import cv2 import os import torch from modules.paths import models_path from ldm_patched.modules import model_management from ldm_patched.modules.model_patcher import ModelPatcher controlnet_dir = os.path.join(models_path, 'ControlNet') os.makedirs(controlnet_dir, exist_ok=True) preprocessor_dir = os.path.join(models_path, 'ControlNetPreprocessor') os.makedirs(preprocessor_dir, exist_ok=True) shared_preprocessors = {} def add_preprocessor(preprocessor): global shared_preprocessors p = preprocessor() shared_preprocessors[p.name] = p return class PreprocessorParameter: def __init__(self, minimum=0.0, maximum=1.0, step=0.01, label='Parameter 1', value=0.5, visible=False, **kwargs): self.gradio_update_kwargs = dict( minimum=minimum, maximum=maximum, step=step, label=label, value=value, visible=visible, **kwargs ) class PreprocessorBase: def __init__(self): self.name = 'PreprocessorBase' self.tag = None self.slider_1 = PreprocessorParameter() self.slider_2 = PreprocessorParameter() self.slider_3 = PreprocessorParameter() self.model_patcher = None def setup_model_patcher(self, model, load_device=None, offload_device=None, **kwargs): if load_device is None: load_device = model_management.get_torch_device() if offload_device is None: offload_device = torch.device('cpu') self.model_patcher = ModelPatcher(model=model, load_device=load_device, offload_device=offload_device, **kwargs) return def process_before_every_sampling(self, process, cnet): return class PreprocessorNone(PreprocessorBase): def __init__(self): super().__init__() self.name = 'None' def __call__(self, input_image, slider_1=None, slider_2=None, slider_3=None, **kwargs): return input_image class PreprocessorCanny(PreprocessorBase): def __init__(self): super().__init__() self.name = 'canny' self.tag = 'Canny' self.slider_1 = PreprocessorParameter(minimum=0, maximum=256, step=1, value=100, label='Low Threshold', visible=True) self.slider_2 = PreprocessorParameter(minimum=0, maximum=256, step=1, value=200, label='High Threshold', visible=True) def __call__(self, input_image, slider_1=100, slider_2=200, slider_3=None, **kwargs): canny_image = cv2.cvtColor(cv2.Canny(input_image, int(slider_1), int(slider_2)), cv2.COLOR_GRAY2RGB) return canny_image add_preprocessor(PreprocessorNone) add_preprocessor(PreprocessorCanny)