Files
stable-diffusion-webui-forge/backend/patcher/controlnet.py
2024-08-03 17:04:56 -07:00

506 lines
21 KiB
Python

import torch
import math
from backend.misc import image_resize
from backend import memory_management, state_dict, utils
from backend.nn.cnets import cldm, t2i_adapter
from backend.patcher.base import ModelPatcher
from backend.operations import using_forge_operations, ForgeOperationsWithManualCast, main_stream_worker, weights_manual_cast
def compute_controlnet_weighting(control, cnet):
positive_advanced_weighting = getattr(cnet, 'positive_advanced_weighting', None)
negative_advanced_weighting = getattr(cnet, 'negative_advanced_weighting', None)
advanced_frame_weighting = getattr(cnet, 'advanced_frame_weighting', None)
advanced_sigma_weighting = getattr(cnet, 'advanced_sigma_weighting', None)
advanced_mask_weighting = getattr(cnet, 'advanced_mask_weighting', None)
transformer_options = cnet.transformer_options
if positive_advanced_weighting is None and negative_advanced_weighting is None \
and advanced_frame_weighting is None and advanced_sigma_weighting is None \
and advanced_mask_weighting is None:
return control
cond_or_uncond = transformer_options['cond_or_uncond']
sigmas = transformer_options['sigmas']
cond_mark = transformer_options['cond_mark']
if advanced_frame_weighting is not None:
advanced_frame_weighting = torch.Tensor(advanced_frame_weighting * len(cond_or_uncond)).to(sigmas)
assert advanced_frame_weighting.shape[0] == cond_mark.shape[0], \
'Frame weighting list length is different from batch size!'
if advanced_sigma_weighting is not None:
advanced_sigma_weighting = torch.cat([advanced_sigma_weighting(sigmas)] * len(cond_or_uncond))
for k, v in control.items():
for i in range(len(v)):
control_signal = control[k][i]
if not isinstance(control_signal, torch.Tensor):
continue
B, C, H, W = control_signal.shape
positive_weight = 1.0
negative_weight = 1.0
sigma_weight = 1.0
frame_weight = 1.0
if positive_advanced_weighting is not None:
positive_weight = get_at(positive_advanced_weighting.get(k, []), i, 1.0)
if negative_advanced_weighting is not None:
negative_weight = get_at(negative_advanced_weighting.get(k, []), i, 1.0)
if advanced_sigma_weighting is not None:
sigma_weight = advanced_sigma_weighting
if advanced_frame_weighting is not None:
frame_weight = advanced_frame_weighting
final_weight = positive_weight * (1.0 - cond_mark) + negative_weight * cond_mark
final_weight = final_weight * sigma_weight * frame_weight
if isinstance(advanced_mask_weighting, torch.Tensor):
if advanced_mask_weighting.shape[0] != 1:
k_ = int(control_signal.shape[0] // advanced_mask_weighting.shape[0])
if control_signal.shape[0] == k_ * advanced_mask_weighting.shape[0]:
advanced_mask_weighting = advanced_mask_weighting.repeat(k_, 1, 1, 1)
control_signal = control_signal * torch.nn.functional.interpolate(advanced_mask_weighting.to(control_signal), size=(H, W), mode='bilinear')
control[k][i] = control_signal * final_weight[:, None, None, None]
return control
def broadcast_image_to(tensor, target_batch_size, batched_number):
current_batch_size = tensor.shape[0]
if current_batch_size == 1:
return tensor
per_batch = target_batch_size // batched_number
tensor = tensor[:per_batch]
if per_batch > tensor.shape[0]:
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
current_batch_size = tensor.shape[0]
if current_batch_size == target_batch_size:
return tensor
else:
return torch.cat([tensor] * batched_number, dim=0)
def get_at(array, index, default=None):
return array[index] if 0 <= index < len(array) else default
class ControlBase:
def __init__(self, device=None):
self.cond_hint_original = None
self.cond_hint = None
self.strength = 1.0
self.timestep_percent_range = (0.0, 1.0)
self.global_average_pooling = False
self.timestep_range = None
self.transformer_options = {}
if device is None:
device = memory_management.get_torch_device()
self.device = device
self.previous_controlnet = None
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0)):
self.cond_hint_original = cond_hint
self.strength = strength
self.timestep_percent_range = timestep_percent_range
return self
def pre_run(self, model, percent_to_timestep_function):
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
if self.previous_controlnet is not None:
self.previous_controlnet.pre_run(model, percent_to_timestep_function)
def set_previous_controlnet(self, controlnet):
self.previous_controlnet = controlnet
return self
def cleanup(self):
if self.previous_controlnet is not None:
self.previous_controlnet.cleanup()
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
self.timestep_range = None
def get_models(self):
out = []
if self.previous_controlnet is not None:
out += self.previous_controlnet.get_models()
return out
def copy_to(self, c):
c.cond_hint_original = self.cond_hint_original
c.strength = self.strength
c.timestep_percent_range = self.timestep_percent_range
