Files
stable-diffusion-webui-forge/backend/patcher/lora.py
layerdiffusion a0849953bd revise
2024-08-13 15:13:39 -07:00

241 lines
10 KiB
Python

import torch
import packages_3rdparty.webui_lora_collection.lora as lora_utils_webui
import packages_3rdparty.comfyui_lora_collection.lora as lora_utils_comfyui
from backend import memory_management
class ForgeLoraCollection:
# TODO
pass
extra_weight_calculators = {}
lora_utils_forge = ForgeLoraCollection()
lora_collection_priority = [lora_utils_forge, lora_utils_webui, lora_utils_comfyui]
def get_function(function_name: str):
for lora_collection in lora_collection_priority:
if hasattr(lora_collection, function_name):
return getattr(lora_collection, function_name)
def load_lora(lora, to_load):
patch_dict, remaining_dict = get_function('load_lora')(lora, to_load)
return patch_dict, remaining_dict
def model_lora_keys_clip(model, key_map={}):
return get_function('model_lora_keys_clip')(model, key_map)
def model_lora_keys_unet(model, key_map={}):
return get_function('model_lora_keys_unet')(model, key_map)
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength):
dora_scale = memory_management.cast_to_device(dora_scale, weight.device, torch.float32)
lora_diff *= alpha
weight_calc = weight + lora_diff.type(weight.dtype)
weight_norm = (
weight_calc.transpose(0, 1)
.reshape(weight_calc.shape[1], -1)
.norm(dim=1, keepdim=True)
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
.transpose(0, 1)
)
weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
if strength != 1.0:
weight_calc -= weight
weight += strength * weight_calc
else:
weight[:] = weight_calc
return weight
def merge_lora_to_model_weight(patches, weight, key):
for p in patches:
strength = p[0]
v = p[1]
strength_model = p[2]
offset = p[3]
function = p[4]
if function is None:
function = lambda a: a
old_weight = None
if offset is not None:
old_weight = weight
weight = weight.narrow(offset[0], offset[1], offset[2])
if strength_model != 1.0:
weight *= strength_model
if isinstance(v, list):
v = (calculate_weight(v[1:], v[0].clone(), key),)
patch_type = ''
if len(v) == 1:
patch_type = "diff"
elif len(v) == 2:
patch_type = v[0]
v = v[1]
if patch_type == "diff":
w1 = v[0]
if strength != 0.0:
if w1.shape != weight.shape:
if w1.ndim == weight.ndim == 4:
new_shape = [max(n, m) for n, m in zip(weight.shape, w1.shape)]
print(f'Merged with {key} channel changed to {new_shape}')
new_diff = strength * memory_management.cast_to_device(w1, weight.device, weight.dtype)
new_weight = torch.zeros(size=new_shape).to(weight)
new_weight[:weight.shape[0], :weight.shape[1], :weight.shape[2], :weight.shape[3]] = weight
new_weight[:new_diff.shape[0], :new_diff.shape[1], :new_diff.shape[2], :new_diff.shape[3]] += new_diff
new_weight = new_weight.contiguous().clone()
weight = new_weight
else:
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
else:
weight += strength * memory_management.cast_to_device(w1, weight.device, weight.dtype)
elif patch_type == "lora":
mat1 = memory_management.cast_to_device(v[0], weight.device, torch.float32)
mat2 = memory_management.cast_to_device(v[1], weight.device, torch.float32)
dora_scale = v[4]
if v[2] is not None:
alpha = v[2] / mat2.shape[0]
else:
alpha = 1.0
if v[3] is not None:
mat3 = memory_management.cast_to_device(v[3], weight.device, torch.float32)
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
try:
lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
if dora_scale is not None:
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength))
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
print("ERROR {} {} {}".format(patch_type, key, e))
elif patch_type == "lokr":
w1 = v[0]
w2 = v[1]
w1_a = v[3]
w1_b = v[4]
w2_a = v[5]
w2_b = v[6]
t2 = v[7]
dora_scale = v[8]
dim = None
if w1 is None:
dim = w1_b.shape[0]
w1 = torch.mm(memory_management.cast_to_device(w1_a, weight.device, torch.float32),
memory_management.cast_to_device(w1_b, weight.device, torch.float32))
else:
w1 = memory_management.cast_to_device(w1, weight.device, torch.float32)
if w2 is None:
dim = w2_b.shape[0]
if t2 is None:
w2 = torch.mm(memory_management.cast_to_device(w2_a, weight.device, torch.float32),
memory_management.cast_to_device(w2_b, weight.device, torch.float32))
else:
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
memory_management.cast_to_device(t2, weight.device, torch.float32),
memory_management.cast_to_device(w2_b, weight.device, torch.float32),
memory_management.cast_to_device(w2_a, weight.device, torch.float32))
else:
w2 = memory_management.cast_to_device(w2, weight.device, torch.float32)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
if v[2] is not None and dim is not None:
alpha = v[2] / dim
else:
alpha = 1.0
try:
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
if dora_scale is not None:
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength))
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
print("ERROR {} {} {}".format(patch_type, key, e))
elif patch_type == "loha":
w1a = v[0]
w1b = v[1]
if v[2] is not None:
alpha = v[2] / w1b.shape[0]
else:
alpha = 1.0
w2a = v[3]
w2b = v[4]
dora_scale = v[7]
if v[5] is not None:
t1 = v[5]
t2 = v[6]
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
memory_management.cast_to_device(t1, weight.device, torch.float32),
memory_management.cast_to_device(w1b, weight.device, torch.float32),
memory_management.cast_to_device(w1a, weight.device, torch.float32))
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
memory_management.cast_to_device(t2, weight.device, torch.float32),
memory_management.cast_to_device(w2b, weight.device, torch.float32),
memory_management.cast_to_device(w2a, weight.device, torch.float32))
else:
m1 = torch.mm(memory_management.cast_to_device(w1a, weight.device, torch.float32),
memory_management.cast_to_device(w1b, weight.device, torch.float32))
m2 = torch.mm(memory_management.cast_to_device(w2a, weight.device, torch.float32),
memory_management.cast_to_device(w2b, weight.device, torch.float32))
try:
lora_diff = (m1 * m2).reshape(weight.shape)
if dora_scale is not None:
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength))
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
print("ERROR {} {} {}".format(patch_type, key, e))
elif patch_type == "glora":
if v[4] is not None:
alpha = v[4] / v[0].shape[0]
else:
alpha = 1.0
dora_scale = v[5]
a1 = memory_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32)
a2 = memory_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32)
b1 = memory_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32)
b2 = memory_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32)
try:
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)).reshape(weight.shape)
if dora_scale is not None:
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength))
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
print("ERROR {} {} {}".format(patch_type, key, e))
elif patch_type in extra_weight_calculators:
weight = extra_weight_calculators[patch_type](weight, strength, v)
else:
print("patch type not recognized {} {}".format(patch_type, key))
if old_weight is not None:
weight = old_weight
return weight