diff --git a/extensions-builtin/forge_preprocessor_clipvision/scripts/preprocessor_clipvision.py b/extensions-builtin/forge_preprocessor_clipvision/scripts/preprocessor_clipvision.py index badd43e3..74f3de22 100644 --- a/extensions-builtin/forge_preprocessor_clipvision/scripts/preprocessor_clipvision.py +++ b/extensions-builtin/forge_preprocessor_clipvision/scripts/preprocessor_clipvision.py @@ -1,77 +1,11 @@ -# from modules_forge.supported_preprocessor import Preprocessor, PreprocessorParameter -# from modules_forge.shared import preprocessor_dir, add_supported_preprocessor -# from modules_forge.forge_util import resize_image_with_pad -# from modules.modelloader import load_file_from_url -# -# import types -# import torch -# import numpy as np -# -# from einops import rearrange -# from annotator.normalbae.models.NNET import NNET -# from annotator.normalbae import load_checkpoint -# from torchvision import transforms -# -# -# class PreprocessorNormalBae(Preprocessor): -# def __init__(self): -# super().__init__() -# self.name = 'normalbae' -# self.tags = ['NormalMap'] -# self.model_filename_filters = ['normal'] -# self.slider_resolution = PreprocessorParameter( -# label='Resolution', minimum=128, maximum=2048, value=512, step=8, visible=True) -# self.slider_1 = PreprocessorParameter(visible=False) -# self.slider_2 = PreprocessorParameter(visible=False) -# self.slider_3 = PreprocessorParameter(visible=False) -# self.show_control_mode = True -# self.do_not_need_model = False -# self.sorting_priority = 100 # higher goes to top in the list -# -# def load_model(self): -# if self.model_patcher is not None: -# return -# -# model_path = load_file_from_url( -# "https://huggingface.co/lllyasviel/Annotators/resolve/main/scannet.pt", -# model_dir=preprocessor_dir) -# -# args = types.SimpleNamespace() -# args.mode = 'client' -# args.architecture = 'BN' -# args.pretrained = 'scannet' -# args.sampling_ratio = 0.4 -# args.importance_ratio = 0.7 -# model = NNET(args) -# model = load_checkpoint(model_path, model) -# self.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) -# -# self.model_patcher = self.setup_model_patcher(model) -# -# def __call__(self, input_image, resolution, slider_1=None, slider_2=None, slider_3=None, **kwargs): -# input_image, remove_pad = resize_image_with_pad(input_image, resolution) -# -# self.load_model() -# -# self.move_all_model_patchers_to_gpu() -# -# assert input_image.ndim == 3 -# image_normal = input_image -# -# with torch.no_grad(): -# image_normal = self.send_tensor_to_model_device(torch.from_numpy(image_normal)) -# image_normal = image_normal / 255.0 -# image_normal = rearrange(image_normal, 'h w c -> 1 c h w') -# image_normal = self.norm(image_normal) -# -# normal = self.model_patcher.model(image_normal) -# normal = normal[0][-1][:, :3] -# normal = ((normal + 1) * 0.5).clip(0, 1) -# -# normal = rearrange(normal[0], 'c h w -> h w c').cpu().numpy() -# normal_image = (normal * 255.0).clip(0, 255).astype(np.uint8) -# -# return remove_pad(normal_image) -# -# -# add_supported_preprocessor(PreprocessorNormalBae()) +from modules_forge.supported_preprocessor import Preprocessor, PreprocessorParameter +from modules_forge.shared import preprocessor_dir, add_supported_preprocessor +from modules.modelloader import load_file_from_url + + +class PreprocessorClipVision(Preprocessor): + def __init__(self): + super().__init__() + + +add_supported_preprocessor(PreprocessorClipVision())