mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2026-01-26 19:09:45 +00:00
fix
This commit is contained in:
@@ -150,10 +150,7 @@ class Modulation(nn.Module):
|
||||
|
||||
def forward(self, vec):
|
||||
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
||||
if self.is_double:
|
||||
return out[0], out[1], out[2], out[3], out[4], out[5],
|
||||
else:
|
||||
return out[0], out[1], out[2]
|
||||
return out
|
||||
|
||||
|
||||
class DoubleStreamBlock(nn.Module):
|
||||
@@ -295,6 +292,7 @@ class IntegratedFluxTransformer2DModel(nn.Module):
|
||||
def __init__(self, in_channels: int, vec_in_dim: int, context_in_dim: int, hidden_size: int, mlp_ratio: float, num_heads: int, depth: int, depth_single_blocks: int, axes_dim: list[int], theta: int, qkv_bias: bool, guidance_embed: bool):
|
||||
super().__init__()
|
||||
|
||||
self.guidance_embed = guidance_embed
|
||||
self.in_channels = in_channels * 4
|
||||
self.out_channels = self.in_channels
|
||||
|
||||
@@ -341,7 +339,7 @@ class IntegratedFluxTransformer2DModel(nn.Module):
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
img = self.img_in(img)
|
||||
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype))
|
||||
if self.params.guidance_embed:
|
||||
if self.guidance_embed:
|
||||
if guidance is None:
|
||||
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
||||
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
|
||||
|
||||
Reference in New Issue
Block a user