Gradio 4 + WebUI 1.10

This commit is contained in:
layerdiffusion
2024-07-26 08:51:34 -07:00
parent e95333c556
commit e26abf87ec
201 changed files with 7562 additions and 4834 deletions

View File

@@ -16,7 +16,7 @@ from skimage import exposure
from typing import Any
import modules.sd_hijack
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, infotext_utils, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors, rng
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, infotext_utils, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors, rng, profiling
from modules.rng import slerp # noqa: F401
from modules.sd_hijack import model_hijack
from modules.sd_samplers_common import images_tensor_to_samples, decode_first_stage, approximation_indexes
@@ -117,20 +117,17 @@ def txt2img_image_conditioning(sd_model, x, width, height):
return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
else:
sd = sd_model.model.state_dict()
diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None)
if diffusion_model_input is not None:
if diffusion_model_input.shape[1] == 9:
# The "masked-image" in this case will just be all 0.5 since the entire image is masked.
image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5
image_conditioning = images_tensor_to_samples(image_conditioning,
approximation_indexes.get(opts.sd_vae_encode_method))
if sd_model.is_sdxl_inpaint:
# The "masked-image" in this case will just be all 0.5 since the entire image is masked.
image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5
image_conditioning = images_tensor_to_samples(image_conditioning,
approximation_indexes.get(opts.sd_vae_encode_method))
# Add the fake full 1s mask to the first dimension.
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
image_conditioning = image_conditioning.to(x.dtype)
# Add the fake full 1s mask to the first dimension.
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
image_conditioning = image_conditioning.to(x.dtype)
return image_conditioning
return image_conditioning
# Dummy zero conditioning if we're not using inpainting or unclip models.
# Still takes up a bit of memory, but no encoder call.
@@ -154,6 +151,7 @@ class StableDiffusionProcessing:
seed_resize_from_w: int = -1
seed_enable_extras: bool = True
sampler_name: str = None
scheduler: str = None
batch_size: int = 1
n_iter: int = 1
steps: int = 50
@@ -189,8 +187,8 @@ class StableDiffusionProcessing:
script_args_value: list = field(default=None, init=False)
scripts_setup_complete: bool = field(default=False, init=False)
cached_uc = [None, None]
cached_c = [None, None]
cached_uc = [None, None, None]
cached_c = [None, None, None]
comments: dict = None
sampler: sd_samplers_common.Sampler | None = field(default=None, init=False)
@@ -229,6 +227,9 @@ class StableDiffusionProcessing:
is_api: bool = field(default=False, init=False)
latents_after_sampling = []
pixels_after_sampling = []
def __post_init__(self):
if self.sampler_index is not None:
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
@@ -239,11 +240,6 @@ class StableDiffusionProcessing:
self.styles = []
self.sampler_noise_scheduler_override = None
self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond
self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn
self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin
self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float('inf')
self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise
self.extra_generation_params = self.extra_generation_params or {}
self.override_settings = self.override_settings or {}
@@ -261,8 +257,17 @@ class StableDiffusionProcessing:
self.cached_c = StableDiffusionProcessing.cached_c
self.extra_result_images = []
self.latents_after_sampling = []
self.pixels_after_sampling = []
self.modified_noise = None
def fill_fields_from_opts(self):
self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond
self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn
self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin
self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float('inf')
self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise
@property
def sd_model(self):
return shared.sd_model
@@ -394,11 +399,8 @@ class StableDiffusionProcessing:
if self.sampler.conditioning_key == "crossattn-adm":
return self.unclip_image_conditioning(source_image)
sd = self.sampler.model_wrap.inner_model.model.state_dict()
diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None)
if diffusion_model_input is not None:
if diffusion_model_input.shape[1] == 9:
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
if self.sampler.model_wrap.inner_model.is_sdxl_inpaint:
