mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2026-01-26 10:59:47 +00:00
764 lines
32 KiB
Python
764 lines
32 KiB
Python
import math
|
|
import torch
|
|
from torch import nn
|
|
from einops import rearrange, repeat
|
|
from backend.attention import attention_function
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
|
|
|
|
def checkpoint(f, args, parameters, enable=False):
|
|
if enable:
|
|
raise NotImplementedError('Gradient Checkpointing is not implemented.')
|
|
return f(*args)
|
|
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
|
|
def default(val, d):
|
|
if exists(val):
|
|
return val
|
|
return d
|
|
|
|
|
|
def conv_nd(dims, *args, **kwargs):
|
|
if dims == 2:
|
|
return nn.Conv2d(*args, **kwargs)
|
|
elif dims == 3:
|
|
return nn.Conv3d(*args, **kwargs)
|
|
else:
|
|
raise ValueError(f"unsupported dimensions: {dims}")
|
|
|
|
|
|
def avg_pool_nd(dims, *args, **kwargs):
|
|
if dims == 1:
|
|
return nn.AvgPool1d(*args, **kwargs)
|
|
elif dims == 2:
|
|
return nn.AvgPool2d(*args, **kwargs)
|
|
elif dims == 3:
|
|
return nn.AvgPool3d(*args, **kwargs)
|
|
raise ValueError(f"unsupported dimensions: {dims}")
|
|
|
|
|
|
def apply_control(h, control, name):
|
|
if control is not None and name in control and len(control[name]) > 0:
|
|
ctrl = control[name].pop()
|
|
if ctrl is not None:
|
|
try:
|
|
h += ctrl
|
|
except:
|
|
print("warning control could not be applied", h.shape, ctrl.shape)
|
|
return h
|
|
|
|
|
|
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
|
# Consistent with Kohya to reduce differences between model training and inference.
|
|
# Will be 0.005% slower than ComfyUI but Forge outweigh image quality than speed.
|
|
if not repeat_only:
|
|
half = dim // 2
|
|
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(device=timesteps.device)
|
|
args = timesteps[:, None].float() * freqs[None]
|
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
|
if dim % 2:
|
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
|
else:
|
|
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
|
return embedding
|
|
|
|
|
|
class TimestepBlock(nn.Module):
|
|
pass
|
|
|
|
|
|
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
|
def forward(self, x, emb, context=None, transformer_options={}, output_shape=None):
|
|
block_inner_modifiers = transformer_options.get("block_inner_modifiers", [])
|
|
for layer_index, layer in enumerate(self):
|
|
for modifier in block_inner_modifiers:
|
|
x = modifier(x, 'before', layer, layer_index, self, transformer_options)
|
|
if isinstance(layer, TimestepBlock):
|
|
x = layer(x, emb, transformer_options)
|
|
elif isinstance(layer, SpatialTransformer):
|
|
x = layer(x, context, transformer_options)
|
|
if "transformer_index" in transformer_options:
|
|
transformer_options["transformer_index"] += 1
|
|
elif isinstance(layer, Upsample):
|
|
x = layer(x, output_shape=output_shape)
|
|
else:
|
|
x = layer(x)
|
|
for modifier in block_inner_modifiers:
|
|
x = modifier(x, 'after', layer, layer_index, self, transformer_options)
|
|
return x
|
|
|
|
|
|
class Timestep(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.dim = dim
|
|
|
|
def forward(self, t):
|
|
return timestep_embedding(t, self.dim)
|
|
|
|
|
|
class GEGLU(nn.Module):
|
|
def __init__(self, dim_in, dim_out):
|
|
super().__init__()
|
|
self.proj = nn.Linear(dim_in, dim_out * 2)
|
|
|
|
def forward(self, x):
|
|
x, gate = self.proj(x).chunk(2, dim=-1)
|
|
return x * torch.nn.functional.gelu(gate)
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
|
super().__init__()
|
|
inner_dim = int(dim * mult)
|
|
dim_out = default(dim_out, dim)
|
|
project_in = nn.Sequential(
|
|
nn.Linear(dim, inner_dim),
|
|
nn.GELU()
|
|
) if not glu else GEGLU(dim, inner_dim)
|
|
self.net = nn.Sequential(
|
|
project_in,
|
|
nn.Dropout(dropout),
|
|
nn.Linear(inner_dim, dim_out)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
|
|
class CrossAttention(nn.Module):
|
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
|
super().__init__()
|
|
