Outpaint"): +# samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta, +# ddim_steps=ddim_steps, x0=z[:N], mask=mask) +# x_samples = self.decode_first_stage(samples.to(self.device)) +# log["samples_outpainting"] = x_samples +# +# if plot_progressive_rows: +# with self.ema_scope("Plotting Progressives"): +# img, progressives = self.progressive_denoising(c, +# shape=(self.channels, self.image_size, self.image_size), +# batch_size=N) +# prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") +# log["progressive_row"] = prog_row +# +# if return_keys: +# if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: +# return log +# else: +# return {key: log[key] for key in return_keys} +# return log +# +# def configure_optimizers(self): +# lr = self.learning_rate +# params = list(self.model.parameters()) +# if self.cond_stage_trainable: +# print(f"{self.__class__.__name__}: Also optimizing conditioner params!") +# params = params + list(self.cond_stage_model.parameters()) +# if self.learn_logvar: +# print('Diffusion model optimizing logvar') +# params.append(self.logvar) +# opt = torch.optim.AdamW(params, lr=lr) +# if self.use_scheduler: +# assert 'target' in self.scheduler_config +# scheduler = instantiate_from_config(self.scheduler_config) +# +# print("Setting up LambdaLR scheduler...") +# scheduler = [ +# { +# 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), +# 'interval': 'step', +# 'frequency': 1 +# }] +# return [opt], scheduler +# return opt +# +# @torch.no_grad() +# def to_rgb(self, x): +# x = x.float() +# if not hasattr(self, "colorize"): +# self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) +# x = nn.functional.conv2d(x, weight=self.colorize) +# x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. +# return x +# +# +# class DiffusionWrapper(pl.LightningModule): +# def __init__(self, diff_model_config, conditioning_key): +# super().__init__() +# self.diffusion_model = instantiate_from_config(diff_model_config) +# self.conditioning_key = conditioning_key +# assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm'] +# +# def forward(self, x, t, c_concat: list = None, c_crossattn: list = None): +# if self.conditioning_key is None: +# out = self.diffusion_model(x, t) +# elif self.conditioning_key == 'concat': +# xc = torch.cat([x] + c_concat, dim=1) +# out = self.diffusion_model(xc, t) +# elif self.conditioning_key == 'crossattn': +# cc = torch.cat(c_crossattn, 1) +# out = self.diffusion_model(x, t, context=cc) +# elif self.conditioning_key == 'hybrid': +# xc = torch.cat([x] + c_concat, dim=1) +# cc = torch.cat(c_crossattn, 1) +# out = self.diffusion_model(xc, t, context=cc) +# elif self.conditioning_key == 'adm': +# cc = c_crossattn[0] +# out = self.diffusion_model(x, t, y=cc) +# else: +# raise NotImplementedError() +# +# return out +# +# +# class Layout2ImgDiffusion(LatentDiffusion): +# # TODO: move all layout-specific hacks to this class +# def __init__(self, cond_stage_key, *args, **kwargs): +# assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' +# super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs) +# +# def log_images(self, batch, N=8, *args, **kwargs): +# logs = super().log_images(*args, batch=batch, N=N, **kwargs) +# +# key = 'train' if self.training else 'validation' +# dset = self.trainer.datamodule.datasets[key] +# mapper = dset.conditional_builders[self.cond_stage_key] +# +# bbox_imgs = [] +# map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno)) +# for tknzd_bbox in batch[self.cond_stage_key][:N]: +# bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256)) +# bbox_imgs.append(bboximg) +# +# cond_img = torch.stack(bbox_imgs, dim=0) +# logs['bbox_image'] = cond_img +# return logs