c.global_average_pooling = self.global_average_pooling
def inference_memory_requirements(self, dtype):
if self.previous_controlnet is not None:
return self.previous_controlnet.inference_memory_requirements(dtype)
return 0
def control_merge(self, control_input, control_output, control_prev, output_dtype):
out = {'input': [], 'middle': [], 'output': []}
if control_input is not None:
for i in range(len(control_input)):
key = 'input'
x = control_input[i]
if x is not None:
x *= self.strength
if x.dtype != output_dtype:
x = x.to(output_dtype)
out[key].insert(0, x)
if control_output is not None:
for i in range(len(control_output)):
if i == (len(control_output) - 1):
key = 'middle'
index = 0
else:
key = 'output'
index = i
x = control_output[i]
if x is not None:
if self.global_average_pooling:
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
x *= self.strength
if x.dtype != output_dtype:
x = x.to(output_dtype)
out[key].append(x)
out = compute_controlnet_weighting(out, self)
if control_prev is not None:
for x in ['input', 'middle', 'output']:
o = out[x]
for i in range(len(control_prev[x])):
prev_val = control_prev[x][i]
if i >= len(o):
o.append(prev_val)
elif prev_val is not None:
if o[i] is None:
o[i] = prev_val
else:
if o[i].shape[0] < prev_val.shape[0]:
o[i] = prev_val + o[i]
else:
o[i] += prev_val
return out
class ControlNet(ControlBase):
def __init__(self, control_model, global_average_pooling=False, device=None, load_device=None, manual_cast_dtype=None):
super().__init__(device)
self.control_model = control_model
self.load_device = load_device
self.control_model_wrapped = ModelPatcher(self.control_model, load_device=load_device, offload_device=memory_management.unet_offload_device())
self.global_average_pooling = global_average_pooling
self.model_sampling_current = None
self.manual_cast_dtype = manual_cast_dtype
def get_control(self, x_noisy, t, cond, batched_number):
to = self.transformer_options
for conditioning_modifier in to.get('controlnet_conditioning_modifiers', []):
x_noisy, t, cond, batched_number = conditioning_modifier(self, x_noisy, t, cond, batched_number)
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
if control_prev is not None:
return control_prev
else:
return None
dtype = self.control_model.dtype
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
output_dtype = x_noisy.dtype
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
self.cond_hint = image_resize.adaptive_resize(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
context = cond['c_crossattn']
y = cond.get('y', None)
if y is not None:
y = y.to(dtype)
timestep = self.model_sampling_current.timestep(t)
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
controlnet_model_function_wrapper = to.get('controlnet_model_function_wrapper', None)
if controlnet_model_function_wrapper is not None:
wrapper_args = dict(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(),
context=context.to(dtype), y=y)
wrapper_args['model'] = self
wrapper_args['inner_model'] = self.control_model
control = controlnet_model_function_wrapper(**wrapper_args)
else:
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint.to(self.device), timesteps=timestep.float(), context=context.to(dtype), y=y)
return self.control_merge(None, control, control_prev, output_dtype)
def copy(self):
c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
self.copy_to(c)
return c
def get_models(self):
out = super().get_models()
out.append(self.control_model_wrapped)
return out
def pre_run(self, model, percent_to_timestep_function):
super().pre_run(model, percent_to_timestep_function)
self.model_sampling_current = model.predictor
def cleanup(self):
self.model_sampling_current = None
super().cleanup()
class ControlLoraOps(ForgeOperationsWithManualCast):
class Linear(torch.nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None:
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = None
self.up = None
self.down = None
self.bias = None
def forward(self, input):
weight, bias, signal = weights_manual_cast(self, input)
with main_stream_worker(weight, bias, signal):
if self.up is not None:
return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
else:
return torch.nn.functional.linear(input, weight, bias)
class Conv2d(torch.nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
padding_mode='zeros',
device=None,
dtype=None
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.transposed = False
self.output_padding = 0
self.groups = groups
self.padding_mode = padding_mode
self.weight = None
self.bias = None
self.up = None
self.down = None
def forward(self, input):
weight, bias, signal = weights_manual_cast(self, input)
with main_stream_worker(weight, bias, signal):
if self.up is not None:
return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
else:
return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
class ControlLora(ControlNet):
def __init__(self, control_weights, global_average_pooling=False, device=None):