inner_dim = dim_head * heads
|
|
context_dim = default(context_dim, query_dim)
|
|
self.heads = heads
|
|
self.dim_head = dim_head
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
|
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
|
|
|
def forward(self, x, context=None, value=None, mask=None, transformer_options={}):
|
|
q = self.to_q(x)
|
|
context = default(context, x)
|
|
k = self.to_k(context)
|
|
if value is not None:
|
|
v = self.to_v(value)
|
|
del value
|
|
else:
|
|
v = self.to_v(context)
|
|
out = attention_function(q, k, v, self.heads, mask)
|
|
return self.to_out(out)
|
|
|
|
|
|
class BasicTransformerBlock(nn.Module):
|
|
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False,
|
|
inner_dim=None, disable_self_attn=False):
|
|
super().__init__()
|
|
self.ff_in = ff_in or inner_dim is not None
|
|
if inner_dim is None:
|
|
inner_dim = dim
|
|
self.is_res = inner_dim == dim
|
|
if self.ff_in:
|
|
self.norm_in = nn.LayerNorm(dim)
|
|
self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff)
|
|
self.disable_self_attn = disable_self_attn
|
|
self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout, context_dim=context_dim if self.disable_self_attn else None)
|
|
self.norm1 = nn.LayerNorm(inner_dim)
|
|
self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout)
|
|
self.norm2 = nn.LayerNorm(inner_dim)
|
|
self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff)
|
|
self.norm3 = nn.LayerNorm(inner_dim)
|
|
self.checkpoint = checkpoint
|
|
self.n_heads = n_heads
|
|
self.d_head = d_head
|
|
|
|
def forward(self, x, context=None, transformer_options={}):
|
|
return checkpoint(self._forward, (x, context, transformer_options), None, self.checkpoint)
|
|
|
|
def _forward(self, x, context=None, transformer_options={}):
|
|
# Stolen from ComfyUI with some modifications
|
|
extra_options = {}
|
|
block = transformer_options.get("block", None)
|
|
block_index = transformer_options.get("block_index", 0)
|
|
transformer_patches = {}
|
|
transformer_patches_replace = {}
|
|
for k in transformer_options:
|
|
if k == "patches":
|
|
transformer_patches = transformer_options[k]
|
|
elif k == "patches_replace":
|
|
transformer_patches_replace = transformer_options[k]
|
|
else:
|
|
extra_options[k] = transformer_options[k]
|
|
extra_options["n_heads"] = self.n_heads
|
|
extra_options["dim_head"] = self.d_head
|
|
if self.ff_in:
|
|
x_skip = x
|
|
x = self.ff_in(self.norm_in(x))
|
|
if self.is_res:
|
|
x += x_skip
|
|
n = self.norm1(x)
|
|
if self.disable_self_attn:
|
|
context_attn1 = context
|
|
else:
|
|
context_attn1 = None
|
|
value_attn1 = None
|
|
if "attn1_patch" in transformer_patches:
|
|
patch = transformer_patches["attn1_patch"]
|
|
if context_attn1 is None:
|
|
context_attn1 = n
|
|
value_attn1 = context_attn1
|
|
for p in patch:
|
|
n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
|
|
if block is not None:
|
|
transformer_block = (block[0], block[1], block_index)
|
|
else:
|
|
transformer_block = None
|
|
attn1_replace_patch = transformer_patches_replace.get("attn1", {})
|
|
block_attn1 = transformer_block
|
|
if block_attn1 not in attn1_replace_patch:
|
|
block_attn1 = block
|
|
if block_attn1 in attn1_replace_patch:
|
|
if context_attn1 is None:
|
|
context_attn1 = n
|
|
value_attn1 = n
|
|
n = self.attn1.to_q(n)
|
|
context_attn1 = self.attn1.to_k(context_attn1)
|
|
value_attn1 = self.attn1.to_v(value_attn1)
|
|
n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
|
|
n = self.attn1.to_out(n)
|
|
else:
|
|
n = self.attn1(n, context=context_attn1, value=value_attn1, transformer_options=extra_options)
|
|
if "attn1_output_patch" in transformer_patches:
|
|
patch = transformer_patches["attn1_output_patch"]
|
|
for p in patch:
|
|
n = p(n, extra_options)
|
|
x += n
|
|
if "middle_patch" in transformer_patches:
|
|
patch = transformer_patches["middle_patch"]
|
|
for p in patch:
|
|
x = p(x, extra_options)
|
|
if self.attn2 is not None:
|
|
n = self.norm2(x)
|
|
context_attn2 = context
|
|
value_attn2 = None
|
|
if "attn2_patch" in transformer_patches:
