Free WebUI from its Prison

Congratulations WebUI. Say Hello to freedom.
This commit is contained in:
layerdiffusion
2024-08-05 03:58:34 -07:00
parent aafe11b14c
commit bccf9fb23a
26 changed files with 2053 additions and 4392 deletions

View File

@@ -28,8 +28,6 @@ import modules.images as images
import modules.styles
import modules.sd_models as sd_models
import modules.sd_vae as sd_vae
from ldm.data.util import AddMiDaS
from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
from einops import repeat, rearrange
from blendmodes.blend import blendLayers, BlendType
@@ -295,23 +293,7 @@ class StableDiffusionProcessing:
return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)
def depth2img_image_conditioning(self, source_image):
# Use the AddMiDaS helper to Format our source image to suit the MiDaS model
transformer = AddMiDaS(model_type="dpt_hybrid")
transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")})
midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
conditioning_image = images_tensor_to_samples(source_image*0.5+0.5, approximation_indexes.get(opts.sd_vae_encode_method))
conditioning = torch.nn.functional.interpolate(
self.sd_model.depth_model(midas_in),
size=conditioning_image.shape[2:],
mode="bicubic",
align_corners=False,
)
(depth_min, depth_max) = torch.aminmax(conditioning)
conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
return conditioning
raise NotImplementedError('NotImplementedError: depth2img_image_conditioning')
def edit_image_conditioning(self, source_image):
conditioning_image = shared.sd_model.encode_first_stage(source_image).mode()
@@ -368,11 +350,6 @@ class StableDiffusionProcessing:
def img2img_image_conditioning(self, source_image, latent_image, image_mask=None, round_image_mask=True):
source_image = devices.cond_cast_float(source_image)
# HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
# identify itself with a field common to all models. The conditioning_key is also hybrid.
if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
return self.depth2img_image_conditioning(source_image)
if self.sd_model.cond_stage_key == "edit":
return self.edit_image_conditioning(source_image)