mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2026-02-06 16:09:58 +00:00
397 lines
16 KiB
Python
397 lines
16 KiB
Python
import torch
|
|
import time
|
|
|
|
import packages_3rdparty.webui_lora_collection.lora as lora_utils_webui
|
|
import packages_3rdparty.comfyui_lora_collection.lora as lora_utils_comfyui
|
|
|
|
from tqdm import tqdm
|
|
from backend import memory_management, utils, operations
|
|
|
|
|
|
class ForgeLoraCollection:
|
|
# TODO
|
|
pass
|
|
|
|
|
|
extra_weight_calculators = {}
|
|
|
|
lora_utils_forge = ForgeLoraCollection()
|
|
|
|
lora_collection_priority = [lora_utils_forge, lora_utils_webui, lora_utils_comfyui]
|
|
|
|
|
|
def get_function(function_name: str):
|
|
for lora_collection in lora_collection_priority:
|
|
if hasattr(lora_collection, function_name):
|
|
return getattr(lora_collection, function_name)
|
|
|
|
|
|
def load_lora(lora, to_load):
|
|
patch_dict, remaining_dict = get_function('load_lora')(lora, to_load)
|
|
return patch_dict, remaining_dict
|
|
|
|
|
|
def model_lora_keys_clip(model, key_map={}):
|
|
return get_function('model_lora_keys_clip')(model, key_map)
|
|
|
|
|
|
def model_lora_keys_unet(model, key_map={}):
|
|
return get_function('model_lora_keys_unet')(model, key_map)
|
|
|
|
|
|
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength):
|
|
dora_scale = memory_management.cast_to_device(dora_scale, weight.device, torch.float32)
|
|
lora_diff *= alpha
|
|
weight_calc = weight + lora_diff.type(weight.dtype)
|
|
weight_norm = (
|
|
weight_calc.transpose(0, 1)
|
|
.reshape(weight_calc.shape[1], -1)
|
|
.norm(dim=1, keepdim=True)
|
|
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
|
|
.transpose(0, 1)
|
|
)
|
|
|
|
weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
|
|
if strength != 1.0:
|
|
weight_calc -= weight
|
|
weight += strength * weight_calc
|
|
else:
|
|
weight[:] = weight_calc
|
|
return weight
|
|
|
|
|
|
def merge_lora_to_model_weight(patches, weight, key):
|
|
for p in patches:
|
|
strength = p[0]
|
|
v = p[1]
|
|
strength_model = p[2]
|
|
offset = p[3]
|
|
function = p[4]
|
|
if function is None:
|
|
function = lambda a: a
|
|
|
|
old_weight = None
|
|
if offset is not None:
|
|
old_weight = weight
|
|
weight = weight.narrow(offset[0], offset[1], offset[2])
|
|
|
|
if strength_model != 1.0:
|
|
weight *= strength_model
|
|
|
|
if isinstance(v, list):
|
|
v = (merge_lora_to_model_weight(v[1:], v[0].clone(), key),)
|
|
|
|
patch_type = ''
|
|
|
|
if len(v) == 1:
|
|
patch_type = "diff"
|
|
elif len(v) == 2:
|
|
patch_type = v[0]
|
|
v = v[1]
|
|
|
|
if patch_type == "diff":
|
|
w1 = v[0]
|
|
if strength != 0.0:
|
|
if w1.shape != weight.shape:
|
|
if w1.ndim == weight.ndim == 4:
|
|
new_shape = [max(n, m) for n, m in zip(weight.shape, w1.shape)]
|
|
print(f'Merged with {key} channel changed to {new_shape}')
|
|
new_diff = strength * memory_management.cast_to_device(w1, weight.device, weight.dtype)
|
|
new_weight = torch.zeros(size=new_shape).to(weight)
|
|
new_weight[:weight.shape[0], :weight.shape[1], :weight.shape[2], :weight.shape[3]] = weight
|
|
new_weight[:new_diff.shape[0], :new_diff.shape[1], :new_diff.shape[2], :new_diff.shape[3]] += new_diff
|
|
new_weight = new_weight.contiguous().clone()
|
|
weight = new_weight
|
|
else:
|
|
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
|
|
else:
|
|
weight += strength * memory_management.cast_to_device(w1, weight.device, weight.dtype)
|
|
elif patch_type == "lora":
|
|
mat1 = memory_management.cast_to_device(v[0], weight.device, torch.float32)
|
|
mat2 = memory_management.cast_to_device(v[1], weight.device, torch.float32)
|
|
dora_scale = v[4]
|
|
if v[2] is not None:
|
|
alpha = v[2] / mat2.shape[0]
|
|
else:
|
|
alpha = 1.0
|
|
|
|
if v[3] is not None:
|
|
mat3 = memory_management.cast_to_device(v[3], weight.device, torch.float32)
|
|
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
|
|
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
|
|
try:
|
|
lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
|
|
if dora_scale is not None:
|
|
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength))
|
|
else:
|
|
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
|