|
|
patch = transformer_patches["attn2_patch"]
|
|
value_attn2 = context_attn2
|
|
for p in patch:
|
|
n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)
|
|
attn2_replace_patch = transformer_patches_replace.get("attn2", {})
|
|
block_attn2 = transformer_block
|
|
if block_attn2 not in attn2_replace_patch:
|
|
block_attn2 = block
|
|
if block_attn2 in attn2_replace_patch:
|
|
if value_attn2 is None:
|
|
value_attn2 = context_attn2
|
|
n = self.attn2.to_q(n)
|
|
context_attn2 = self.attn2.to_k(context_attn2)
|
|
value_attn2 = self.attn2.to_v(value_attn2)
|
|
n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
|
|
n = self.attn2.to_out(n)
|
|
else:
|
|
n = self.attn2(n, context=context_attn2, value=value_attn2, transformer_options=extra_options)
|
|
if "attn2_output_patch" in transformer_patches:
|
|
patch = transformer_patches["attn2_output_patch"]
|
|
for p in patch:
|
|
n = p(n, extra_options)
|
|
x += n
|
|
x_skip = 0
|
|
if self.is_res:
|
|
x_skip = x
|
|
x = self.ff(self.norm3(x))
|
|
if self.is_res:
|
|
x += x_skip
|
|
return x
|
|
|
|
|
|
class SpatialTransformer(nn.Module):
|
|
def __init__(self, in_channels, n_heads, d_head,
|
|
depth=1, dropout=0., context_dim=None,
|
|
disable_self_attn=False, use_linear=False,
|
|
use_checkpoint=True):
|
|
super().__init__()
|
|
if exists(context_dim) and not isinstance(context_dim, list):
|
|
context_dim = [context_dim] * depth
|
|
self.in_channels = in_channels
|
|
inner_dim = n_heads * d_head
|
|
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
|
if not use_linear:
|
|
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
|
else:
|
|
self.proj_in = nn.Linear(in_channels, inner_dim)
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
|
|
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
|
|
for d in range(depth)]
|
|
)
|
|
if not use_linear:
|
|
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
|
else:
|
|
self.proj_out = nn.Linear(in_channels, inner_dim)
|
|
self.use_linear = use_linear
|
|
|
|
def forward(self, x, context=None, transformer_options={}):
|
|
if not isinstance(context, list):
|
|
context = [context] * len(self.transformer_blocks)
|
|
b, c, h, w = x.shape
|
|
x_in = x
|
|
x = self.norm(x)
|
|
if not self.use_linear:
|
|
x = self.proj_in(x)
|
|
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
|
if self.use_linear:
|
|
x = self.proj_in(x)
|
|
for i, block in enumerate(self.transformer_blocks):
|
|
transformer_options["block_index"] = i
|
|
x = block(x, context=context[i], transformer_options=transformer_options)
|
|
if self.use_linear:
|
|
x = self.proj_out(x)
|
|
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
|
if not self.use_linear:
|
|
x = self.proj_out(x)
|
|
return x + x_in
|
|
|
|
|
|
class Upsample(nn.Module):
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.dims = dims
|
|
if use_conv:
|
|
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
|
|
|
def forward(self, x, output_shape=None):
|
|
assert x.shape[1] == self.channels
|
|
if self.dims == 3:
|
|
shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2]
|
|
if output_shape is not None:
|
|
shape[1] = output_shape[3]
|
|
shape[2] = output_shape[4]
|
|
else:
|
|
shape = [x.shape[2] * 2, x.shape[3] * 2]
|
|
if output_shape is not None:
|
|
shape[0] = output_shape[2]
|
|
shape[1] = output_shape[3]
|
|
x = torch.nn.functional.interpolate(x, size=shape, mode="nearest")
|
|
if self.use_conv:
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
|
|
class Downsample(nn.Module):
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.dims = dims
|
|
stride = 2 if dims != 3 else (1, 2, 2)
|
|
if use_conv:
|
|
self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
|
else:
|
|
assert self.channels == self.out_channels
|
|
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
|
|
|
def forward(self, x):
|
|
assert x.shape[1] == self.channels
|
|
return self.op(x)
|
|
|
|
|
|
class ResBlock(TimestepBlock):
|
|
def __init__(self, channels, emb_channels, dropout, out_channels=None, use_conv=False, use_scale_shift_norm=False,
