remove unused

This commit is contained in:
layerdiffusion
2024-08-05 12:14:43 -07:00
parent 48dec215f3
commit d9fc9f40e6
5 changed files with 579 additions and 579 deletions

View File

@@ -1,384 +1,384 @@
import math
from collections import namedtuple
import torch
from modules import prompt_parser, devices, sd_hijack, sd_emphasis
from modules.shared import opts
class PromptChunk:
"""
This object contains token ids, weight (multipliers:1.4) and textual inversion embedding info for a chunk of prompt.
If a prompt is short, it is represented by one PromptChunk, otherwise, multiple are necessary.
Each PromptChunk contains an exact amount of tokens - 77, which includes one for start and end token,
so just 75 tokens from prompt.
"""
def __init__(self):
self.tokens = []
self.multipliers = []
self.fixes = []
PromptChunkFix = namedtuple('PromptChunkFix', ['offset', 'embedding'])
"""An object of this type is a marker showing that textual inversion embedding's vectors have to placed at offset in the prompt
chunk. Those objects are found in PromptChunk.fixes and, are placed into FrozenCLIPEmbedderWithCustomWordsBase.hijack.fixes, and finally
are applied by sd_hijack.EmbeddingsWithFixes's forward function."""
class TextConditionalModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.hijack = sd_hijack.model_hijack
self.chunk_length = 75
self.is_trainable = False
self.input_key = 'txt'
self.return_pooled = False
self.comma_token = None
self.id_start = None
self.id_end = None
self.id_pad = None
def empty_chunk(self):
"""creates an empty PromptChunk and returns it"""
chunk = PromptChunk()
chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1)
chunk.multipliers = [1.0] * (self.chunk_length + 2)
return chunk
def get_target_prompt_token_count(self, token_count):
"""returns the maximum number of tokens a prompt of a known length can have before it requires one more PromptChunk to be represented"""
return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length
def tokenize(self, texts):
"""Converts a batch of texts into a batch of token ids"""
raise NotImplementedError
def encode_with_transformers(self, tokens):
"""
converts a batch of token ids (in python lists) into a single tensor with numeric representation of those tokens;
All python lists with tokens are assumed to have same length, usually 77.
if input is a list with B elements and each element has T tokens, expected output shape is (B, T, C), where C depends on
model - can be 768 and 1024.
Among other things, this call will read self.hijack.fixes, apply it to its inputs, and clear it (setting it to None).
"""
raise NotImplementedError
def encode_embedding_init_text(self, init_text, nvpt):
"""Converts text into a tensor with this text's tokens' embeddings. Note that those are embeddings before they are passed through
transformers. nvpt is used as a maximum length in tokens. If text produces less teokens than nvpt, only this many is returned."""
raise NotImplementedError
def tokenize_line(self, line):
"""
this transforms a single prompt into a list of PromptChunk objects - as many as needed to
represent the prompt.
Returns the list and the total number of tokens in the prompt.
"""
if opts.emphasis != "None":
parsed = prompt_parser.parse_prompt_attention(line)
else:
parsed = [[line, 1.0]]
tokenized = self.tokenize([text for text, _ in parsed])
chunks = []
chunk = PromptChunk()
token_count = 0
last_comma = -1
def next_chunk(is_last=False):
"""puts current chunk into the list of results and produces the next one - empty;
if is_last is true, tokens <end-of-text> tokens at the end won't add to token_count"""
nonlocal token_count
nonlocal last_comma
nonlocal chunk
if is_last:
token_count += len(chunk.tokens)
else:
token_count += self.chunk_length
to_add = self.chunk_length - len(chunk.tokens)
if to_add > 0:
chunk.tokens += [self.id_end] * to_add
chunk.multipliers += [1.0] * to_add
chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end]
chunk.multipliers = [1.0] + chunk.multipliers + [1.0]
last_comma = -1
chunks.append(chunk)
chunk = PromptChunk()
for tokens, (text, weight) in zip(tokenized, parsed):
if text == 'BREAK' and weight == -1:
next_chunk()
continue
position = 0
while position < len(tokens):
token = tokens[position]
if token == self.comma_token:
last_comma = len(chunk.tokens)
# this is when we are at the end of allotted 75 tokens for the current chunk, and the current token is not a comma. opts.comma_padding_backtrack
# is a setting that specifies that if there is a comma nearby, the text after the comma should be moved out of this chunk and into the next.
