mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2026-01-30 12:59:47 +00:00
190 lines
6.1 KiB
Python
190 lines
6.1 KiB
Python
# 1st edit by https://github.com/comfyanonymous/ComfyUI
|
|
# 2nd edit by Forge Official
|
|
|
|
|
|
import torch
|
|
import ldm_patched.modules.model_management
|
|
import contextlib
|
|
|
|
from modules_forge import stream
|
|
|
|
|
|
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14855/files
|
|
stash = {}
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def use_patched_ops(operations):
|
|
op_names = ['Linear', 'Conv2d', 'Conv3d', 'GroupNorm', 'LayerNorm']
|
|
backups = {op_name: getattr(torch.nn, op_name) for op_name in op_names}
|
|
|
|
try:
|
|
for op_name in op_names:
|
|
setattr(torch.nn, op_name, getattr(operations, op_name))
|
|
|
|
yield
|
|
|
|
finally:
|
|
for op_name in op_names:
|
|
setattr(torch.nn, op_name, backups[op_name])
|
|
return
|
|
|
|
|
|
def cast_bias_weight(s, input):
|
|
weight, bias, signal = None, None, None
|
|
non_blocking = ldm_patched.modules.model_management.device_supports_non_blocking(input.device)
|
|
|
|
if stream.using_stream:
|
|
with stream.stream_context()(stream.mover_stream):
|
|
if s.bias is not None:
|
|
bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
|
|
weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
|
|
signal = stream.mover_stream.record_event()
|
|
else:
|
|
if s.bias is not None:
|
|
bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
|
|
weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
|
|
|
|
return weight, bias, signal
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def main_stream_worker(weight, bias, signal):
|
|
if not stream.using_stream or signal is None:
|
|
yield
|
|
return
|
|
|
|
with stream.stream_context()(stream.current_stream):
|
|
stream.current_stream.wait_event(signal)
|
|
yield
|
|
finished_signal = stream.current_stream.record_event()
|
|
stash[id(finished_signal)] = (weight, bias, finished_signal)
|
|
|
|
garbage = []
|
|
for k, (w, b, s) in stash.items():
|
|
if s.query():
|
|
garbage.append(k)
|
|
|
|
for k in garbage:
|
|
del stash[k]
|
|
return
|
|
|
|
|
|
def cleanup_cache():
|
|
if not stream.using_stream:
|
|
return
|
|
|
|
stream.current_stream.synchronize()
|
|
stream.mover_stream.synchronize()
|
|
stash.clear()
|
|
return
|
|
|
|
|
|
class disable_weight_init:
|
|
class Linear(torch.nn.Linear):
|
|
parameters_manual_cast = False
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
def forward_parameters_manual_cast(self, input):
|
|
weight, bias, signal = cast_bias_weight(self, input)
|
|
with main_stream_worker(weight, bias, signal):
|
|
return torch.nn.functional.linear(input, weight, bias)
|
|
|
|
def forward(self, *args, **kwargs):
|
|
if self.parameters_manual_cast:
|
|
return self.forward_parameters_manual_cast(*args, **kwargs)
|
|
else:
|
|
return super().forward(*args, **kwargs)
|
|
|
|
class Conv2d(torch.nn.Conv2d):
|
|
parameters_manual_cast = False
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
def forward_parameters_manual_cast(self, input):
|
|
weight, bias, signal = cast_bias_weight(self, input)
|
|
with main_stream_worker(weight, bias, signal):
|
|
return self._conv_forward(input, weight, bias)
|
|
|
|
def forward(self, *args, **kwargs):
|
|
if self.parameters_manual_cast:
|
|
return self.forward_parameters_manual_cast(*args, **kwargs)
|
|
else:
|
|
return super().forward(*args, **kwargs)
|
|
|
|
class Conv3d(torch.nn.Conv3d):
|
|
parameters_manual_cast = False
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
def forward_parameters_manual_cast(self, input):
|
|
weight, bias, signal = cast_bias_weight(self, input)
|
|
with main_stream_worker(weight, bias, signal):
|
|
return self._conv_forward(input, weight, bias)
|
|
|
|
def forward(self, *args, **kwargs):
|
|
if self.parameters_manual_cast:
|
|
return self.forward_parameters_manual_cast(*args, **kwargs)
|
|
else:
|
|
return super().forward(*args, **kwargs)
|
|
|
|
class GroupNorm(torch.nn.GroupNorm):
|
|
parameters_manual_cast = False
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
def forward_parameters_manual_cast(self, input):
|
|
weight, bias, signal = cast_bias_weight(self, input)
|
|
with main_stream_worker(weight, bias, signal):
|
|
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
|
|
|
|
def forward(self, *args, **kwargs):
|
|
if self.parameters_manual_cast:
|
|
return self.forward_parameters_manual_cast(*args, **kwargs)
|
|
else:
|
|
return super().forward(*args, **kwargs)
|
|
|
|
|
|
class LayerNorm(torch.nn.LayerNorm):
|
|
parameters_manual_cast = False
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
def forward_parameters_manual_cast(self, input):
|
|
weight, bias, signal = cast_bias_weight(self, input)
|
|
with main_stream_worker(weight, bias, signal):
|
|
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
|
|
|
|
def forward(self, *args, **kwargs):
|
|
if self.parameters_manual_cast:
|
|
return self.forward_parameters_manual_cast(*args, **kwargs)
|
|
else:
|
|
return super().forward(*args, **kwargs)
|
|
|
|
@classmethod
|
|
def conv_nd(s, dims, *args, **kwargs):
|
|
if dims == 2:
|
|
return s.Conv2d(*args, **kwargs)
|
|
elif dims == 3:
|
|
return s.Conv3d(*args, **kwargs)
|
|
else:
|
|
raise ValueError(f"unsupported dimensions: {dims}")
|
|
|
|
|
|
class manual_cast(disable_weight_init):
|
|
class Linear(disable_weight_init.Linear):
|
|
parameters_manual_cast = True
|
|
|
|
class Conv2d(disable_weight_init.Conv2d):
|
|
parameters_manual_cast = True
|
|
|
|
class Conv3d(disable_weight_init.Conv3d):
|
|
parameters_manual_cast = True
|
|
|
|
class GroupNorm(disable_weight_init.GroupNorm):
|
|
parameters_manual_cast = True
|
|
|
|
class LayerNorm(disable_weight_init.LayerNorm):
|
|
parameters_manual_cast = True
|