Files
stable-diffusion-webui-forge/backend/text_processing/engine.py
2024-08-04 12:43:31 -07:00

270 lines
9.0 KiB
Python

import math
from collections import namedtuple
import torch
from backend.text_processing import parsing, emphasis
PromptChunkFix = namedtuple('PromptChunkFix', ['offset', 'embedding'])
class PromptChunk:
def __init__(self):
self.tokens = []
self.multipliers = []
self.fixes = []
class ClassicTextProcessingEngine(torch.nn.Module):
def __init__(self, wrapped, hijack):
super().__init__()
self.chunk_length = 75
self.is_trainable = False
self.input_key = 'txt'
self.return_pooled = False
self.comma_token = None
self.hijack = hijack
self.wrapped = wrapped
self.is_trainable = getattr(wrapped, 'is_trainable', False)
self.input_key = getattr(wrapped, 'input_key', 'txt')
self.return_pooled = getattr(self.wrapped, 'return_pooled', False)
self.legacy_ucg_val = None # for sgm codebase
self.tokenizer = wrapped.tokenizer
vocab = self.tokenizer.get_vocab()
self.comma_token = vocab.get(',</w>', None)
self.token_mults = {}
tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k]
for text, ident in tokens_with_parens:
mult = 1.0
for c in text:
if c == '[':
mult /= 1.1
if c == ']':
mult *= 1.1
if c == '(':
mult *= 1.1
if c == ')':
mult /= 1.1
if mult != 1.0:
self.token_mults[ident] = mult
self.id_start = self.wrapped.tokenizer.bos_token_id
self.id_end = self.wrapped.tokenizer.eos_token_id
self.id_pad = self.id_end
def empty_chunk(self):
chunk = PromptChunk()
chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1)
chunk.multipliers = [1.0] * (self.chunk_length + 2)
return chunk
def get_target_prompt_token_count(self, token_count):
return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length
def tokenize(self, texts):
tokenized = self.wrapped.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]
return tokenized
def encode_with_transformers(self, tokens):
raise NotImplementedError
def encode_embedding_init_text(self, init_text, nvpt):
embedding_layer = self.wrapped.transformer.text_model.embeddings
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0)
return embedded
def tokenize_line(self, line):
parsed = parsing.parse_prompt_attention(line)
tokenized = self.tokenize([text for text, _ in parsed])
chunks = []
chunk = PromptChunk()
token_count = 0
last_comma = -1
def next_chunk(is_last=False):
"""puts current chunk into the list of results and produces the next one - empty;
if is_last is true, tokens <end-of-text> tokens at the end won't add to token_count"""
nonlocal token_count
nonlocal last_comma
nonlocal chunk
if is_last:
token_count += len(chunk.tokens)
else:
token_count += self.chunk_length
to_add = self.chunk_length - len(chunk.tokens)
if to_add > 0:
chunk.tokens += [self.id_end] * to_add
chunk.multipliers += [1.0] * to_add
chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end]
chunk.multipliers = [1.0] + chunk.multipliers + [1.0]
last_comma = -1
chunks.append(chunk)
chunk = PromptChunk()
for tokens, (text, weight) in zip(tokenized, parsed):
if text == 'BREAK' and weight == -1:
next_chunk()
continue
position = 0
while position < len(tokens):
token = tokens[position]
comma_padding_backtrack = 20
if token == self.comma_token:
last_comma = len(chunk.tokens)
elif comma_padding_backtrack != 0 and len(chunk.tokens) == self.chunk_length and last_comma != -1 and len(chunk.tokens) - last_comma <= comma_padding_backtrack:
break_location = last_comma + 1
reloc_tokens = chunk.tokens[break_location:]
reloc_mults = chunk.multipliers[break_location:]
chunk.tokens = chunk.tokens[:break_location]
chunk.multipliers = chunk.multipliers[:break_location]
next_chunk()
chunk.tokens = reloc_tokens
chunk.multipliers = reloc_mults
if len(chunk.tokens) == self.chunk_length:
next_chunk()
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, position)
if embedding is None:
chunk.tokens.append(token)
chunk.multipliers.append(weight)
position += 1
continue
emb_len = int(embedding.vectors)
if len(chunk.tokens) + emb_len > self.chunk_length:
next_chunk()
chunk.fixes.append(PromptChunkFix(len(chunk.tokens), embedding))
chunk.tokens += [0] * emb_len
chunk.multipliers += [weight] * emb_len
position += embedding_length_in_tokens
if chunk.tokens or not chunks:
next_chunk(is_last=True)
return chunks, token_count
def process_texts(self, texts):
token_count = 0
cache = {}
batch_chunks = []
for line in texts:
if line in cache:
chunks = cache[line]
else:
chunks, current_token_count = self.tokenize_line(line)
token_count = max(current_token_count, token_count)
cache[line] = chunks
batch_chunks.append(chunks)
return batch_chunks, token_count
def forward(self, texts):
batch_chunks, token_count = self.process_texts(texts)
used_embeddings = {}
chunk_count = max([len(x) for x in batch_chunks])
zs = []
for i in range(chunk_count):
batch_chunk = [chunks[i] if i < len(chunks) else self.empty_chunk() for chunks in batch_chunks]
tokens = [x.tokens for x in batch_chunk]
multipliers = [x.multipliers for x in batch_chunk]
self.hijack.fixes = [x.fixes for x in batch_chunk]
for fixes in self.hijack.fixes:
for _position, embedding in fixes:
used_embeddings[embedding.name] = embedding
z = self.process_tokens(tokens, multipliers)
zs.append(z)
if used_embeddings:
for name, embedding in used_embeddings.items():
print(f'Used Embedding: {name}')
# Todo:
# if opts.textual_inversion_add_hashes_to_infotext and used_embeddings:
# hashes = []
# for name, embedding in used_embeddings.items():
# shorthash = embedding.shorthash
# if not shorthash:
# continue
#
# name = name.replace(":", "").replace(",", "")
# hashes.append(f"{name}: {shorthash}")
#
# if hashes:
# if self.hijack.extra_generation_params.get("TI hashes"):
# hashes.append(self.hijack.extra_generation_params.get("TI hashes"))
# self.hijack.extra_generation_params["TI hashes"] = ", ".join(hashes)
#
# if any(x for x in texts if "(" in x or "[" in x) and opts.emphasis != "Original":
# self.hijack.extra_generation_params["Emphasis"] = opts.emphasis
if self.return_pooled:
return torch.hstack(zs), zs[0].pooled
else:
return torch.hstack(zs)
def process_tokens(self, remade_batch_tokens, batch_multipliers):
tokens = torch.asarray(remade_batch_tokens)
if self.id_end != self.id_pad:
for batch_pos in range(len(remade_batch_tokens)):
index = remade_batch_tokens[batch_pos].index(self.id_end)
tokens[batch_pos, index + 1:tokens.shape[1]] = self.id_pad
z = self.encode_with_transformers(tokens)
pooled = getattr(z, 'pooled', None)
# Todo
# e = emphasis.get_current_option(opts.emphasis)()
e = emphasis.EmphasisOriginal()
e.tokens = remade_batch_tokens
e.multipliers = torch.asarray(batch_multipliers)
e.z = z
e.after_transformers()
z = e.z
if pooled is not None:
z.pooled = pooled
return z