elif opts.comma_padding_backtrack != 0 and len(chunk.tokens) == self.chunk_length and last_comma != -1 and len(chunk.tokens) - last_comma <= opts.comma_padding_backtrack:
break_location = last_comma + 1
reloc_tokens = chunk.tokens[break_location:]
reloc_mults = chunk.multipliers[break_location:]
chunk.tokens = chunk.tokens[:break_location]
chunk.multipliers = chunk.multipliers[:break_location]
next_chunk()
chunk.tokens = reloc_tokens
chunk.multipliers = reloc_mults
if len(chunk.tokens) == self.chunk_length:
next_chunk()
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, position)
if embedding is None:
chunk.tokens.append(token)
chunk.multipliers.append(weight)
position += 1
continue
emb_len = int(embedding.vectors)
if len(chunk.tokens) + emb_len > self.chunk_length:
next_chunk()
chunk.fixes.append(PromptChunkFix(len(chunk.tokens), embedding))
chunk.tokens += [0] * emb_len
chunk.multipliers += [weight] * emb_len
position += embedding_length_in_tokens
if chunk.tokens or not chunks:
next_chunk(is_last=True)
return chunks, token_count
def process_texts(self, texts):
"""
Accepts a list of texts and calls tokenize_line() on each, with cache. Returns the list of results and maximum
length, in tokens, of all texts.
"""
token_count = 0
cache = {}
batch_chunks = []
for line in texts:
if line in cache:
chunks = cache[line]
else:
chunks, current_token_count = self.tokenize_line(line)
token_count = max(current_token_count, token_count)
cache[line] = chunks
batch_chunks.append(chunks)
return batch_chunks, token_count
def forward(self, texts):
"""
Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts.
Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will
be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, for SD2 it's 1024, and for SDXL it's 1280.
An example shape returned by this function can be: (2, 77, 768).
For SDXL, instead of returning one tensor avobe, it returns a tuple with two: the other one with shape (B, 1280) with pooled values.
Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one element
is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream"
"""
batch_chunks, token_count = self.process_texts(texts)
used_embeddings = {}
chunk_count = max([len(x) for x in batch_chunks])
zs = []
for i in range(chunk_count):
batch_chunk = [chunks[i] if i < len(chunks) else self.empty_chunk() for chunks in batch_chunks]
tokens = [x.tokens for x in batch_chunk]
multipliers = [x.multipliers for x in batch_chunk]
self.hijack.fixes = [x.fixes for x in batch_chunk]
for fixes in self.hijack.fixes:
for _position, embedding in fixes:
used_embeddings[embedding.name] = embedding
devices.torch_npu_set_device()
z = self.process_tokens(tokens, multipliers)
zs.append(z)
if opts.textual_inversion_add_hashes_to_infotext and used_embeddings:
hashes = []
for name, embedding in used_embeddings.items():
shorthash = embedding.shorthash
if not shorthash:
continue
name = name.replace(":", "").replace(",", "")
hashes.append(f"{name}: {shorthash}")
if hashes:
if self.hijack.extra_generation_params.get("TI hashes"):
hashes.append(self.hijack.extra_generation_params.get("TI hashes"))
self.hijack.extra_generation_params["TI hashes"] = ", ".join(hashes)
if any(x for x in texts if "(" in x or "[" in x) and opts.emphasis != "Original":
self.hijack.extra_generation_params["Emphasis"] = opts.emphasis
if self.return_pooled:
return torch.hstack(zs), zs[0].pooled
else:
return torch.hstack(zs)
def process_tokens(self, remade_batch_tokens, batch_multipliers):
"""
sends one single prompt chunk to be encoded by transformers neural network.
remade_batch_tokens is a batch of tokens - a list, where every element is a list of tokens; usually
there are exactly 77 tokens in the list. batch_multipliers is the same but for multipliers instead of tokens.
Multipliers are used to give more or less weight to the outputs of transformers network. Each multiplier
corresponds to one token.
"""
tokens = torch.asarray(remade_batch_tokens).to(devices.device)
# this is for SD2: SD1 uses the same token for padding and end of text, while SD2 uses different ones.
if self.id_end != self.id_pad:
for batch_pos in range(len(remade_batch_tokens)):
index = remade_batch_tokens[batch_pos].index(self.id_end)
tokens[batch_pos, index+1:tokens.shape[1]] = self.id_pad
z = self.encode_with_transformers(tokens)
pooled = getattr(z, 'pooled', None)
emphasis = sd_emphasis.get_current_option(opts.emphasis)()
emphasis.tokens = remade_batch_tokens
emphasis.multipliers = torch.asarray(batch_multipliers).to(devices.device)
emphasis.z = z
emphasis.after_transformers()
z = emphasis.z
if pooled is not None:
z.pooled = pooled
return z
class FrozenCLIPEmbedderWithCustomWordsBase(TextConditionalModel):
"""A pytorch module that is a wrapper for FrozenCLIPEmbedder module. it enhances FrozenCLIPEmbedder, making it possible to
have unlimited prompt length and assign weights to tokens in prompt.
