From e073e4ec581c803cbc71003f6d3261d37ec43840 Mon Sep 17 00:00:00 2001 From: DenOfEquity <166248528+DenOfEquity@users.noreply.github.com> Date: Tue, 10 Dec 2024 11:19:20 +0000 Subject: [PATCH] add batch captioning (directory based) (#2420) optionally save captions to textfiles optionally use -base model instead of -large some smaller tweaks / spelling fixes --- .../forge_space_florence_2/forge_app.py | 101 ++++++++++++++---- 1 file changed, 83 insertions(+), 18 deletions(-) diff --git a/extensions-builtin/forge_space_florence_2/forge_app.py b/extensions-builtin/forge_space_florence_2/forge_app.py index a9a20b61..7ebcd606 100644 --- a/extensions-builtin/forge_space_florence_2/forge_app.py +++ b/extensions-builtin/forge_space_florence_2/forge_app.py @@ -3,7 +3,6 @@ import gradio as gr from transformers import AutoProcessor, AutoModelForCausalLM import os -import requests import copy from PIL import Image, ImageDraw, ImageFont @@ -12,27 +11,23 @@ import matplotlib.pyplot as plt import matplotlib.patches as patches import random -import numpy as np -# import subprocess -# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) +from modules import shared -from unittest.mock import patch -from transformers.dynamic_module_utils import get_imports with spaces.capture_gpu_object() as gpu_object: models = { # 'microsoft/Florence-2-large-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large-ft', attn_implementation='sdpa', trust_remote_code=True).to("cuda").eval(), 'microsoft/Florence-2-large': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to("cuda").eval(), # 'microsoft/Florence-2-base-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base-ft', trust_remote_code=True).to("cuda").eval(), - # 'microsoft/Florence-2-base': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to("cuda").eval(), + 'microsoft/Florence-2-base': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to("cuda").eval(), } processors = { # 'microsoft/Florence-2-large-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True), 'microsoft/Florence-2-large': AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True), # 'microsoft/Florence-2-base-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-base-ft', trust_remote_code=True), - # 'microsoft/Florence-2-base': AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True), + 'microsoft/Florence-2-base': AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True), } @@ -126,8 +121,8 @@ def draw_ocr_bboxes(image, prediction): fill=color) return image + def process_image(image, task_prompt, text_input=None, model_id='microsoft/Florence-2-large'): - image = Image.fromarray(image) # Convert NumPy array to PIL Image if task_prompt == 'Caption': task_prompt = '' results = run_example(task_prompt, image, model_id=model_id) @@ -226,6 +221,61 @@ def process_image(image, task_prompt, text_input=None, model_id='microsoft/Flore else: return "", None # Return empty string and None for unknown task prompts + +@spaces.GPU(gpu_objects=[gpu_object], manual_load=False) +def run_example_batch(directory, task_prompt, model_id='microsoft/Florence-2-large', save_caption=False): + model = models[model_id] + processor = processors[model_id] + + match task_prompt: + case 'More Detailed Caption': + prompt = '' + case 'Detailed Caption': + prompt = '' + case 'Caption': + prompt = '' + case _: + prompt = '' + + results = "" + + # batch_images block lifted from modules/img2img.py + if isinstance(directory, str): + batch_images = list(shared.walk_files(directory, allowed_extensions=(".png", ".jpg", ".jpeg", ".webp", ".tif", ".tiff", ".avif"))) + else: + batch_images = [os.path.abspath(x.name) for x in directory] + + for file in batch_images: + image = Image.open(file) + + if image: + inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda") + generated_ids = model.generate( + input_ids=inputs["input_ids"], + pixel_values=inputs["pixel_values"], + max_new_tokens=1024, + early_stopping=False, + do_sample=False, + num_beams=3, + ) + generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] + parsed_answer = processor.post_process_generation( + generated_text, + task=task_prompt, + image_size=(image.width, image.height) + ) + + parsed_answer = parsed_answer[task_prompt] + results += f"File: {file}\nCaption: {parsed_answer}\n\n" + + if save_caption: + caption_file = file + ".txt" + with open(caption_file, 'w') as f: + f.write(parsed_answer) + + return results + + css = """ #output { height: 500px; @@ -234,6 +284,9 @@ css = """ } """ +caption_task_list = [ + 'Caption', 'Detailed Caption', 'More Detailed Caption' +] single_task_list =[ 'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection', @@ -243,30 +296,29 @@ single_task_list =[ 'OCR', 'OCR with Region' ] -cascased_task_list =[ +cascaded_task_list =[ 'Caption + Grounding', 'Detailed Caption + Grounding', 'More Detailed Caption + Grounding' ] def update_task_dropdown(choice): - if choice == 'Cascased task': - return gr.Dropdown(choices=cascased_task_list, value='Caption + Grounding') + if choice == 'Cascaded task': + return gr.Dropdown(choices=cascaded_task_list, value='Caption + Grounding') else: return gr.Dropdown(choices=single_task_list, value='Caption') - with gr.Blocks(css=css) as demo: gr.Markdown(DESCRIPTION) with gr.Tab(label="Florence-2 Image Captioning"): with gr.Row(): with gr.Column(): - input_img = gr.Image(label="Input Picture") + input_img = gr.Image(label="Input picture", type="pil") model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value=list(models.keys())[0]) - task_type = gr.Radio(choices=['Single task', 'Cascased task'], label='Task type selector', value='Single task') - task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="More Detailed Caption") + task_type = gr.Radio(choices=['Single task', 'Cascaded task'], label='Task type selector', value='Single task') + task_prompt = gr.Dropdown(choices=single_task_list, label="Task prompt", value="More Detailed Caption") task_type.change(fn=update_task_dropdown, inputs=task_type, outputs=task_prompt) - text_input = gr.Textbox(label="Text Input (optional)") + text_input = gr.Textbox(label="Text input (optional)") submit_btn = gr.Button(value="Submit") with gr.Column(): output_text = gr.Textbox(label="Output Text") @@ -286,6 +338,19 @@ with gr.Blocks(css=css) as demo: submit_btn.click(process_image, [input_img, task_prompt, text_input, model_selector], [output_text, output_img]) + with gr.Tab(label="Batch captioning"): + with gr.Row(): + with gr.Column(): + input_directory = gr.Textbox(label="Input directory") + model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value=list(models.keys())[0]) + task_prompt = gr.Dropdown(choices=caption_task_list, label="Task prompt", value="More Detailed Caption") + save_captions = gr.Checkbox(label="Save captions to textfiles (same filename, same directory)", value=False) + batch_btn = gr.Button(value="Submit") + with gr.Column(): + output_text = gr.Textbox(label="Output captions") + + batch_btn.click(run_example_batch, [input_directory, task_prompt, model_selector, save_captions], output_text) + if __name__ == "__main__": - demo.launch(debug=True) + demo.launch()