except Exception as e:
|
|
print("ERROR {} {} {}".format(patch_type, key, e))
|
|
raise e
|
|
elif patch_type == "lokr":
|
|
w1 = v[0]
|
|
w2 = v[1]
|
|
w1_a = v[3]
|
|
w1_b = v[4]
|
|
w2_a = v[5]
|
|
w2_b = v[6]
|
|
t2 = v[7]
|
|
dora_scale = v[8]
|
|
dim = None
|
|
|
|
if w1 is None:
|
|
dim = w1_b.shape[0]
|
|
w1 = torch.mm(memory_management.cast_to_device(w1_a, weight.device, torch.float32),
|
|
memory_management.cast_to_device(w1_b, weight.device, torch.float32))
|
|
else:
|
|
w1 = memory_management.cast_to_device(w1, weight.device, torch.float32)
|
|
|
|
if w2 is None:
|
|
dim = w2_b.shape[0]
|
|
if t2 is None:
|
|
w2 = torch.mm(memory_management.cast_to_device(w2_a, weight.device, torch.float32),
|
|
memory_management.cast_to_device(w2_b, weight.device, torch.float32))
|
|
else:
|
|
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
|
memory_management.cast_to_device(t2, weight.device, torch.float32),
|
|
memory_management.cast_to_device(w2_b, weight.device, torch.float32),
|
|
memory_management.cast_to_device(w2_a, weight.device, torch.float32))
|
|
else:
|
|
w2 = memory_management.cast_to_device(w2, weight.device, torch.float32)
|
|
|
|
if len(w2.shape) == 4:
|
|
w1 = w1.unsqueeze(2).unsqueeze(2)
|
|
if v[2] is not None and dim is not None:
|
|
alpha = v[2] / dim
|
|
else:
|
|
alpha = 1.0
|
|
|
|
try:
|
|
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
|
|
if dora_scale is not None:
|
|
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength))
|
|
else:
|
|
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
|
except Exception as e:
|
|
print("ERROR {} {} {}".format(patch_type, key, e))
|
|
raise e
|
|
elif patch_type == "loha":
|
|
w1a = v[0]
|
|
w1b = v[1]
|
|
if v[2] is not None:
|
|
alpha = v[2] / w1b.shape[0]
|
|
else:
|
|
alpha = 1.0
|
|
|
|
w2a = v[3]
|
|
w2b = v[4]
|
|
dora_scale = v[7]
|
|
if v[5] is not None:
|
|
t1 = v[5]
|
|
t2 = v[6]
|
|
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
|
|
memory_management.cast_to_device(t1, weight.device, torch.float32),
|
|
memory_management.cast_to_device(w1b, weight.device, torch.float32),
|
|
memory_management.cast_to_device(w1a, weight.device, torch.float32))
|
|
|
|
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
|
memory_management.cast_to_device(t2, weight.device, torch.float32),
|
|
memory_management.cast_to_device(w2b, weight.device, torch.float32),
|
|
memory_management.cast_to_device(w2a, weight.device, torch.float32))
|
|
else:
|
|
m1 = torch.mm(memory_management.cast_to_device(w1a, weight.device, torch.float32),
|
|
memory_management.cast_to_device(w1b, weight.device, torch.float32))
|
|
m2 = torch.mm(memory_management.cast_to_device(w2a, weight.device, torch.float32),
|
|
memory_management.cast_to_device(w2b, weight.device, torch.float32))
|
|
|
|
try:
|
|
lora_diff = (m1 * m2).reshape(weight.shape)
|
|
if dora_scale is not None:
|
|
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength))
|
|
else:
|
|
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
|
except Exception as e:
|
|
print("ERROR {} {} {}".format(patch_type, key, e))
|
|
raise e
|
|
elif patch_type == "glora":
|
|
if v[4] is not None:
|
|
alpha = v[4] / v[0].shape[0]
|
|
else:
|
|
alpha = 1.0
|
|
|
|
dora_scale = v[5]
|
|
|
|
a1 = memory_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32)
|
|
a2 = memory_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32)
|
|
b1 = memory_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32)
|
|
b2 = memory_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32)
|
|
|
|
try:
|
|
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)).reshape(weight.shape)
|
|
if dora_scale is not None:
|
|
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength))
|
|
else:
|
|
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
|
except Exception as e:
|
|
print("ERROR {} {} {}".format(patch_type, key, e))
|
|
raise e
|
|
elif patch_type in extra_weight_calculators:
|
|
weight = extra_weight_calculators[patch_type](weight, strength, v)
|
|
else:
|
|
print("patch type not recognized {} {}".format(patch_type, key))
|
|
|
|
if old_weight is not None:
|
|
weight = old_weight
|
|
|
|
return weight
|
|
|
|
|
|
class LoraLoader:
|
|