|
|
dims=2, use_checkpoint=False, up=False, down=False, kernel_size=3, exchange_temb_dims=False,
|
|
skip_t_emb=False):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.emb_channels = emb_channels
|
|
self.dropout = dropout
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.use_checkpoint = use_checkpoint
|
|
self.use_scale_shift_norm = use_scale_shift_norm
|
|
self.exchange_temb_dims = exchange_temb_dims
|
|
if isinstance(kernel_size, list):
|
|
padding = [k // 2 for k in kernel_size]
|
|
else:
|
|
padding = kernel_size // 2
|
|
self.in_layers = nn.Sequential(
|
|
nn.GroupNorm(32, channels),
|
|
nn.SiLU(),
|
|
conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding),
|
|
)
|
|
self.updown = up or down
|
|
if up:
|
|
self.h_upd = Upsample(channels, False, dims)
|
|
self.x_upd = Upsample(channels, False, dims)
|
|
elif down:
|
|
self.h_upd = Downsample(channels, False, dims)
|
|
self.x_upd = Downsample(channels, False, dims)
|
|
else:
|
|
self.h_upd = self.x_upd = nn.Identity()
|
|
self.skip_t_emb = skip_t_emb
|
|
if self.skip_t_emb:
|
|
self.emb_layers = None
|
|
self.exchange_temb_dims = False
|
|
else:
|
|
self.emb_layers = nn.Sequential(
|
|
nn.SiLU(),
|
|
nn.Linear(emb_channels, 2 * self.out_channels if use_scale_shift_norm else self.out_channels),
|
|
)
|
|
self.out_layers = nn.Sequential(
|
|
nn.GroupNorm(32, self.out_channels),
|
|
nn.SiLU(),
|
|
nn.Dropout(p=dropout),
|
|
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
|
|
)
|
|
if self.out_channels == channels:
|
|
self.skip_connection = nn.Identity()
|
|
elif use_conv:
|
|
self.skip_connection = conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding)
|
|
else:
|
|
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
|
|
|
def forward(self, x, emb, transformer_options={}):
|
|
return checkpoint(self._forward, (x, emb, transformer_options), None, self.use_checkpoint)
|
|
|
|
def _forward(self, x, emb, transformer_options={}):
|
|
if self.updown:
|
|
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
|
if "group_norm_wrapper" in transformer_options:
|
|
in_norm, in_rest = in_rest[0], in_rest[1:]
|
|
h = transformer_options["group_norm_wrapper"](in_norm, x, transformer_options)
|
|
h = in_rest(h)
|
|
else:
|
|
h = in_rest(x)
|
|
h = self.h_upd(h)
|
|
x = self.x_upd(x)
|
|
h = in_conv(h)
|
|
else:
|
|
if "group_norm_wrapper" in transformer_options:
|
|
in_norm = self.in_layers[0]
|
|
h = transformer_options["group_norm_wrapper"](in_norm, x, transformer_options)
|
|
h = self.in_layers[1:](h)
|
|
else:
|
|
h = self.in_layers(x)
|
|
emb_out = None
|
|
if not self.skip_t_emb:
|
|
emb_out = self.emb_layers(emb).type(h.dtype)
|
|
while len(emb_out.shape) < len(h.shape):
|
|
emb_out = emb_out[..., None]
|
|
if self.use_scale_shift_norm:
|
|
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
|
if "group_norm_wrapper" in transformer_options:
|
|
h = transformer_options["group_norm_wrapper"](out_norm, h, transformer_options)
|
|
else:
|
|
h = out_norm(h)
|
|
if emb_out is not None:
|
|
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
|
h *= (1 + scale)
|
|
h += shift
|
|
h = out_rest(h)
|
|
else:
|
|
if emb_out is not None:
|
|
if self.exchange_temb_dims:
|
|
emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
|
|
h = h + emb_out
|
|
if "group_norm_wrapper" in transformer_options:
|
|
h = transformer_options["group_norm_wrapper"](self.out_layers[0], h, transformer_options)
|
|
h = self.out_layers[1:](h)
|
|
else:
|
|
h = self.out_layers(h)
|
|
return self.skip_connection(x) + h
|
|
|
|
|
|
class IntegratedUNet2DConditionModel(nn.Module, ConfigMixin):
|
|
config_name = 'config.json'
|
|
|
|
@register_to_config
|
|
def __init__(self, in_channels, model_channels, out_channels, num_res_blocks, dropout=0, channel_mult=(1, 2, 4, 8),
|
|
conv_resample=True, dims=2, num_classes=None, use_checkpoint=False, num_heads=-1, num_head_channels=-1,
|
|
use_scale_shift_norm=False, resblock_updown=False, use_spatial_transformer=False, transformer_depth=1,
|