"""
def __init__(self, wrapped, hijack):
super().__init__()
self.hijack = hijack
self.wrapped = wrapped
"""Original FrozenCLIPEmbedder module; can also be FrozenOpenCLIPEmbedder or xlmr.BertSeriesModelWithTransformation,
depending on model."""
self.is_trainable = getattr(wrapped, 'is_trainable', False)
self.input_key = getattr(wrapped, 'input_key', 'txt')
self.return_pooled = getattr(self.wrapped, 'return_pooled', False)
self.legacy_ucg_val = None # for sgm codebase
def forward(self, texts):
if opts.use_old_emphasis_implementation:
import modules.sd_hijack_clip_old
return modules.sd_hijack_clip_old.forward_old(self, texts)
return super().forward(texts)
class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
def __init__(self, wrapped, hijack):
super().__init__(wrapped, hijack)
self.tokenizer = wrapped.tokenizer
vocab = self.tokenizer.get_vocab()
self.comma_token = vocab.get(',</w>', None)
self.token_mults = {}
tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k]
for text, ident in tokens_with_parens:
mult = 1.0
for c in text:
if c == '[':
mult /= 1.1
if c == ']':
mult *= 1.1
if c == '(':
mult *= 1.1
if c == ')':
mult /= 1.1
if mult != 1.0:
self.token_mults[ident] = mult
self.id_start = self.wrapped.tokenizer.bos_token_id
self.id_end = self.wrapped.tokenizer.eos_token_id
self.id_pad = self.id_end
def tokenize(self, texts):
tokenized = self.wrapped.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]
return tokenized
def encode_with_transformers(self, tokens):
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
if opts.CLIP_stop_at_last_layers > 1:
z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers]
z = self.wrapped.transformer.text_model.final_layer_norm(z)
else:
z = outputs.last_hidden_state
return z
def encode_embedding_init_text(self, init_text, nvpt):
embedding_layer = self.wrapped.transformer.text_model.embeddings
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0)
return embedded
class FrozenCLIPEmbedderForSDXLWithCustomWords(FrozenCLIPEmbedderWithCustomWords):
def __init__(self, wrapped, hijack):
super().__init__(wrapped, hijack)
def encode_with_transformers(self, tokens):
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=self.wrapped.layer == "hidden")
if opts.sdxl_clip_l_skip is True:
z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers]
elif self.wrapped.layer == "last":
z = outputs.last_hidden_state
else:
z = outputs.hidden_states[self.wrapped.layer_idx]
return z
# import math
# from collections import namedtuple
#
# import torch
#
# from modules import prompt_parser, devices, sd_hijack, sd_emphasis
# from modules.shared import opts
#
#
# class PromptChunk:
# """
# This object contains token ids, weight (multipliers:1.4) and textual inversion embedding info for a chunk of prompt.
# If a prompt is short, it is represented by one PromptChunk, otherwise, multiple are necessary.
# Each PromptChunk contains an exact amount of tokens - 77, which includes one for start and end token,
# so just 75 tokens from prompt.
# """
#
# def __init__(self):
# self.tokens = []
# self.multipliers = []
# self.fixes = []
#
#
# PromptChunkFix = namedtuple('PromptChunkFix', ['offset', 'embedding'])
# """An object of this type is a marker showing that textual inversion embedding's vectors have to placed at offset in the prompt
# chunk. Those objects are found in PromptChunk.fixes and, are placed into FrozenCLIPEmbedderWithCustomWordsBase.hijack.fixes, and finally
# are applied by sd_hijack.EmbeddingsWithFixes's forward function."""
#
#
# class TextConditionalModel(torch.nn.Module):
# def __init__(self):
# super().__init__()
#
# self.hijack = sd_hijack.model_hijack
# self.chunk_length = 75
#
# self.is_trainable = False
# self.input_key = 'txt'
# self.return_pooled = False
#
# self.comma_token = None
# self.id_start = None
# self.id_end = None
# self.id_pad = None
#
# def empty_chunk(self):
# """creates an empty PromptChunk and returns it"""
#
# chunk = PromptChunk()
# chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1)
# chunk.multipliers = [1.0] * (self.chunk_length + 2)
# return chunk
#
# def get_target_prompt_token_count(self, token_count):
# """returns the maximum number of tokens a prompt of a known length can have before it requires one more PromptChunk to be represented"""
#
# return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length
#
# def tokenize(self, texts):
# """Converts a batch of texts into a batch of token ids"""
#
# raise NotImplementedError
#
# def encode_with_transformers(self, tokens):
# """
# converts a batch of token ids (in python lists) into a single tensor with numeric representation of those tokens;
# All python lists with tokens are assumed to have same length, usually 77.
# if input is a list with B elements and each element has T tokens, expected output shape is (B, T, C), where C depends on
# model - can be 768 and 1024.
# Among other things, this call will read self.hijack.fixes, apply it to its inputs, and clear it (setting it to None).
# """
#
# raise NotImplementedError
#
# def encode_embedding_init_text(self, init_text, nvpt):
# """Converts text into a tensor with this text's tokens' embeddings. Note that those are embeddings before they are passed through
# transformers. nvpt is used as a maximum length in tokens. If text produces less teokens than nvpt, only this many is returned."""