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
# Dummy zero conditioning if we're not using inpainting or depth model.
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
@@ -488,12 +490,14 @@ class StableDiffusionProcessing:
for cache in caches:
if cache[0] is not None and cached_params == cache[0]:
modules.sd_hijack.model_hijack.extra_generation_params.update(cache[2])
return cache[1]
cache = caches[0]
with devices.autocast():
cache[1] = function(shared.sd_model, required_prompts, steps, hires_steps, shared.opts.use_old_scheduling)
cache[2] = modules.sd_hijack.model_hijack.extra_generation_params
cache[0] = cached_params
return cache[1]
@@ -574,7 +578,7 @@ class Processed:
self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
self.all_seeds = all_seeds or p.all_seeds or [self.seed]
self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
self.infotexts = infotexts or [info]
self.infotexts = infotexts or [info] * len(images_list)
self.version = program_version()
def js(self):
@@ -613,7 +617,7 @@ class Processed:
"version": self.version,
}
return json.dumps(obj)
return json.dumps(obj, default=lambda o: None)
def infotext(self, p: StableDiffusionProcessing, index):
return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
@@ -672,7 +676,53 @@ def program_version():
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False, index=None, all_negative_prompts=None):
if index is None:
"""
this function is used to generate the infotext that is stored in the generated images, it's contains the parameters that are required to generate the imagee
Args:
p: StableDiffusionProcessing
all_prompts: list[str]
all_seeds: list[int]
all_subseeds: list[int]
comments: list[str]
iteration: int
position_in_batch: int
use_main_prompt: bool
index: int
all_negative_prompts: list[str]
Returns: str
Extra generation params
p.extra_generation_params dictionary allows for additional parameters to be added to the infotext
this can be use by the base webui or extensions.
To add a new entry, add a new key value pair, the dictionary key will be used as the key of the parameter in the infotext
the value generation_params can be defined as:
- str | None
- List[str|None]
- callable func(**kwargs) -> str | None
When defined as a string, it will be used as without extra processing; this is this most common use case.
Defining as a list allows for parameter that changes across images in the job, for example, the 'Seed' parameter.
The list should have the same length as the total number of images in the entire job.
Defining as a callable function allows parameter cannot be generated earlier or when extra logic is required.
For example 'Hires prompt', due to reasons the hr_prompt might be changed by process in the pipeline or extensions
and may vary across different images, defining as a static string or list would not work.
The function takes locals() as **kwargs, as such will have access to variables like 'p' and 'index'.
the base signature of the function should be:
func(**kwargs) -> str | None
optionally it can have additional arguments that will be used in the function:
func(p, index, **kwargs) -> str | None
note: for better future compatibility even though this function will have access to all variables in the locals(),
it is recommended to only use the arguments present in the function signature of create_infotext.
For actual implementation examples, see StableDiffusionProcessingTxt2Img.init > get_hr_prompt.
"""
if use_main_prompt:
index = 0
elif index is None:
index = position_in_batch + iteration * p.batch_size
if all_negative_prompts is None:
@@ -683,6 +733,9 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
token_merging_ratio = p.get_token_merging_ratio()
token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
prompt_text = p.main_prompt if use_main_prompt else all_prompts[index]
negative_prompt = p.main_negative_prompt if use_main_prompt else all_negative_prompts[index]
uses_ensd = opts.eta_noise_seed_delta != 0
if uses_ensd:
uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p)
@@ -690,6 +743,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
generation_params = {
"Steps": p.steps,
"Sampler": p.sampler_name,
"Schedule type": p.scheduler,
"CFG scale": p.cfg_scale,
"Image CFG scale": getattr(p, 'image_cfg_scale', None),
"Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index],
@@ -712,17 +766,25 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
"Init image hash": getattr(p, 'init_img_hash', None),
"RNG": opts.randn_source if opts.randn_source != "GPU" else None,
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
"Tiling": "True" if p.tiling else None,
**p.extra_generation_params,
"Version": program_version() if opts.add_version_to_infotext else None,
"User": p.user if opts.add_user_name_to_info else None,
}
for key, value in generation_params.items():
try:
if isinstance(value, list):
generation_params[key] = value[index]
elif callable(value):
generation_params[key] = value(**locals())
except Exception:
errors.report(f'Error creating infotext for key "{key}"', exc_info=True)
generation_params[key] = None
