Files
stable-diffusion-webui-forge/modules_forge/forge_loader.py
lllyasviel b781e7f80f i
2024-01-25 03:45:58 -08:00

93 lines
3.5 KiB
Python

import torch
import contextlib
from ldm_patched.modules import model_management
from ldm_patched.modules import model_detection
from ldm_patched.modules.sd import VAE
import ldm_patched.modules.model_patcher
import ldm_patched.modules.utils
from omegaconf import OmegaConf
from modules.sd_models_config import find_checkpoint_config
from ldm.util import instantiate_from_config
import open_clip
from transformers import CLIPTextModel, CLIPTokenizer
class FakeObject(torch.nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
self.visual = None
return
@contextlib.contextmanager
def no_clip():
backup_openclip = open_clip.create_model_and_transforms
backup_CLIPTextModel = CLIPTextModel.from_pretrained
backup_CLIPTokenizer = CLIPTokenizer.from_pretrained
try:
open_clip.create_model_and_transforms = lambda *args, **kwargs: (FakeObject(), None, None)
CLIPTextModel.from_pretrained = lambda *args, **kwargs: FakeObject()
CLIPTokenizer.from_pretrained = lambda *args, **kwargs: FakeObject()
yield
finally:
open_clip.create_model_and_transforms = backup_openclip
CLIPTextModel.from_pretrained = backup_CLIPTextModel
CLIPTokenizer.from_pretrained = backup_CLIPTokenizer
return
def load_model_for_a1111(timer, checkpoint_info=None, state_dict=None):
a1111_config = find_checkpoint_config(state_dict, checkpoint_info)
a1111_config = OmegaConf.load(a1111_config)
timer.record("forge solving config")
if hasattr(a1111_config.model.params, 'network_config'):
a1111_config.model.params.network_config.target = 'modules_forge.forge_loader.FakeObject'
if hasattr(a1111_config.model.params, 'unet_config'):
a1111_config.model.params.unet_config.target = 'modules_forge.forge_loader.FakeObject'
if hasattr(a1111_config.model.params, 'first_stage_config'):
a1111_config.model.params.first_stage_config.target = 'modules_forge.forge_loader.FakeObject'
with no_clip():
sd_model = instantiate_from_config(a1111_config.model)
timer.record("forge instantiate config")
return
def load_unet_and_vae(sd):
parameters = ldm_patched.modules.utils.calculate_parameters(sd, "model.diffusion_model.")
unet_dtype = model_management.unet_dtype(model_params=parameters)
load_device = model_management.get_torch_device()
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device)
model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", unet_dtype)
model_config.set_manual_cast(manual_cast_dtype)
if model_config is None:
raise RuntimeError("ERROR: Could not detect model type of")
initial_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
model = model_config.get_model(sd, "model.diffusion_model.", device=initial_load_device)
model.load_model_weights(sd, "model.diffusion_model.")
model_patcher = ldm_patched.modules.model_patcher.ModelPatcher(model,
load_device=load_device,
offload_device=model_management.unet_offload_device(),
current_device=initial_load_device)
vae_sd = ldm_patched.modules.utils.state_dict_prefix_replace(sd, {"first_stage_model.": ""}, filter_keys=True)
vae_sd = model_config.process_vae_state_dict(vae_sd)
vae_patcher = VAE(sd=vae_sd)
return model_patcher, vae_patcher