#
# raise NotImplementedError
#
# def tokenize_line(self, line):
# """
# this transforms a single prompt into a list of PromptChunk objects - as many as needed to
# represent the prompt.
# Returns the list and the total number of tokens in the prompt.
# """
#
# if opts.emphasis != "None":
# parsed = prompt_parser.parse_prompt_attention(line)
# else:
# parsed = [[line, 1.0]]
#
# tokenized = self.tokenize([text for text, _ in parsed])
#
# chunks = []
# chunk = PromptChunk()
# token_count = 0
# last_comma = -1
#
# def next_chunk(is_last=False):
# """puts current chunk into the list of results and produces the next one - empty;
# if is_last is true, tokens <end-of-text> tokens at the end won't add to token_count"""
# nonlocal token_count
# nonlocal last_comma
# nonlocal chunk
#
# if is_last:
# token_count += len(chunk.tokens)
# else:
# token_count += self.chunk_length
#
# to_add = self.chunk_length - len(chunk.tokens)
# if to_add > 0:
# chunk.tokens += [self.id_end] * to_add
# chunk.multipliers += [1.0] * to_add
#
# chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end]
# chunk.multipliers = [1.0] + chunk.multipliers + [1.0]
#
# last_comma = -1
# chunks.append(chunk)
# chunk = PromptChunk()
#
# for tokens, (text, weight) in zip(tokenized, parsed):
# if text == 'BREAK' and weight == -1:
# next_chunk()
# continue
#
# position = 0
# while position < len(tokens):
# token = tokens[position]
#
# if token == self.comma_token:
# last_comma = len(chunk.tokens)
#
# # this is when we are at the end of allotted 75 tokens for the current chunk, and the current token is not a comma. opts.comma_padding_backtrack
# # is a setting that specifies that if there is a comma nearby, the text after the comma should be moved out of this chunk and into the next.
# elif opts.comma_padding_backtrack != 0 and len(chunk.tokens) == self.chunk_length and last_comma != -1 and len(chunk.tokens) - last_comma <= opts.comma_padding_backtrack:
# break_location = last_comma + 1
#
# reloc_tokens = chunk.tokens[break_location:]
# reloc_mults = chunk.multipliers[break_location:]
#
# chunk.tokens = chunk.tokens[:break_location]
# chunk.multipliers = chunk.multipliers[:break_location]
#
# next_chunk()
# chunk.tokens = reloc_tokens
# chunk.multipliers = reloc_mults
#
# if len(chunk.tokens) == self.chunk_length:
# next_chunk()
#
# embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, position)
# if embedding is None:
# chunk.tokens.append(token)
# chunk.multipliers.append(weight)
# position += 1
# continue
#
# emb_len = int(embedding.vectors)
# if len(chunk.tokens) + emb_len > self.chunk_length:
# next_chunk()
#
# chunk.fixes.append(PromptChunkFix(len(chunk.tokens), embedding))
#
# chunk.tokens += [0] * emb_len
# chunk.multipliers += [weight] * emb_len
# position += embedding_length_in_tokens
#
# if chunk.tokens or not chunks:
# next_chunk(is_last=True)
#
# return chunks, token_count
#
# def process_texts(self, texts):
# """
# Accepts a list of texts and calls tokenize_line() on each, with cache. Returns the list of results and maximum
# length, in tokens, of all texts.
# """
#
# token_count = 0
#
# cache = {}
# batch_chunks = []
# for line in texts:
# if line in cache:
# chunks = cache[line]
# else:
# chunks, current_token_count = self.tokenize_line(line)
# token_count = max(current_token_count, token_count)
#
# cache[line] = chunks
#
# batch_chunks.append(chunks)
#
# return batch_chunks, token_count
#
# def forward(self, texts):
# """
# Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts.
# Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will
# be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, for SD2 it's 1024, and for SDXL it's 1280.
# An example shape returned by this function can be: (2, 77, 768).
# For SDXL, instead of returning one tensor avobe, it returns a tuple with two: the other one with shape (B, 1280) with pooled values.
# Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one element
# is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream"
# """
#
# batch_chunks, token_count = self.process_texts(texts)
#
# used_embeddings = {}
# chunk_count = max([len(x) for x in batch_chunks])
#
# zs = []
# for i in range(chunk_count):
# batch_chunk = [chunks[i] if i < len(chunks) else self.empty_chunk() for chunks in batch_chunks]
#
# tokens = [x.tokens for x in batch_chunk]
# multipliers = [x.multipliers for x in batch_chunk]
# self.hijack.fixes = [x.fixes for x in batch_chunk]
#
# for fixes in self.hijack.fixes:
# for _position, embedding in fixes:
# used_embeddings[embedding.name] = embedding
# devices.torch_npu_set_device()
# z = self.process_tokens(tokens, multipliers)
# zs.append(z)
#
# if opts.textual_inversion_add_hashes_to_infotext and used_embeddings:
# hashes = []
# for name, embedding in used_embeddings.items():
# shorthash = embedding.shorthash
# if not shorthash:
# continue
#
# name = name.replace(":", "").replace(",", "")
# hashes.append(f"{name}: {shorthash}")
#
# if hashes:
# if self.hijack.extra_generation_params.get("TI hashes"):
# hashes.append(self.hijack.extra_generation_params.get("TI hashes"))
# self.hijack.extra_generation_params["TI hashes"] = ", ".join(hashes)
#
# if any(x for x in texts if "(" in x or "[" in x) and opts.emphasis != "Original":
# self.hijack.extra_generation_params["Emphasis"] = opts.emphasis
#
# if self.return_pooled:
# return torch.hstack(zs), zs[0].pooled
# else:
# return torch.hstack(zs)
#
# def process_tokens(self, remade_batch_tokens, batch_multipliers):
# """
# sends one single prompt chunk to be encoded by transformers neural network.
# remade_batch_tokens is a batch of tokens - a list, where every element is a list of tokens; usually
# there are exactly 77 tokens in the list. batch_multipliers is the same but for multipliers instead of tokens.
# Multipliers are used to give more or less weight to the outputs of transformers network. Each multiplier
# corresponds to one token.
# """
# tokens = torch.asarray(remade_batch_tokens).to(devices.device)
#
# # this is for SD2: SD1 uses the same token for padding and end of text, while SD2 uses different ones.
# if self.id_end != self.id_pad:
# for batch_pos in range(len(remade_batch_tokens)):
# index = remade_batch_tokens[batch_pos].index(self.id_end)
# tokens[batch_pos, index+1:tokens.shape[1]] = self.id_pad
#
# z = self.encode_with_transformers(tokens)
#
# pooled = getattr(z, 'pooled', None)
#
# emphasis = sd_emphasis.get_current_option(opts.emphasis)()
# emphasis.tokens = remade_batch_tokens
# emphasis.multipliers = torch.asarray(batch_multipliers).to(devices.device)
# emphasis.z = z
#
# emphasis.after_transformers()
#
# z = emphasis.z
#
# if pooled is not None:
# z.pooled = pooled
#
# return z
#
#
# class FrozenCLIPEmbedderWithCustomWordsBase(TextConditionalModel):
# """A pytorch module that is a wrapper for FrozenCLIPEmbedder module. it enhances FrozenCLIPEmbedder, making it possible to
