mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2026-02-05 15:39:59 +00:00
387 lines
15 KiB
Python
387 lines
15 KiB
Python
# Single File Implementation of Flux with aggressive optimizations, Copyright Forge 2024
|
|
# If used outside Forge, only non-commercial use is allowed.
|
|
# See also https://github.com/black-forest-labs/flux
|
|
|
|
|
|
import math
|
|
import torch
|
|
|
|
from torch import nn
|
|
from einops import rearrange, repeat
|
|
from backend.attention import attention_function
|
|
|
|
|
|
def attention(q, k, v, pe):
|
|
q, k = apply_rope(q, k, pe)
|
|
x = attention_function(q, k, v, q.shape[1], skip_reshape=True)
|
|
return x
|
|
|
|
|
|
def rope(pos, dim, theta):
|
|
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
|
|
omega = 1.0 / (theta ** scale)
|
|
|
|
# out = torch.einsum("...n,d->...nd", pos, omega)
|
|
out = pos.unsqueeze(-1) * omega.unsqueeze(0)
|
|
|
|
cos_out = torch.cos(out)
|
|
sin_out = torch.sin(out)
|
|
out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
|
|
del cos_out, sin_out
|
|
|
|
# out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
|
|
b, n, d, _ = out.shape
|
|
out = out.view(b, n, d, 2, 2)
|
|
|
|
return out.float()
|
|
|
|
|
|
def apply_rope(xq, xk, freqs_cis):
|
|
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
|
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
|
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
|
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
|
del xq_, xk_
|
|
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
|
|
|
|
|
def timestep_embedding(t, dim, max_period=10000, time_factor=1000.0):
|
|
t = time_factor * t
|
|
half = dim // 2
|
|
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)
|
|
args = t[:, None].float() * freqs[None]
|
|
del freqs
|
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
|
del args
|
|
if dim % 2:
|
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
|
if torch.is_floating_point(t):
|
|
embedding = embedding.to(t)
|
|
return embedding
|
|
|
|
|
|
class EmbedND(nn.Module):
|
|
def __init__(self, dim, theta, axes_dim):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.theta = theta
|
|
self.axes_dim = axes_dim
|
|
|
|
def forward(self, ids):
|
|
n_axes = ids.shape[-1]
|
|
emb = torch.cat(
|
|
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
|
dim=-3,
|
|
)
|
|
del ids, n_axes
|
|
return emb.unsqueeze(1)
|
|
|
|
|
|
class MLPEmbedder(nn.Module):
|
|
def __init__(self, in_dim, hidden_dim):
|
|
super().__init__()
|
|
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
|
|
self.silu = nn.SiLU()
|
|
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
|
|
|
|
def forward(self, x):
|
|
x = self.silu(self.in_layer(x))
|
|
return self.out_layer(x)
|
|
|
|
|
|
class RMSNorm(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.scale = nn.Parameter(torch.ones(dim))
|
|
|
|
def forward(self, x):
|
|
to_args = dict(device=x.device, dtype=x.dtype)
|
|
x = x.float()
|
|
rrms = torch.rsqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + 1e-6)
|
|
return (x * rrms).to(**to_args) * self.scale.to(**to_args)
|
|
|
|
|
|
class QKNorm(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.query_norm = RMSNorm(dim)
|
|
self.key_norm = RMSNorm(dim)
|
|
|
|
def forward(self, q, k, v):
|
|
q = self.query_norm(q)
|
|
k = self.key_norm(k)
|
|
del v
|
|
return q.to(k), k.to(q)
|
|
|
|
|
|
class SelfAttention(nn.Module):
|
|
def __init__(self, dim, num_heads=8, qkv_bias=False):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.norm = QKNorm(head_dim)
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
def forward(self, x, pe):
|
|
qkv = self.qkv(x)
|
|
|
|
# q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
|
B, L, _ = qkv.shape
|
|
qkv = qkv.view(B, L, 3, self.num_heads, -1) # Split into Q, K, V
|
|
q, k, v = qkv.permute(2, 0, 3, 1, 4) # Rearrange to (K B H L D)
|
|
del qkv
|
|
|
|
q, k = self.norm(q, k, v)
|
|
|
|
x = attention(q, k, v, pe=pe)
|
|
del q, k, v
|
|
|
|
x = self.proj(x)
|
|
return x
|
|
|
|
|
|
class Modulation(nn.Module):
|
|
def __init__(self, dim, double):
|
|
super().__init__()
|
|
self.is_double = double
|
|
self.multiplier = 6 if double else 3
|
|
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
|
|
|
|
def forward(self, vec):
|
|
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
|
return out
|
|
|
|
|
|
class DoubleStreamBlock(nn.Module):
|
|
def __init__(self, hidden_size, num_heads, mlp_ratio, qkv_bias=False):
|
|