def __init__(self, model):
|
|
self.model = model
|
|
self.patches = {}
|
|
self.backup = {}
|
|
self.dirty = False
|
|
|
|
def clear_patches(self):
|
|
self.patches.clear()
|
|
self.dirty = True
|
|
return
|
|
|
|
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
|
|
p = set()
|
|
model_sd = self.model.state_dict()
|
|
|
|
for k in patches:
|
|
offset = None
|
|
function = None
|
|
|
|
if isinstance(k, str):
|
|
key = k
|
|
else:
|
|
offset = k[1]
|
|
key = k[0]
|
|
if len(k) > 2:
|
|
function = k[2]
|
|
|
|
if key in model_sd:
|
|
p.add(k)
|
|
current_patches = self.patches.get(key, [])
|
|
current_patches.append((strength_patch, patches[k], strength_model, offset, function))
|
|
self.patches[key] = current_patches
|
|
|
|
self.dirty = True
|
|
return list(p)
|
|
|
|
def refresh(self, target_device=None, offload_device=torch.device('cpu')):
|
|
if not self.dirty:
|
|
return
|
|
|
|
self.dirty = False
|
|
|
|
execution_start_time = time.perf_counter()
|
|
|
|
# Restore
|
|
|
|
for k, w in self.backup.items():
|
|
if target_device is not None:
|
|
w = w.to(device=target_device)
|
|
|
|
if not isinstance(w, torch.nn.Parameter):
|
|
# In very few cases
|
|
w = torch.nn.Parameter(w, requires_grad=False)
|
|
|
|
utils.set_attr_raw(self.model, k, w)
|
|
|
|
self.backup = {}
|
|
|
|
# Patch
|
|
|
|
for key, current_patches in (tqdm(self.patches.items(), desc=f'Patching LoRAs for {type(self.model).__name__}') if len(self.patches) > 0 else self.patches):
|
|
try:
|
|
parent_layer, weight = utils.get_attr_with_parent(self.model, key)
|
|
assert isinstance(weight, torch.nn.Parameter)
|
|
except:
|
|
raise ValueError(f"Wrong LoRA Key: {key}")
|
|
|
|
if key not in self.backup:
|
|
self.backup[key] = weight.to(device=offload_device)
|
|
|
|
bnb_layer = None
|
|
|
|
if operations.bnb_avaliable:
|
|
if hasattr(weight, 'bnb_quantized'):
|
|
bnb_layer = parent_layer
|
|
if weight.bnb_quantized:
|
|
weight_original_device = weight.device
|
|
|
|
if target_device is not None:
|
|
assert target_device.type == 'cuda', 'BNB Must use CUDA!'
|
|
weight = weight.to(target_device)
|
|
else:
|
|
weight = weight.cuda()
|
|
|
|
from backend.operations_bnb import functional_dequantize_4bit
|
|
weight = functional_dequantize_4bit(weight)
|
|
|
|
if target_device is None:
|
|
weight = weight.to(device=weight_original_device)
|
|
else:
|
|
weight = weight.data
|
|
|
|
if target_device is not None:
|
|
try:
|
|
weight = weight.to(device=target_device)
|
|
except:
|
|
print('Moving layer weight failed. Retrying by offloading models.')
|
|
self.model.to(device=offload_device)
|
|
memory_management.soft_empty_cache()
|
|
weight = weight.to(device=target_device)
|
|
|
|
gguf_cls, gguf_type, gguf_real_shape = None, None, None
|
|
|
|
if hasattr(weight, 'is_gguf'):
|
|
from backend.operations_gguf import dequantize_tensor
|
|
gguf_cls = weight.gguf_cls
|
|
gguf_type = weight.gguf_type
|
|
gguf_real_shape = weight.gguf_real_shape
|
|
weight = dequantize_tensor(weight)
|
|
|
|
weight_original_dtype = weight.dtype
|
|
|
|
try:
|
|
weight = weight.to(dtype=torch.float32)
|
|
weight = merge_lora_to_model_weight(current_patches, weight, key).to(dtype=weight_original_dtype)
|
|
except:
|
|
print('Patching LoRA weights failed. Retrying by offloading models.')
|
|
self.model.to(device=offload_device)
|
|
memory_management.soft_empty_cache()
|
|
weight = weight.to(dtype=torch.float32)
|
|
weight = merge_lora_to_model_weight(current_patches, weight, key).to(dtype=weight_original_dtype)
|
|
|
|
if bnb_layer is not None:
|
|
bnb_layer.reload_weight(weight)
|
|
continue
|
|
|
|
if gguf_cls is not None:
|
|
from backend.operations_gguf import ParameterGGUF
|
|
weight = gguf_cls.quantize_pytorch(weight, gguf_real_shape)
|
|
utils.set_attr_raw(self.model, key, ParameterGGUF.make(
|
|
data=weight,
|
|
gguf_type=gguf_type,
|
|
gguf_cls=gguf_cls,
|
|
gguf_real_shape=gguf_real_shape
|
|
))
|
|
continue
|
|
|
|
utils.set_attr_raw(self.model, key, torch.nn.Parameter(weight, requires_grad=False))
|
|
|
|
# Time
|
|
|
|
moving_time = time.perf_counter() - execution_start_time
|
|
|
|
if moving_time > 0.1:
|
|
print(f'LoRA patching has taken {moving_time:.2f} seconds')
|
|
|
|
return
|