# have unlimited prompt length and assign weights to tokens in prompt.
# """
#
# def __init__(self, wrapped, hijack):
# super().__init__()
#
# self.hijack = hijack
#
# self.wrapped = wrapped
# """Original FrozenCLIPEmbedder module; can also be FrozenOpenCLIPEmbedder or xlmr.BertSeriesModelWithTransformation,
# depending on model."""
#
# self.is_trainable = getattr(wrapped, 'is_trainable', False)
# self.input_key = getattr(wrapped, 'input_key', 'txt')
# self.return_pooled = getattr(self.wrapped, 'return_pooled', False)
#
# self.legacy_ucg_val = None # for sgm codebase
#
# def forward(self, texts):
# if opts.use_old_emphasis_implementation:
# import modules.sd_hijack_clip_old
# return modules.sd_hijack_clip_old.forward_old(self, texts)
#
# return super().forward(texts)
#
#
# class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
# def __init__(self, wrapped, hijack):
# super().__init__(wrapped, hijack)
# self.tokenizer = wrapped.tokenizer
#
# vocab = self.tokenizer.get_vocab()
#
# self.comma_token = vocab.get(',</w>', None)
#
# self.token_mults = {}
# tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k]
# for text, ident in tokens_with_parens:
# mult = 1.0
# for c in text:
# if c == '[':
# mult /= 1.1
# if c == ']':
# mult *= 1.1
# if c == '(':
# mult *= 1.1
# if c == ')':
# mult /= 1.1
#
# if mult != 1.0:
# self.token_mults[ident] = mult
#
# self.id_start = self.wrapped.tokenizer.bos_token_id
# self.id_end = self.wrapped.tokenizer.eos_token_id
# self.id_pad = self.id_end
#
# def tokenize(self, texts):
# tokenized = self.wrapped.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]
#
# return tokenized
#
# def encode_with_transformers(self, tokens):
# outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
#
# if opts.CLIP_stop_at_last_layers > 1:
# z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers]
# z = self.wrapped.transformer.text_model.final_layer_norm(z)
# else:
# z = outputs.last_hidden_state
#
# return z
#
# def encode_embedding_init_text(self, init_text, nvpt):
# embedding_layer = self.wrapped.transformer.text_model.embeddings
# ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
# embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0)
#
# return embedded
#
#
# class FrozenCLIPEmbedderForSDXLWithCustomWords(FrozenCLIPEmbedderWithCustomWords):
# def __init__(self, wrapped, hijack):
# super().__init__(wrapped, hijack)
#
# def encode_with_transformers(self, tokens):
# outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=self.wrapped.layer == "hidden")
#
# if opts.sdxl_clip_l_skip is True:
# z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers]
# elif self.wrapped.layer == "last":
# z = outputs.last_hidden_state
# else:
# z = outputs.hidden_states[self.wrapped.layer_idx]
#
# return z

View File

@@ -1,82 +1,82 @@
from modules import sd_hijack_clip
from modules import shared
def process_text_old(self: sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase, texts):
id_start = self.id_start
id_end = self.id_end
maxlen = self.wrapped.max_length # you get to stay at 77
used_custom_terms = []
remade_batch_tokens = []
hijack_comments = []
hijack_fixes = []
token_count = 0
cache = {}
batch_tokens = self.tokenize(texts)
batch_multipliers = []
for tokens in batch_tokens:
tuple_tokens = tuple(tokens)
if tuple_tokens in cache:
remade_tokens, fixes, multipliers = cache[tuple_tokens]
else:
fixes = []
remade_tokens = []
multipliers = []
mult = 1.0
i = 0
while i < len(tokens):
token = tokens[i]
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
mult_change = self.token_mults.get(token) if shared.opts.emphasis != "None" else None
if mult_change is not None:
mult *= mult_change
i += 1
elif embedding is None:
remade_tokens.append(token)
multipliers.append(mult)
i += 1
else:
emb_len = int(embedding.vec.shape[0])
fixes.append((len(remade_tokens), embedding))
remade_tokens += [0] * emb_len
multipliers += [mult] * emb_len
used_custom_terms.append((embedding.name, embedding.checksum()))
i += embedding_length_in_tokens
if len(remade_tokens) > maxlen - 2:
vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()}
ovf = remade_tokens[maxlen - 2:]
overflowing_words = [vocab.get(int(x), "") for x in ovf]
overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
token_count = len(remade_tokens)
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end]
cache[tuple_tokens] = (remade_tokens, fixes, multipliers)
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0]
remade_batch_tokens.append(remade_tokens)
hijack_fixes.append(fixes)
batch_multipliers.append(multipliers)
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
def forward_old(self: sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase, texts):
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = process_text_old(self, texts)
self.hijack.comments += hijack_comments
if used_custom_terms:
embedding_names = ", ".join(f"{word} [{checksum}]" for word, checksum in used_custom_terms)
self.hijack.comments.append(f"Used embeddings: {embedding_names}")
self.hijack.fixes = hijack_fixes
return self.process_tokens(remade_batch_tokens, batch_multipliers)