super().__init__()
|
|
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
|
self.num_heads = num_heads
|
|
self.hidden_size = hidden_size
|
|
self.img_mod = Modulation(hidden_size, double=True)
|
|
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
|
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
|
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
|
self.img_mlp = nn.Sequential(
|
|
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
|
nn.GELU(approximate="tanh"),
|
|
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
|
)
|
|
self.txt_mod = Modulation(hidden_size, double=True)
|
|
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
|
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
|
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
|
self.txt_mlp = nn.Sequential(
|
|
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
|
nn.GELU(approximate="tanh"),
|
|
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
|
)
|
|
|
|
def forward(self, img, txt, vec, pe):
|
|
img_mod1_shift, img_mod1_scale, img_mod1_gate, img_mod2_shift, img_mod2_scale, img_mod2_gate = self.img_mod(vec)
|
|
txt_mod1_shift, txt_mod1_scale, txt_mod1_gate, txt_mod2_shift, txt_mod2_scale, txt_mod2_gate = self.txt_mod(vec)
|
|
|
|
img_modulated = self.img_norm1(img)
|
|
img_modulated = (1 + img_mod1_scale) * img_modulated + img_mod1_shift
|
|
del img_mod1_shift, img_mod1_scale
|
|
img_qkv = self.img_attn.qkv(img_modulated)
|
|
del img_modulated
|
|
|
|
# img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
|
B, L, _ = img_qkv.shape
|
|
H = self.num_heads
|
|
D = img_qkv.shape[-1] // (3 * H)
|
|
img_q, img_k, img_v = img_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
|
|
del img_qkv
|
|
|
|
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
|
|
|
txt_modulated = self.txt_norm1(txt)
|
|
txt_modulated = (1 + txt_mod1_scale) * txt_modulated + txt_mod1_shift
|
|
del txt_mod1_shift, txt_mod1_scale
|
|
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
|
del txt_modulated
|
|
|
|
# txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
|
B, L, _ = txt_qkv.shape
|
|
txt_q, txt_k, txt_v = txt_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
|
|
del txt_qkv
|
|
|
|
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
|
|
|
q = torch.cat((txt_q, img_q), dim=2)
|
|
del txt_q, img_q
|
|
k = torch.cat((txt_k, img_k), dim=2)
|
|
del txt_k, img_k
|
|
v = torch.cat((txt_v, img_v), dim=2)
|
|
del txt_v, img_v
|
|
|
|
attn = attention(q, k, v, pe=pe)
|
|
txt_attn, img_attn = attn[:, :, :txt.shape[1], :], attn[:, :, txt.shape[1]:, :]
|
|
del attn
|
|
|
|
img = img + img_mod1_gate * self.img_attn.proj(img_attn)
|
|
del img_attn, img_mod1_gate
|
|
img = img + img_mod2_gate * self.img_mlp((1 + img_mod2_scale) * self.img_norm2(img) + img_mod2_shift)
|
|
del img_mod2_gate, img_mod2_scale, img_mod2_shift
|
|
|
|
txt = txt + txt_mod1_gate * self.txt_attn.proj(txt_attn)
|
|
del txt_attn, txt_mod1_gate
|
|
txt = txt + txt_mod2_gate * self.txt_mlp((1 + txt_mod2_scale) * self.txt_norm2(txt) + txt_mod2_shift)
|
|
del txt_mod2_gate, txt_mod2_scale, txt_mod2_shift
|
|
|
|
return img, txt
|
|
|
|
|
|
class SingleStreamBlock(nn.Module):
|
|
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, qk_scale=None):
|
|
super().__init__()
|
|
self.hidden_dim = hidden_size
|
|
self.num_heads = num_heads
|
|
head_dim = hidden_size // num_heads
|
|
self.scale = qk_scale or head_dim ** -0.5
|
|
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
|
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
|
|
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
|
|
self.norm = QKNorm(head_dim)
|
|
self.hidden_size = hidden_size
|
|
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
|
self.mlp_act = nn.GELU(approximate="tanh")
|
|
self.modulation = Modulation(hidden_size, double=False)
|
|
|
|
def forward(self, x, vec, pe):
|
|
mod_shift, mod_scale, mod_gate = self.modulation(vec)
|
|
del vec
|
|
x_mod = (1 + mod_scale) * self.pre_norm(x) + mod_shift
|
|
del mod_shift, mod_scale
|
|
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
|
del x_mod
|
|
|
|
# q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
|
qkv = qkv.view(qkv.size(0), qkv.size(1), 3, self.num_heads, self.hidden_size // self.num_heads)
|
|
q, k, v = qkv.permute(2, 0, 3, 1, 4)
|
|
del qkv
|
|
|
|
q, k = self.norm(q, k, v)
|
|
attn = attention(q, k, v, pe=pe)
|
|
del q, k, v, pe
|
|
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), dim=2))
|
|