ControlBase.__init__(self, device)
self.control_weights = control_weights
self.global_average_pooling = global_average_pooling
def pre_run(self, model, percent_to_timestep_function):
super().pre_run(model, percent_to_timestep_function)
controlnet_config = model.diffusion_model.config.copy()
controlnet_config.pop("out_channels")
controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
controlnet_config["dtype"] = dtype = model.storage_dtype
self.manual_cast_dtype = model.computation_dtype
with using_forge_operations(operations=ControlLoraOps):
self.control_model = cldm.ControlNet(**controlnet_config)
self.control_model.to(device=memory_management.get_torch_device(), dtype=dtype)
diffusion_model = model.diffusion_model
sd = diffusion_model.state_dict()
for k in sd:
weight = sd[k]
try:
utils.set_attr(self.control_model, k, weight)
except:
pass
for k in self.control_weights:
if k not in {"lora_controlnet"}:
utils.set_attr(self.control_model, k, self.control_weights[k].to(dtype).to(memory_management.get_torch_device()))
def copy(self):
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
self.copy_to(c)
return c
def cleanup(self):
del self.control_model
self.control_model = None
super().cleanup()
def get_models(self):
out = ControlBase.get_models(self)
return out
def inference_memory_requirements(self, dtype):
return utils.calculate_parameters(self.control_weights) * memory_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
class T2IAdapter(ControlBase):
def __init__(self, t2i_model, channels_in, device=None):
super().__init__(device)
self.t2i_model = t2i_model
self.channels_in = channels_in
self.control_input = None
def scale_image_to(self, width, height):
unshuffle_amount = self.t2i_model.unshuffle_amount
width = math.ceil(width / unshuffle_amount) * unshuffle_amount
height = math.ceil(height / unshuffle_amount) * unshuffle_amount
return width, height
def get_control(self, x_noisy, t, cond, batched_number):
to = self.transformer_options
for conditioning_modifier in to.get('controlnet_conditioning_modifiers', []):
x_noisy, t, cond, batched_number = conditioning_modifier(self, x_noisy, t, cond, batched_number)
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
if control_prev is not None:
return control_prev
else:
return None
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.control_input = None
self.cond_hint = None
width, height = self.scale_image_to(x_noisy.shape[3] * 8, x_noisy.shape[2] * 8)
self.cond_hint = image_resize.adaptive_resize(self.cond_hint_original, width, height, 'nearest-exact', "center").float()
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
if self.control_input is None:
self.t2i_model.to(x_noisy.dtype)
self.t2i_model.to(self.device)
controlnet_model_function_wrapper = to.get('controlnet_model_function_wrapper', None)
if controlnet_model_function_wrapper is not None:
wrapper_args = dict(hint=self.cond_hint.to(x_noisy.dtype))
wrapper_args['model'] = self
wrapper_args['inner_model'] = self.t2i_model
wrapper_args['inner_t2i_model'] = self.t2i_model
self.control_input = controlnet_model_function_wrapper(**wrapper_args)
else:
self.control_input = self.t2i_model(self.cond_hint.to(x_noisy))
self.t2i_model.cpu()
control_input = list(map(lambda a: None if a is None else a.clone(), self.control_input))
mid = None
if self.t2i_model.xl == True:
mid = control_input[-1:]
control_input = control_input[:-1]
return self.control_merge(control_input, mid, control_prev, x_noisy.dtype)
def copy(self):
c = T2IAdapter(self.t2i_model, self.channels_in)
self.copy_to(c)
return c
def load_t2i_adapter(t2i_data):
if 'adapter' in t2i_data:
t2i_data = t2i_data['adapter']
if 'adapter.body.0.resnets.0.block1.weight' in t2i_data: # diffusers format
prefix_replace = {}
for i in range(4):
for j in range(2):
prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
prefix_replace["adapter.body.{}.".format(i, j)] = "body.{}.".format(i * 2)
prefix_replace["adapter."] = ""
t2i_data = state_dict.state_dict_prefix_replace(t2i_data, prefix_replace)
keys = t2i_data.keys()
if "body.0.in_conv.weight" in keys:
cin = t2i_data['body.0.in_conv.weight'].shape[1]
model_ad = t2i_adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
elif 'conv_in.weight' in keys:
cin = t2i_data['conv_in.weight'].shape[1]
channel = t2i_data['conv_in.weight'].shape[0]
ksize = t2i_data['body.0.block2.weight'].shape[2]
use_conv = False
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
if len(down_opts) > 0:
use_conv = True
xl = False
if cin == 256 or cin == 768:
xl = True
model_ad = t2i_adapter.Adapter(cin=cin, channels=[channel, channel * 2, channel * 4, channel * 4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
else:
return None
missing, unexpected = model_ad.load_state_dict(t2i_data)
if len(missing) > 0:
print("t2i missing", missing)
if len(unexpected) > 0:
print("t2i unexpected", unexpected)
return T2IAdapter(model_ad, model_ad.input_channels)