# from modules import sd_hijack_clip
# from modules import shared
#
#
# def process_text_old(self: sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase, texts):
# id_start = self.id_start
# id_end = self.id_end
# maxlen = self.wrapped.max_length # you get to stay at 77
# used_custom_terms = []
# remade_batch_tokens = []
# hijack_comments = []
# hijack_fixes = []
# token_count = 0
#
# cache = {}
# batch_tokens = self.tokenize(texts)
# batch_multipliers = []
# for tokens in batch_tokens:
# tuple_tokens = tuple(tokens)
#
# if tuple_tokens in cache:
# remade_tokens, fixes, multipliers = cache[tuple_tokens]
# else:
# fixes = []
# remade_tokens = []
# multipliers = []
# mult = 1.0
#
# i = 0
# while i < len(tokens):
# token = tokens[i]
#
# embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
#
# mult_change = self.token_mults.get(token) if shared.opts.emphasis != "None" else None
# if mult_change is not None:
# mult *= mult_change
# i += 1
# elif embedding is None:
# remade_tokens.append(token)
# multipliers.append(mult)
# i += 1
# else:
# emb_len = int(embedding.vec.shape[0])
# fixes.append((len(remade_tokens), embedding))
# remade_tokens += [0] * emb_len
# multipliers += [mult] * emb_len
# used_custom_terms.append((embedding.name, embedding.checksum()))
# i += embedding_length_in_tokens
#
# if len(remade_tokens) > maxlen - 2:
# vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()}
# ovf = remade_tokens[maxlen - 2:]
# overflowing_words = [vocab.get(int(x), "") for x in ovf]
# overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
# hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
#
# token_count = len(remade_tokens)
# remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
# remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end]
# cache[tuple_tokens] = (remade_tokens, fixes, multipliers)
#
# multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
# multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0]
#
# remade_batch_tokens.append(remade_tokens)
# hijack_fixes.append(fixes)
# batch_multipliers.append(multipliers)
# return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
#
#
# def forward_old(self: sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase, texts):
# batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = process_text_old(self, texts)
#
# self.hijack.comments += hijack_comments
#
# if used_custom_terms:
# embedding_names = ", ".join(f"{word} [{checksum}]" for word, checksum in used_custom_terms)
# self.hijack.comments.append(f"Used embeddings: {embedding_names}")
#
# self.hijack.fixes = hijack_fixes
# return self.process_tokens(remade_batch_tokens, batch_multipliers)

View File

@@ -1,10 +1,10 @@
import os.path
def should_hijack_ip2p(checkpoint_info):
from modules import sd_models_config
ckpt_basename = os.path.basename(checkpoint_info.filename).lower()
cfg_basename = os.path.basename(sd_models_config.find_checkpoint_config_near_filename(checkpoint_info)).lower()
return "pix2pix" in ckpt_basename and "pix2pix" not in cfg_basename
# import os.path
#
#
# def should_hijack_ip2p(checkpoint_info):
# from modules import sd_models_config
#
# ckpt_basename = os.path.basename(checkpoint_info.filename).lower()
# cfg_basename = os.path.basename(sd_models_config.find_checkpoint_config_near_filename(checkpoint_info)).lower()
#
# return "pix2pix" in ckpt_basename and "pix2pix" not in cfg_basename

View File

@@ -1,71 +1,71 @@
import open_clip.tokenizer
import torch
from modules import sd_hijack_clip, devices
from modules.shared import opts
tokenizer = open_clip.tokenizer._tokenizer
class FrozenOpenCLIPEmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase):
def __init__(self, wrapped, hijack):
super().__init__(wrapped, hijack)
self.comma_token = [v for k, v in tokenizer.encoder.items() if k == ',</w>'][0]
self.id_start = tokenizer.encoder["<start_of_text>"]
self.id_end = tokenizer.encoder["<end_of_text>"]
self.id_pad = 0
def tokenize(self, texts):
assert not opts.use_old_emphasis_implementation, 'Old emphasis implementation not supported for Open Clip'
tokenized = [tokenizer.encode(text) for text in texts]
return tokenized
def encode_with_transformers(self, tokens):
# set self.wrapped.layer_idx here according to opts.CLIP_stop_at_last_layers
z = self.wrapped.encode_with_transformer(tokens)
return z
def encode_embedding_init_text(self, init_text, nvpt):
ids = tokenizer.encode(init_text)
ids = torch.asarray([ids], device=devices.device, dtype=torch.int)
embedded = self.wrapped.model.token_embedding.wrapped(ids).squeeze(0)
return embedded
class FrozenOpenCLIPEmbedder2WithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase):
def __init__(self, wrapped, hijack):
super().__init__(wrapped, hijack)
self.comma_token = [v for k, v in tokenizer.encoder.items() if k == ',</w>'][0]
self.id_start = tokenizer.encoder["<start_of_text>"]
self.id_end = tokenizer.encoder["<end_of_text>"]
self.id_pad = 0
def tokenize(self, texts):
assert not opts.use_old_emphasis_implementation, 'Old emphasis implementation not supported for Open Clip'
tokenized = [tokenizer.encode(text) for text in texts]
return tokenized
def encode_with_transformers(self, tokens):