generation_params_text = ", ".join([k if k == v else f'{k}: {infotext_utils.quote(v)}' for k, v in generation_params.items() if v is not None])
prompt_text = p.main_prompt if use_main_prompt else all_prompts[index]
negative_prompt_text = f"\nNegative prompt: {p.main_negative_prompt if use_main_prompt else all_negative_prompts[index]}" if all_negative_prompts[index] else ""
negative_prompt_text = f"\nNegative prompt: {negative_prompt}" if negative_prompt else ""
return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
@@ -749,7 +811,11 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
if k == 'sd_vae':
sd_vae.reload_vae_weights()
res = process_images_inner(p)
# backwards compatibility, fix sampler and scheduler if invalid
sd_samplers.fix_p_invalid_sampler_and_scheduler(p)
with profiling.Profiler():
res = process_images_inner(p)
finally:
# restore opts to original state
@@ -787,6 +853,9 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if p.refiner_checkpoint_info is None:
raise Exception(f'Could not find checkpoint with name {p.refiner_checkpoint}')
if hasattr(shared.sd_model, 'fix_dimensions'):
p.width, p.height = shared.sd_model.fix_dimensions(p.width, p.height)
p.sd_model_name = shared.sd_model.sd_checkpoint_info.name_for_extra
p.sd_model_hash = shared.sd_model.sd_model_hash
p.sd_vae_name = sd_vae.get_loaded_vae_name()
@@ -795,6 +864,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
apply_circular_forge(p.sd_model, p.tiling)
modules.sd_hijack.model_hijack.clear_comments()
p.fill_fields_from_opts()
p.setup_prompts()
if isinstance(seed, list):
@@ -845,7 +915,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
p.rng = rng.ImageRNG((opt_C, p.height // opt_f, p.width // opt_f), p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w)
latent_channels = getattr(shared.sd_model, 'latent_channels', opt_C)
p.rng = rng.ImageRNG((latent_channels, p.height // opt_f, p.width // opt_f), p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w)
if p.scripts is not None:
p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
@@ -863,52 +934,26 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if p.scripts is not None:
p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
p.setup_conds()
p.extra_generation_params.update(model_hijack.extra_generation_params)
# params.txt should be saved after scripts.process_batch, since the
# infotext could be modified by that callback
# Example: a wildcard processed by process_batch sets an extra model
# strength, which is saved as "Model Strength: 1.0" in the infotext
if n == 0:
if n == 0 and not cmd_opts.no_prompt_history:
with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
processed = Processed(p, [])
file.write(processed.infotext(p, 0))
p.setup_conds()
for comment in model_hijack.comments:
p.comment(comment)
p.extra_generation_params.update(model_hijack.extra_generation_params)
if p.n_iter > 1:
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
def rescale_zero_terminal_snr_abar(alphas_cumprod):
alphas_bar_sqrt = alphas_cumprod.sqrt()
# Store old values.
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
# Shift so the last timestep is zero.
alphas_bar_sqrt -= (alphas_bar_sqrt_T)
# Scale so the first timestep is back to the old value.
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
# Convert alphas_bar_sqrt to betas
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
alphas_bar[-1] = 4.8973451890853435e-08
return alphas_bar
if hasattr(p.sd_model, 'alphas_cumprod') and hasattr(p.sd_model, 'alphas_cumprod_original'):
p.sd_model.alphas_cumprod = p.sd_model.alphas_cumprod_original.to(shared.device)
if opts.use_downcasted_alpha_bar:
p.extra_generation_params['Downcast alphas_cumprod'] = opts.use_downcasted_alpha_bar
p.sd_model.alphas_cumprod = p.sd_model.alphas_cumprod.half().to(shared.device)
if opts.sd_noise_schedule == "Zero Terminal SNR":
p.extra_generation_params['Noise Schedule'] = opts.sd_noise_schedule
p.sd_model.alphas_cumprod = rescale_zero_terminal_snr_abar(p.sd_model.alphas_cumprod).to(shared.device)
sd_models.apply_alpha_schedule_override(p.sd_model, p)
alphas_cumprod_modifiers = p.sd_model.forge_objects.unet.model_options.get('alphas_cumprod_modifiers', [])
alphas_cumprod_backup = None
@@ -921,6 +966,9 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
for x_sample in samples_ddim:
p.latents_after_sampling.append(x_sample)
if alphas_cumprod_backup is not None:
p.sd_model.alphas_cumprod = alphas_cumprod_backup
p.sd_model.forge_objects.unet.model.model_sampling.set_sigmas(((1 - p.sd_model.alphas_cumprod) / p.sd_model.alphas_cumprod) ** 0.5)
@@ -933,6 +981,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if getattr(samples_ddim, 'already_decoded', False):
x_samples_ddim = samples_ddim
else:
devices.test_for_nans(samples_ddim, "unet")
if opts.sd_vae_decode_method != 'Full':
p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method
x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
@@ -979,7 +1029,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
image = Image.fromarray(x_sample)
if p.scripts is not None:
pp = scripts.PostprocessImageArgs(image)
pp = scripts.PostprocessImageArgs(image, i + p.iteration * p.batch_size)
p.scripts.postprocess_image(p, pp)
