diff --git a/extensions-builtin/forge_space_florence_2/forge_app.py b/extensions-builtin/forge_space_florence_2/forge_app.py
index a9a20b61..7ebcd606 100644
--- a/extensions-builtin/forge_space_florence_2/forge_app.py
+++ b/extensions-builtin/forge_space_florence_2/forge_app.py
@@ -3,7 +3,6 @@ import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
import os
-import requests
import copy
from PIL import Image, ImageDraw, ImageFont
@@ -12,27 +11,23 @@ import matplotlib.pyplot as plt
import matplotlib.patches as patches
import random
-import numpy as np
-# import subprocess
-# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
+from modules import shared
-from unittest.mock import patch
-from transformers.dynamic_module_utils import get_imports
with spaces.capture_gpu_object() as gpu_object:
models = {
# 'microsoft/Florence-2-large-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large-ft', attn_implementation='sdpa', trust_remote_code=True).to("cuda").eval(),
'microsoft/Florence-2-large': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to("cuda").eval(),
# 'microsoft/Florence-2-base-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base-ft', trust_remote_code=True).to("cuda").eval(),
- # 'microsoft/Florence-2-base': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to("cuda").eval(),
+ 'microsoft/Florence-2-base': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to("cuda").eval(),
}
processors = {
# 'microsoft/Florence-2-large-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True),
'microsoft/Florence-2-large': AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True),
# 'microsoft/Florence-2-base-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-base-ft', trust_remote_code=True),
- # 'microsoft/Florence-2-base': AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True),
+ 'microsoft/Florence-2-base': AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True),
}
@@ -126,8 +121,8 @@ def draw_ocr_bboxes(image, prediction):
fill=color)
return image
+
def process_image(image, task_prompt, text_input=None, model_id='microsoft/Florence-2-large'):
- image = Image.fromarray(image) # Convert NumPy array to PIL Image
if task_prompt == 'Caption':
task_prompt = '
'
results = run_example(task_prompt, image, model_id=model_id)
@@ -226,6 +221,61 @@ def process_image(image, task_prompt, text_input=None, model_id='microsoft/Flore
else:
return "", None # Return empty string and None for unknown task prompts
+
+@spaces.GPU(gpu_objects=[gpu_object], manual_load=False)
+def run_example_batch(directory, task_prompt, model_id='microsoft/Florence-2-large', save_caption=False):
+ model = models[model_id]
+ processor = processors[model_id]
+
+ match task_prompt:
+ case 'More Detailed Caption':
+ prompt = ''
+ case 'Detailed Caption':
+ prompt = ''
+ case 'Caption':
+ prompt = ''
+ case _:
+ prompt = ''
+
+ results = ""
+
+ # batch_images block lifted from modules/img2img.py
+ if isinstance(directory, str):
+ batch_images = list(shared.walk_files(directory, allowed_extensions=(".png", ".jpg", ".jpeg", ".webp", ".tif", ".tiff", ".avif")))
+ else:
+ batch_images = [os.path.abspath(x.name) for x in directory]
+
+ for file in batch_images:
+ image = Image.open(file)
+
+ if image:
+ inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
+ generated_ids = model.generate(
+ input_ids=inputs["input_ids"],
+ pixel_values=inputs["pixel_values"],
+ max_new_tokens=1024,
+ early_stopping=False,
+ do_sample=False,
+ num_beams=3,
+ )
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
+ parsed_answer = processor.post_process_generation(
+ generated_text,
+ task=task_prompt,
+ image_size=(image.width, image.height)
+ )
+
+ parsed_answer = parsed_answer[task_prompt]
+ results += f"File: {file}\nCaption: {parsed_answer}\n\n"
+
+ if save_caption:
+ caption_file = file + ".txt"
+ with open(caption_file, 'w') as f:
+ f.write(parsed_answer)
+
+ return results
+
+
css = """
#output {
height: 500px;
@@ -234,6 +284,9 @@ css = """
}
"""
+caption_task_list = [
+ 'Caption', 'Detailed Caption', 'More Detailed Caption'
+]
single_task_list =[
'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection',
@@ -243,30 +296,29 @@ single_task_list =[
'OCR', 'OCR with Region'
]
-cascased_task_list =[
+cascaded_task_list =[
'Caption + Grounding', 'Detailed Caption + Grounding', 'More Detailed Caption + Grounding'
]
def update_task_dropdown(choice):
- if choice == 'Cascased task':
- return gr.Dropdown(choices=cascased_task_list, value='Caption + Grounding')
+ if choice == 'Cascaded task':
+ return gr.Dropdown(choices=cascaded_task_list, value='Caption + Grounding')
else:
return gr.Dropdown(choices=single_task_list, value='Caption')
-
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab(label="Florence-2 Image Captioning"):
with gr.Row():
with gr.Column():
- input_img = gr.Image(label="Input Picture")
+ input_img = gr.Image(label="Input picture", type="pil")
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value=list(models.keys())[0])
- task_type = gr.Radio(choices=['Single task', 'Cascased task'], label='Task type selector', value='Single task')
- task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="More Detailed Caption")
+ task_type = gr.Radio(choices=['Single task', 'Cascaded task'], label='Task type selector', value='Single task')
+ task_prompt = gr.Dropdown(choices=single_task_list, label="Task prompt", value="More Detailed Caption")
task_type.change(fn=update_task_dropdown, inputs=task_type, outputs=task_prompt)
- text_input = gr.Textbox(label="Text Input (optional)")
+ text_input = gr.Textbox(label="Text input (optional)")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text")
@@ -286,6 +338,19 @@ with gr.Blocks(css=css) as demo:
submit_btn.click(process_image, [input_img, task_prompt, text_input, model_selector], [output_text, output_img])
+ with gr.Tab(label="Batch captioning"):
+ with gr.Row():
+ with gr.Column():
+ input_directory = gr.Textbox(label="Input directory")
+ model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value=list(models.keys())[0])
+ task_prompt = gr.Dropdown(choices=caption_task_list, label="Task prompt", value="More Detailed Caption")
+ save_captions = gr.Checkbox(label="Save captions to textfiles (same filename, same directory)", value=False)
+ batch_btn = gr.Button(value="Submit")
+ with gr.Column():
+ output_text = gr.Textbox(label="Output captions")
+
+ batch_btn.click(run_example_batch, [input_directory, task_prompt, model_selector, save_captions], output_text)
+
if __name__ == "__main__":
- demo.launch(debug=True)
+ demo.launch()