move to new backend - part 1

This commit is contained in:
layerdiffusion
2024-08-03 14:59:46 -07:00
parent a17abbc097
commit 8a01b2c5db
8 changed files with 200 additions and 52 deletions

162
backend/misc/tomesd.py Normal file
View File

@@ -0,0 +1,162 @@
import torch
import math
from typing import Tuple, Callable
def do_nothing(x: torch.Tensor, mode: str = None):
return x
def mps_gather_workaround(input, dim, index):
if input.shape[-1] == 1:
return torch.gather(
input.unsqueeze(-1),
dim - 1 if dim < 0 else dim,
index.unsqueeze(-1)
).squeeze(-1)
else:
return torch.gather(input, dim, index)
def bipartite_soft_matching_random2d(metric: torch.Tensor,
w: int, h: int, sx: int, sy: int, r: int,
no_rand: bool = False) -> Tuple[Callable, Callable]:
"""
Partitions the tokens into src and dst and merges r tokens from src to dst.
Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.
Args:
- metric [B, N, C]: metric to use for similarity
- w: image width in tokens
- h: image height in tokens
- sx: stride in the x dimension for dst, must divide w
- sy: stride in the y dimension for dst, must divide h
- r: number of tokens to remove (by merging)
- no_rand: if true, disable randomness (use top left corner only)
"""
B, N, _ = metric.shape
if r <= 0 or w == 1 or h == 1:
return do_nothing, do_nothing
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
with torch.no_grad():
hsy, wsx = h // sy, w // sx
# For each sy by sx kernel, randomly assign one token to be dst and the rest src
if no_rand:
rand_idx = torch.zeros(hsy, wsx, 1, device=metric.device, dtype=torch.int64)
else:
rand_idx = torch.randint(sy * sx, size=(hsy, wsx, 1), device=metric.device)
# The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
idx_buffer_view = torch.zeros(hsy, wsx, sy * sx, device=metric.device, dtype=torch.int64)
idx_buffer_view.scatter_(dim=2, index=rand_idx, src=-torch.ones_like(rand_idx, dtype=rand_idx.dtype))
idx_buffer_view = idx_buffer_view.view(hsy, wsx, sy, sx).transpose(1, 2).reshape(hsy * sy, wsx * sx)
# Image is not divisible by sx or sy so we need to move it into a new buffer
if (hsy * sy) < h or (wsx * sx) < w:
idx_buffer = torch.zeros(h, w, device=metric.device, dtype=torch.int64)
idx_buffer[:(hsy * sy), :(wsx * sx)] = idx_buffer_view
else:
idx_buffer = idx_buffer_view
# We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices
rand_idx = idx_buffer.reshape(1, -1, 1).argsort(dim=1)
# We're finished with these
del idx_buffer, idx_buffer_view
# rand_idx is currently dst|src, so split them
num_dst = hsy * wsx
a_idx = rand_idx[:, num_dst:, :] # src
b_idx = rand_idx[:, :num_dst, :] # dst
def split(x):
C = x.shape[-1]
src = gather(x, dim=1, index=a_idx.expand(B, N - num_dst, C))
dst = gather(x, dim=1, index=b_idx.expand(B, num_dst, C))
return src, dst
# Cosine similarity between A and B
metric = metric / metric.norm(dim=-1, keepdim=True)
a, b = split(metric)
scores = a @ b.transpose(-1, -2)
# Can't reduce more than the # tokens in src
r = min(a.shape[1], r)
# Find the most similar greedily
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
def merge(x: torch.Tensor, mode="mean") -> torch.Tensor:
src, dst = split(x)
n, t1, c = src.shape
unm = gather(src, dim=-2, index=unm_idx.expand(n, t1 - r, c))
src = gather(src, dim=-2, index=src_idx.expand(n, r, c))
dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode)
return torch.cat([unm, dst], dim=1)
def unmerge(x: torch.Tensor) -> torch.Tensor:
unm_len = unm_idx.shape[1]
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
_, _, c = unm.shape
src = gather(dst, dim=-2, index=dst_idx.expand(B, r, c))
# Combine back to the original shape
out = torch.zeros(B, N, c, device=x.device, dtype=x.dtype)
out.scatter_(dim=-2, index=b_idx.expand(B, num_dst, c), src=dst)
out.scatter_(dim=-2, index=gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=unm_idx).expand(B, unm_len, c), src=unm)
out.scatter_(dim=-2, index=gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=src_idx).expand(B, r, c), src=src)
return out
return merge, unmerge
def get_functions(x, ratio, original_shape):
b, c, original_h, original_w = original_shape
original_tokens = original_h * original_w
downsample = int(math.ceil(math.sqrt(original_tokens // x.shape[1])))
stride_x = 2
stride_y = 2
max_downsample = 1
if downsample <= max_downsample:
w = int(math.ceil(original_w / downsample))
h = int(math.ceil(original_h / downsample))
r = int(x.shape[1] * ratio)
no_rand = False
m, u = bipartite_soft_matching_random2d(x, w, h, stride_x, stride_y, r, no_rand)
return m, u
nothing = lambda y: y
return nothing, nothing
class TomePatcher:
def __init__(self):
self.u = None
def patch(self, model, ratio):
def tomesd_m(q, k, v, extra_options):
m, self.u = get_functions(q, ratio, extra_options["original_shape"])
return m(q), k, v
def tomesd_u(n, extra_options):
return self.u(n)
m = model.clone()
m.set_model_attn1_patch(tomesd_m)
m.set_model_attn1_output_patch(tomesd_u)
return m