image = pp.image
@@ -1009,8 +1059,10 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
# and use it in the composite step.
image, original_denoised_image = apply_overlay(image, p.paste_to, overlay_image)
p.pixels_after_sampling.append(image)
if p.scripts is not None:
pp = scripts.PostprocessImageArgs(image)
pp = scripts.PostprocessImageArgs(image, i + p.iteration * p.batch_size)
p.scripts.postprocess_image_after_composite(p, pp)
image = pp.image
@@ -1109,12 +1161,13 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
hr_resize_y: int = 0
hr_checkpoint_name: str = None
hr_sampler_name: str = None
hr_scheduler: str = None
hr_prompt: str = ''
hr_negative_prompt: str = ''
force_task_id: str = None
cached_hr_uc = [None, None]
cached_hr_c = [None, None]
cached_hr_uc = [None, None, None]
cached_hr_c = [None, None, None]
hr_checkpoint_info: dict = field(default=None, init=False)
hr_upscale_to_x: int = field(default=0, init=False)
@@ -1197,11 +1250,21 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
if tuple(self.hr_prompt) != tuple(self.prompt):
self.extra_generation_params["Hires prompt"] = self.hr_prompt
def get_hr_prompt(p, index, prompt_text, **kwargs):
hr_prompt = p.all_hr_prompts[index]
return hr_prompt if hr_prompt != prompt_text else None
if tuple(self.hr_negative_prompt) != tuple(self.negative_prompt):
self.extra_generation_params["Hires negative prompt"] = self.hr_negative_prompt
def get_hr_negative_prompt(p, index, negative_prompt, **kwargs):
hr_negative_prompt = p.all_hr_negative_prompts[index]
return hr_negative_prompt if hr_negative_prompt != negative_prompt else None
self.extra_generation_params["Hires prompt"] = get_hr_prompt
self.extra_generation_params["Hires negative prompt"] = get_hr_negative_prompt
self.extra_generation_params["Hires schedule type"] = None # to be set in sd_samplers_kdiffusion.py
if self.hr_scheduler is None:
self.hr_scheduler = self.scheduler
self.latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
if self.enable_hr and self.latent_scale_mode is None:
@@ -1370,6 +1433,13 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
if self.scripts is not None:
self.scripts.before_hr(self)
self.scripts.process_before_every_sampling(
p=self,
x=samples,
noise=noise,
c=self.hr_c,
uc=self.hr_uc,
)
self.sd_model.forge_objects = self.sd_model.forge_objects_after_applying_lora.shallow_copy()
apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
@@ -1568,16 +1638,23 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
if self.inpaint_full_res:
self.mask_for_overlay = image_mask
mask = image_mask.convert('L')
crop_region = masking.get_crop_region(mask, self.inpaint_full_res_padding)
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
x1, y1, x2, y2 = crop_region
mask = mask.crop(crop_region)
image_mask = images.resize_image(2, mask, self.width, self.height)
self.paste_to = (x1, y1, x2-x1, y2-y1)
self.extra_generation_params["Inpaint area"] = "Only masked"
self.extra_generation_params["Masked area padding"] = self.inpaint_full_res_padding
crop_region = masking.get_crop_region_v2(mask, self.inpaint_full_res_padding)
if crop_region:
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
x1, y1, x2, y2 = crop_region
mask = mask.crop(crop_region)
image_mask = images.resize_image(2, mask, self.width, self.height)
self.paste_to = (x1, y1, x2-x1, y2-y1)
self.extra_generation_params["Inpaint area"] = "Only masked"
self.extra_generation_params["Masked area padding"] = self.inpaint_full_res_padding
else:
crop_region = None
image_mask = None
self.mask_for_overlay = None
self.inpaint_full_res = False
massage = 'Unable to perform "Inpaint Only mask" because mask is blank, switch to img2img mode.'
model_hijack.comments.append(massage)
logging.info(massage)
else:
image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
np_mask = np.array(image_mask)
@@ -1588,6 +1665,9 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
if self.scripts is not None:
self.scripts.before_process_init_images(self, dict(crop_region=crop_region, image_mask=image_mask))
add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
if add_color_corrections:
self.color_corrections = []
@@ -1605,6 +1685,8 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
image = images.resize_image(self.resize_mode, image, self.width, self.height)
if image_mask is not None:
if self.mask_for_overlay.size != (image.width, image.height):
self.mask_for_overlay = images.resize_image(self.resize_mode, self.mask_for_overlay, image.width, image.height)
image_masked = Image.new('RGBa', (image.width, image.height))
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
@@ -1663,10 +1745,10 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
latmask = latmask[0]
if self.mask_round:
latmask = np.around(latmask)
latmask = np.tile(latmask[None], (4, 1, 1))
latmask = np.tile(latmask[None], (self.init_latent.shape[1], 1, 1))
self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(devices.dtype)
self.nmask = torch.asarray(latmask).to(shared.device).type(devices.dtype)
# this needs to be fixed to be done in sample() using actual seeds for batches
if self.inpainting_fill == 2: