Files
stable-diffusion-webui-forge/backend/vae/loader.py
2024-07-30 09:23:58 -06:00

42 lines
1.4 KiB
Python

from diffusers import AutoencoderKL
from backend.vae.configs.guess import guess_vae_config
from backend.state_dict import split_state_dict_with_prefix, compile_state_dict
from backend.operations import using_forge_operations
from backend.attention import AttentionProcessorForge
from diffusers.loaders.single_file_model import convert_ldm_vae_checkpoint
class BaseVAE(AutoencoderKL):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.state_dict_mapping = {}
def encode(self, x, regulation=None, mode=False):
latent_dist = super().encode(x).latent_dist
if mode:
return latent_dist.mode()
elif regulation is not None:
return regulation(latent_dist)
else:
return latent_dist.sample()
def decode(self, x):
return super().decode(x).sample
def load_vae_from_state_dict(state_dict):
config = guess_vae_config(state_dict)
with using_forge_operations():
model = BaseVAE(**config)
vae_state_dict = split_state_dict_with_prefix(state_dict, "first_stage_model.")
vae_state_dict = convert_ldm_vae_checkpoint(vae_state_dict, config)
vae_state_dict, mapping = compile_state_dict(vae_state_dict)
model.load_state_dict(vae_state_dict, strict=True)
model.set_attn_processor(AttentionProcessorForge())
model.state_dict_mapping = mapping
return model