View File

@@ -3,9 +3,7 @@ import json
import os
from modules.paths_internal import normalized_filepath, models_path, script_path, data_path, extensions_dir, extensions_builtin_dir, sd_default_config, sd_model_file # noqa: F401
from pathlib import Path
from ldm_patched.modules import args_parser
parser = args_parser.parser
from backend.args import parser
parser.add_argument("-f", action='store_true', help=argparse.SUPPRESS) # allows running as root; implemented outside of webui
parser.add_argument("--update-all-extensions", action='store_true', help="launch.py argument: download updates for all extensions when starting the program")

View File

@@ -5,8 +5,8 @@ import torch
import numpy as np
from modules import modelloader, paths, deepbooru_model, images, shared
from ldm_patched.modules import model_management
from ldm_patched.modules.model_patcher import ModelPatcher
from backend import memory_management
from backend.patcher.base import ModelPatcher
re_special = re.compile(r'([\\()])')
@@ -15,11 +15,11 @@ re_special = re.compile(r'([\\()])')
class DeepDanbooru:
def __init__(self):
self.model = None
self.load_device = model_management.text_encoder_device()
self.offload_device = model_management.text_encoder_offload_device()
self.load_device = memory_management.text_encoder_device()
self.offload_device = memory_management.text_encoder_offload_device()
self.dtype = torch.float32
if model_management.should_use_fp16(device=self.load_device):
if memory_management.should_use_fp16(device=self.load_device):
self.dtype = torch.float16
self.patcher = None
@@ -45,7 +45,7 @@ class DeepDanbooru:
def start(self):
self.load()
model_management.load_models_gpu([self.patcher])
memory_management.load_models_gpu([self.patcher])
def stop(self):
pass

View File

@@ -1,14 +1,14 @@
import contextlib
import torch
import ldm_patched.modules.model_management as model_management
from backend import memory_management
def has_xpu() -> bool:
return model_management.xpu_available
return memory_management.xpu_available
def has_mps() -> bool:
return model_management.mps_mode()
return memory_management.mps_mode()
def cuda_no_autocast(device_id=None) -> bool:
@@ -16,27 +16,27 @@ def cuda_no_autocast(device_id=None) -> bool:
def get_cuda_device_id():
return model_management.get_torch_device().index
return memory_management.get_torch_device().index
def get_cuda_device_string():
return str(model_management.get_torch_device())
return str(memory_management.get_torch_device())
def get_optimal_device_name():
return model_management.get_torch_device().type
return memory_management.get_torch_device().type
def get_optimal_device():
return model_management.get_torch_device()
return memory_management.get_torch_device()
def get_device_for(task):
return model_management.get_torch_device()
return memory_management.get_torch_device()
def torch_gc():
model_management.soft_empty_cache()
memory_management.soft_empty_cache()
def torch_npu_set_device():
@@ -49,15 +49,15 @@ def enable_tf32():
cpu: torch.device = torch.device("cpu")
fp8: bool = False
device: torch.device = model_management.get_torch_device()
device_interrogate: torch.device = model_management.text_encoder_device() # for backward compatibility, not used now
device_gfpgan: torch.device = model_management.get_torch_device() # will be managed by memory management system
device_esrgan: torch.device = model_management.get_torch_device() # will be managed by memory management system
device_codeformer: torch.device = model_management.get_torch_device() # will be managed by memory management system
dtype: torch.dtype = model_management.unet_dtype()
dtype_vae: torch.dtype = model_management.vae_dtype()
dtype_unet: torch.dtype = model_management.unet_dtype()
dtype_inference: torch.dtype = model_management.unet_dtype()
device: torch.device = memory_management.get_torch_device()
device_interrogate: torch.device = memory_management.text_encoder_device() # for backward compatibility, not used now
device_gfpgan: torch.device = memory_management.get_torch_device() # will be managed by memory management system
device_esrgan: torch.device = memory_management.get_torch_device() # will be managed by memory management system
device_codeformer: torch.device = memory_management.get_torch_device() # will be managed by memory management system
dtype: torch.dtype = memory_management.unet_dtype()
dtype_vae: torch.dtype = memory_management.vae_dtype()
dtype_unet: torch.dtype = memory_management.unet_dtype()
dtype_inference: torch.dtype = memory_management.unet_dtype()
unet_needs_upcast = False

