Files
stable-diffusion-webui-forge/backend/operations.py
2024-07-29 11:16:59 -06:00

172 lines
5.0 KiB
Python

import torch
import contextlib
from backend import stream
stash = {}
def weights_manual_cast(layer, x):
weight, bias, signal = None, None, None
non_blocking = True
if getattr(x.device, 'type', None) == 'mps':
non_blocking = False
if stream.using_stream:
with stream.stream_context()(stream.mover_stream):
if layer.bias is not None:
bias = layer.bias.to(device=x.device, dtype=x.dtype, non_blocking=non_blocking)
weight = layer.weight.to(device=x.device, dtype=x.dtype, non_blocking=non_blocking)
signal = stream.mover_stream.record_event()
else:
if layer.bias is not None:
bias = layer.bias.to(device=x.device, dtype=x.dtype, non_blocking=non_blocking)
weight = layer.weight.to(device=x.device, dtype=x.dtype, non_blocking=non_blocking)
return weight, bias, signal
@contextlib.contextmanager
def main_stream_worker(weight, bias, signal):
if not stream.using_stream or signal is None:
yield
return
with stream.stream_context()(stream.current_stream):
stream.current_stream.wait_event(signal)
yield
finished_signal = stream.current_stream.record_event()
stash[id(finished_signal)] = (weight, bias, finished_signal)
garbage = []
for k, (w, b, s) in stash.items():
if s.query():
garbage.append(k)
for k in garbage:
del stash[k]
return
def cleanup_cache():
if not stream.using_stream:
return
stream.current_stream.synchronize()
stream.mover_stream.synchronize()
stash.clear()
return
class ForgeOperations:
class Linear(torch.nn.Linear):
parameters_manual_cast = False
def reset_parameters(self):
return None
def forward(self, x):
if self.parameters_manual_cast:
weight, bias, signal = weights_manual_cast(self, x)
with main_stream_worker(weight, bias, signal):
return torch.nn.functional.linear(x, weight, bias)
else:
return super().forward(x)
class Conv2d(torch.nn.Conv2d):
parameters_manual_cast = False
def reset_parameters(self):
return None
def forward(self, x):
if self.parameters_manual_cast:
weight, bias, signal = weights_manual_cast(self, x)
with main_stream_worker(weight, bias, signal):
return self._conv_forward(x, weight, bias)
else:
return super().forward(x)
class Conv3d(torch.nn.Conv3d):
parameters_manual_cast = False
def reset_parameters(self):
return None
def forward(self, x):
if self.parameters_manual_cast:
weight, bias, signal = weights_manual_cast(self, x)
with main_stream_worker(weight, bias, signal):
return self._conv_forward(x, weight, bias)
else:
return super().forward(x)
class GroupNorm(torch.nn.GroupNorm):
parameters_manual_cast = False
def reset_parameters(self):
return None
def forward(self, x):
if self.parameters_manual_cast:
weight, bias, signal = weights_manual_cast(self, x)
with main_stream_worker(weight, bias, signal):
return torch.nn.functional.group_norm(x, self.num_groups, weight, bias, self.eps)
else:
return super().forward(x)
class LayerNorm(torch.nn.LayerNorm):
parameters_manual_cast = False
def reset_parameters(self):
return None
def forward(self, x):
if self.parameters_manual_cast:
weight, bias, signal = weights_manual_cast(self, x)
with main_stream_worker(weight, bias, signal):
return torch.nn.functional.layer_norm(x, self.normalized_shape, weight, bias, self.eps)
else:
return super().forward(x)
class ForgeOperationsWithManualCast(ForgeOperations):
class Linear(ForgeOperations.Linear):
parameters_manual_cast = True
class Conv2d(ForgeOperations.Conv2d):
parameters_manual_cast = True
class Conv3d(ForgeOperations.Conv3d):
parameters_manual_cast = True
class GroupNorm(ForgeOperations.GroupNorm):
parameters_manual_cast = True
class LayerNorm(ForgeOperations.LayerNorm):
parameters_manual_cast = True
@contextlib.contextmanager
def using_forge_operations(parameters_manual_cast=False):
operations = ForgeOperations
if parameters_manual_cast:
operations = ForgeOperationsWithManualCast
op_names = ['Linear', 'Conv2d', 'Conv3d', 'GroupNorm', 'LayerNorm']
backups = {op_name: getattr(torch.nn, op_name) for op_name in op_names}
try:
for op_name in op_names:
setattr(torch.nn, op_name, getattr(operations, op_name))
yield
finally:
for op_name in op_names:
setattr(torch.nn, op_name, backups[op_name])
return