mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2026-02-11 02:19:59 +00:00
78 lines
2.3 KiB
Python
78 lines
2.3 KiB
Python
import gguf
|
|
import torch
|
|
|
|
|
|
quants_mapping = {
|
|
gguf.GGMLQuantizationType.Q4_0: gguf.Q4_0,
|
|
gguf.GGMLQuantizationType.Q4_1: gguf.Q4_1,
|
|
gguf.GGMLQuantizationType.Q5_0: gguf.Q5_0,
|
|
gguf.GGMLQuantizationType.Q5_1: gguf.Q5_1,
|
|
gguf.GGMLQuantizationType.Q8_0: gguf.Q8_0,
|
|
}
|
|
|
|
|
|
class ParameterGGUF(torch.nn.Parameter):
|
|
def __init__(self, tensor=None, requires_grad=False, no_init=False):
|
|
super().__init__()
|
|
self.is_gguf = True
|
|
|
|
if no_init:
|
|
return
|
|
|
|
self.gguf_type = tensor.tensor_type
|
|
self.gguf_real_shape = torch.Size(reversed(list(tensor.shape)))
|
|
self.gguf_cls = quants_mapping.get(self.gguf_type, None)
|
|
|
|
@property
|
|
def shape(self):
|
|
return self.gguf_real_shape
|
|
|
|
def __new__(cls, tensor=None, requires_grad=False, no_init=False):
|
|
return super().__new__(cls, torch.tensor(tensor.data), requires_grad=requires_grad)
|
|
|
|
def to(self, *args, **kwargs):
|
|
new = ParameterGGUF(self.data.to(*args, **kwargs), no_init=True)
|
|
new.gguf_type = self.gguf_type
|
|
new.gguf_real_shape = self.gguf_real_shape
|
|
new.gguf_cls = self.gguf_cls
|
|
return new
|
|
|
|
def pin_memory(self, device=None):
|
|
new = ParameterGGUF(torch.Tensor.pin_memory(self, device=device), no_init=True)
|
|
new.gguf_type = self.gguf_type
|
|
new.gguf_real_shape = self.gguf_real_shape
|
|
new.gguf_cls = self.gguf_cls
|
|
return new
|
|
|
|
@classmethod
|
|
def make(cls, data, gguf_type, gguf_cls, gguf_real_shape):
|
|
new = ParameterGGUF(data, no_init=True)
|
|
new.gguf_type = gguf_type
|
|
new.gguf_real_shape = gguf_real_shape
|
|
new.gguf_cls = gguf_cls
|
|
return new
|
|
|
|
|
|
def functional_linear_gguf(x, weight, bias=None):
|
|
target_dtype = x.dtype
|
|
weight = dequantize_tensor(weight).to(target_dtype)
|
|
bias = dequantize_tensor(bias).to(target_dtype)
|
|
return torch.nn.functional.linear(x, weight, bias)
|
|
|
|
|
|
def dequantize_tensor(tensor):
|
|
if tensor is None:
|
|
return None
|
|
|
|
if not hasattr(tensor, 'gguf_cls'):
|
|
return tensor
|
|
|
|
data = torch.tensor(tensor.data)
|
|
gguf_cls = tensor.gguf_cls
|
|
gguf_real_shape = tensor.gguf_real_shape
|
|
|
|
if gguf_cls is None:
|
|
return data
|
|
|
|
return gguf_cls.dequantize_pytorch(data, gguf_real_shape)
|