View File

@@ -11,8 +11,8 @@ from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from modules import devices, paths, shared, modelloader, errors
from ldm_patched.modules import model_management
from ldm_patched.modules.model_patcher import ModelPatcher
from backend import memory_management
from backend.patcher.base import ModelPatcher
blip_image_eval_size = 384
@@ -57,11 +57,11 @@ class InterrogateModels:
self.skip_categories = []
self.content_dir = content_dir
self.load_device = model_management.text_encoder_device()
self.offload_device = model_management.text_encoder_offload_device()
self.load_device = memory_management.text_encoder_device()
self.offload_device = memory_management.text_encoder_offload_device()
self.dtype = torch.float32
if model_management.should_use_fp16(device=self.load_device):
if memory_management.should_use_fp16(device=self.load_device):
self.dtype = torch.float16
self.blip_patcher = None
@@ -137,7 +137,7 @@ class InterrogateModels:
self.clip_model = self.clip_model.to(device=self.offload_device, dtype=self.dtype)
self.clip_patcher = ModelPatcher(self.clip_model, load_device=self.load_device, offload_device=self.offload_device)
model_management.load_models_gpu([self.blip_patcher, self.clip_patcher])
memory_management.load_models_gpu([self.blip_patcher, self.clip_patcher])
return
def send_clip_to_ram(self):

View File

@@ -63,13 +63,3 @@ for d, must_exist, what, options in path_dirs:
else:
sys.path.append(d)
paths[what] = d
import ldm_patched.utils.path_utils as ldm_patched_path_utils
ldm_patched_path_utils.base_path = data_path
ldm_patched_path_utils.models_dir = models_path
ldm_patched_path_utils.output_directory = os.path.join(data_path, "output")
ldm_patched_path_utils.temp_directory = os.path.join(data_path, "temp")
ldm_patched_path_utils.input_directory = os.path.join(data_path, "input")
ldm_patched_path_utils.user_directory = os.path.join(data_path, "user")

View File

@@ -14,13 +14,11 @@ import ldm.modules.midas as midas
import gc
from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet, sd_models_xl, cache, extra_networks, processing, lowvram, sd_hijack, patches
from modules.shared import opts
from modules.timer import Timer
import numpy as np
from modules_forge import forge_loader
import modules_forge.ops as forge_ops
from ldm_patched.modules.ops import manual_cast
from ldm_patched.modules import model_management as model_management
import ldm_patched.modules.model_patcher
from backend import memory_management
model_dir = "Stable-diffusion"
@@ -650,8 +648,8 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None):
model_data.sd_model = None
model_data.loaded_sd_models = []
model_management.unload_all_models()
model_management.soft_empty_cache()
memory_management.unload_all_models()
memory_management.soft_empty_cache()
gc.collect()
timer.record("unload existing model")
@@ -724,7 +722,7 @@ def apply_token_merging(sd_model, token_merging_ratio):
print(f'token_merging_ratio = {token_merging_ratio}')
from ldm_patched.contrib.external_tomesd import TomePatcher
from backend.misc.tomesd import TomePatcher
sd_model.forge_objects.unet = TomePatcher().patch(
model=sd_model.forge_objects.unet,

View File

@@ -8,7 +8,7 @@ import sgm.modules.diffusionmodules.discretizer
from modules import devices, shared, prompt_parser
from modules import torch_utils
import ldm_patched.modules.model_management as model_management
from backend import memory_management
from modules_forge.forge_clip import move_clip_to_gpu
@@ -23,7 +23,7 @@ def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch:
is_negative_prompt = getattr(batch, 'is_negative_prompt', False)
aesthetic_score = shared.opts.sdxl_refiner_low_aesthetic_score if is_negative_prompt else shared.opts.sdxl_refiner_high_aesthetic_score
devices_args = dict(device=self.forge_objects.clip.patcher.current_device, dtype=model_management.text_encoder_dtype())
devices_args = dict(device=self.forge_objects.clip.patcher.current_device, dtype=memory_management.text_encoder_dtype())
sdxl_conds = {
"txt": batch,