d = self.wrapped.encode_with_transformer(tokens)
z = d[self.wrapped.layer]
pooled = d.get("pooled")
if pooled is not None:
z.pooled = pooled
return z
def encode_embedding_init_text(self, init_text, nvpt):
ids = tokenizer.encode(init_text)
ids = torch.asarray([ids], device=devices.device, dtype=torch.int)
embedded = self.wrapped.model.token_embedding.wrapped(ids.to(self.wrapped.model.token_embedding.wrapped.weight.device)).squeeze(0)
return embedded
# import open_clip.tokenizer
# import torch
#
# from modules import sd_hijack_clip, devices
# from modules.shared import opts
#
# tokenizer = open_clip.tokenizer._tokenizer
#
#
# class FrozenOpenCLIPEmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase):
# def __init__(self, wrapped, hijack):
# super().__init__(wrapped, hijack)
#
# self.comma_token = [v for k, v in tokenizer.encoder.items() if k == ',</w>'][0]
# self.id_start = tokenizer.encoder["<start_of_text>"]
# self.id_end = tokenizer.encoder["<end_of_text>"]
# self.id_pad = 0
#
# def tokenize(self, texts):
# assert not opts.use_old_emphasis_implementation, 'Old emphasis implementation not supported for Open Clip'
#
# tokenized = [tokenizer.encode(text) for text in texts]
#
# return tokenized
#
# def encode_with_transformers(self, tokens):
# # set self.wrapped.layer_idx here according to opts.CLIP_stop_at_last_layers
# z = self.wrapped.encode_with_transformer(tokens)
#
# return z
#
# def encode_embedding_init_text(self, init_text, nvpt):
# ids = tokenizer.encode(init_text)
# ids = torch.asarray([ids], device=devices.device, dtype=torch.int)
# embedded = self.wrapped.model.token_embedding.wrapped(ids).squeeze(0)
#
# return embedded
#
#
# class FrozenOpenCLIPEmbedder2WithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase):
# def __init__(self, wrapped, hijack):
# super().__init__(wrapped, hijack)
#
# self.comma_token = [v for k, v in tokenizer.encoder.items() if k == ',</w>'][0]
# self.id_start = tokenizer.encoder["<start_of_text>"]
# self.id_end = tokenizer.encoder["<end_of_text>"]
# self.id_pad = 0
#
# def tokenize(self, texts):
# assert not opts.use_old_emphasis_implementation, 'Old emphasis implementation not supported for Open Clip'
#
# tokenized = [tokenizer.encode(text) for text in texts]
#
# return tokenized
#
# def encode_with_transformers(self, tokens):
# d = self.wrapped.encode_with_transformer(tokens)
# z = d[self.wrapped.layer]
#
# pooled = d.get("pooled")
# if pooled is not None:
# z.pooled = pooled
#
# return z
#
# def encode_embedding_init_text(self, init_text, nvpt):
# ids = tokenizer.encode(init_text)
# ids = torch.asarray([ids], device=devices.device, dtype=torch.int)
# embedded = self.wrapped.model.token_embedding.wrapped(ids.to(self.wrapped.model.token_embedding.wrapped.weight.device)).squeeze(0)
#
# return embedded

View File

@@ -1,32 +1,32 @@
import torch
from modules import sd_hijack_clip, devices
class FrozenXLMREmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords):
def __init__(self, wrapped, hijack):
super().__init__(wrapped, hijack)
self.id_start = wrapped.config.bos_token_id
self.id_end = wrapped.config.eos_token_id
self.id_pad = wrapped.config.pad_token_id
self.comma_token = self.tokenizer.get_vocab().get(',', None) # alt diffusion doesn't have </w> bits for comma
def encode_with_transformers(self, tokens):
# there's no CLIP Skip here because all hidden layers have size of 1024 and the last one uses a
# trained layer to transform those 1024 into 768 for unet; so you can't choose which transformer
# layer to work with - you have to use the last
attention_mask = (tokens != self.id_pad).to(device=tokens.device, dtype=torch.int64)
features = self.wrapped(input_ids=tokens, attention_mask=attention_mask)
z = features['projection_state']
return z
def encode_embedding_init_text(self, init_text, nvpt):
embedding_layer = self.wrapped.roberta.embeddings
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0)
return embedded
# import torch
#
# from modules import sd_hijack_clip, devices
#
#
# class FrozenXLMREmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords):
# def __init__(self, wrapped, hijack):
# super().__init__(wrapped, hijack)
#
# self.id_start = wrapped.config.bos_token_id
# self.id_end = wrapped.config.eos_token_id
# self.id_pad = wrapped.config.pad_token_id
#
# self.comma_token = self.tokenizer.get_vocab().get(',', None) # alt diffusion doesn't have </w> bits for comma
#
# def encode_with_transformers(self, tokens):
# # there's no CLIP Skip here because all hidden layers have size of 1024 and the last one uses a
# # trained layer to transform those 1024 into 768 for unet; so you can't choose which transformer
# # layer to work with - you have to use the last
#
# attention_mask = (tokens != self.id_pad).to(device=tokens.device, dtype=torch.int64)
# features = self.wrapped(input_ids=tokens, attention_mask=attention_mask)
# z = features['projection_state']
#
# return z
#
# def encode_embedding_init_text(self, init_text, nvpt):
# embedding_layer = self.wrapped.roberta.embeddings
# ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
# embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0)
#
# return embedded