del attn, mlp
|
|
return x + mod_gate * output
|
|
|
|
|
|
class LastLayer(nn.Module):
|
|
def __init__(self, hidden_size, patch_size, out_channels):
|
|
super().__init__()
|
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
|
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
|
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
|
|
|
|
def forward(self, x, vec):
|
|
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
|
del vec
|
|
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
|
del scale, shift
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
|
|
class IntegratedFluxTransformer2DModel(nn.Module):
|
|
def __init__(self, in_channels: int, vec_in_dim: int, context_in_dim: int, hidden_size: int, mlp_ratio: float, num_heads: int, depth: int, depth_single_blocks: int, axes_dim: list[int], theta: int, qkv_bias: bool, guidance_embed: bool):
|
|
super().__init__()
|
|
|
|
self.guidance_embed = guidance_embed
|
|
self.in_channels = in_channels * 4
|
|
self.out_channels = self.in_channels
|
|
|
|
if hidden_size % num_heads != 0:
|
|
raise ValueError(f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}")
|
|
|
|
pe_dim = hidden_size // num_heads
|
|
if sum(axes_dim) != pe_dim:
|
|
raise ValueError(f"Got {axes_dim} but expected positional dim {pe_dim}")
|
|
|
|
self.hidden_size = hidden_size
|
|
self.num_heads = num_heads
|
|
|
|
self.pe_embedder = EmbedND(dim=pe_dim, theta=theta, axes_dim=axes_dim)
|
|
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
|
|
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
|
self.vector_in = MLPEmbedder(vec_in_dim, self.hidden_size)
|
|
self.guidance_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if guidance_embed else nn.Identity()
|
|
self.txt_in = nn.Linear(context_in_dim, self.hidden_size)
|
|
|
|
self.double_blocks = nn.ModuleList(
|
|
[
|
|
DoubleStreamBlock(
|
|
self.hidden_size,
|
|
self.num_heads,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
)
|
|
for _ in range(depth)
|
|
]
|
|
)
|
|
|
|
self.single_blocks = nn.ModuleList(
|
|
[
|
|
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=mlp_ratio)
|
|
for _ in range(depth_single_blocks)
|
|
]
|
|
)
|
|
|
|
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
|
|
|
|
def inner_forward(self, img, img_ids, txt, txt_ids, timesteps, y, guidance=None):
|
|
if img.ndim != 3 or txt.ndim != 3:
|
|
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
|
img = self.img_in(img)
|
|
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype))
|
|
if self.guidance_embed:
|
|
if guidance is None:
|
|
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
|
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
|
|
vec = vec + self.vector_in(y)
|
|
txt = self.txt_in(txt)
|
|
del y, guidance
|
|
ids = torch.cat((txt_ids, img_ids), dim=1)
|
|
del txt_ids, img_ids
|
|
pe = self.pe_embedder(ids)
|
|
del ids
|
|
for block in self.double_blocks:
|
|
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
|
img = torch.cat((txt, img), 1)
|
|
for block in self.single_blocks:
|
|
img = block(img, vec=vec, pe=pe)
|
|
del pe
|
|
img = img[:, txt.shape[1]:, ...]
|
|
del txt
|
|
img = self.final_layer(img, vec)
|
|
del vec
|
|
return img
|
|
|
|
def forward(self, x, timestep, context, y, guidance, **kwargs):
|
|
bs, c, h, w = x.shape
|
|
input_device = x.device
|
|
input_dtype = x.dtype
|
|
patch_size = 2
|
|
pad_h = (patch_size - x.shape[-2] % patch_size) % patch_size
|
|
pad_w = (patch_size - x.shape[-1] % patch_size) % patch_size
|
|
x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode="circular")
|
|
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
|
del x, pad_h, pad_w
|
|
h_len = ((h + (patch_size // 2)) // patch_size)
|
|
w_len = ((w + (patch_size // 2)) // patch_size)
|
|
img_ids = torch.zeros((h_len, w_len, 3), device=input_device, dtype=input_dtype)
|
|
img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=input_device, dtype=input_dtype)[:, None]
|
|
img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=input_device, dtype=input_dtype)[None, :]
|
|
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
|
txt_ids = torch.zeros((bs, context.shape[1], 3), device=input_device, dtype=input_dtype)
|
|
del input_device, input_dtype
|
|
out = self.inner_forward(img, img_ids, context, txt_ids, timestep, y, guidance)
|
|
del img, img_ids, txt_ids, timestep, context
|
|
out = rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:, :, :h, :w]
|
|
del h_len, w_len, bs
|
|
return out
|