|
context_dim=None, disable_self_attentions=None, num_attention_blocks=None,
|
|
disable_middle_self_attn=False, use_linear_in_transformer=False, adm_in_channels=None,
|
|
transformer_depth_middle=None, transformer_depth_output=None):
|
|
super().__init__()
|
|
if context_dim is not None:
|
|
assert use_spatial_transformer
|
|
if num_heads == -1:
|
|
assert num_head_channels != -1
|
|
if num_head_channels == -1:
|
|
assert num_heads != -1
|
|
self.in_channels = in_channels
|
|
self.model_channels = model_channels
|
|
self.out_channels = out_channels
|
|
if isinstance(num_res_blocks, int):
|
|
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
|
else:
|
|
self.num_res_blocks = num_res_blocks
|
|
if disable_self_attentions is not None:
|
|
assert len(disable_self_attentions) == len(channel_mult)
|
|
if num_attention_blocks is not None:
|
|
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
|
transformer_depth = transformer_depth[:]
|
|
transformer_depth_output = transformer_depth_output[:]
|
|
self.dropout = dropout
|
|
self.channel_mult = channel_mult
|
|
self.conv_resample = conv_resample
|
|
self.num_classes = num_classes
|
|
self.use_checkpoint = use_checkpoint
|
|
self.num_heads = num_heads
|
|
self.num_head_channels = num_head_channels
|
|
time_embed_dim = model_channels * 4
|
|
self.time_embed = nn.Sequential(
|
|
nn.Linear(model_channels, time_embed_dim),
|
|
nn.SiLU(),
|
|
nn.Linear(time_embed_dim, time_embed_dim),
|
|
)
|
|
if self.num_classes is not None:
|
|
if isinstance(self.num_classes, int):
|
|
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
|
elif self.num_classes == "continuous":
|
|
self.label_emb = nn.Linear(1, time_embed_dim)
|
|
elif self.num_classes == "sequential":
|
|
assert adm_in_channels is not None
|
|
self.label_emb = nn.Sequential(
|
|
nn.Sequential(
|
|
nn.Linear(adm_in_channels, time_embed_dim),
|
|
nn.SiLU(),
|
|
nn.Linear(time_embed_dim, time_embed_dim),
|
|
)
|
|
)
|
|
else:
|
|
raise ValueError('Bad ADM')
|
|
self.input_blocks = nn.ModuleList(
|
|
[TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))]
|
|
)
|
|
self._feature_size = model_channels
|
|
input_block_chans = [model_channels]
|
|
ch = model_channels
|
|
ds = 1
|
|
for level, mult in enumerate(channel_mult):
|
|
for nr in range(self.num_res_blocks[level]):
|
|
layers = [
|
|
ResBlock(
|
|
channels=ch,
|
|
emb_channels=time_embed_dim,
|
|
dropout=dropout,
|
|
out_channels=mult * model_channels,
|
|
dims=dims,
|
|
use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
)
|
|
]
|
|
ch = mult * model_channels
|
|
num_transformers = transformer_depth.pop(0)
|
|
if num_transformers > 0:
|
|
if num_head_channels == -1:
|
|
dim_head = ch // num_heads
|
|
else:
|
|
num_heads = ch // num_head_channels
|
|
dim_head = num_head_channels
|
|
if exists(disable_self_attentions):
|
|
disabled_sa = disable_self_attentions[level]
|
|
else:
|
|
disabled_sa = False
|
|
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
|
layers.append(SpatialTransformer(
|
|
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
|
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint,
|
|
use_linear=use_linear_in_transformer)
|
|
)
|
|
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
|
self._feature_size += ch
|
|
input_block_chans.append(ch)
|
|
if level != len(channel_mult) - 1:
|
|
out_ch = ch
|
|
self.input_blocks.append(
|
|
TimestepEmbedSequential(
|
|
ResBlock(
|
|
channels=ch,
|
|
emb_channels=time_embed_dim,
|
|
dropout=dropout,
|
|
out_channels=out_ch,
|
|
dims=dims,
|
|
use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
down=True,
|
|
)
|
|
if resblock_updown
|
|
else Downsample(
|
|
ch, conv_resample, dims=dims, out_channels=out_ch)
|
|
)
|
|
)
|
|
ch = out_ch
|
|
input_block_chans.append(ch)
|
|
ds *= 2
|
|
self._feature_size += ch
|
|
if num_head_channels == -1:
|
|
dim_head = ch // num_heads
|
|
else:
|
|
num_heads = ch // num_head_channels
|
|
dim_head = num_head_channels
|
|
mid_block = [
|
|
ResBlock(
|
|
channels=ch,
|
|
emb_channels=time_embed_dim,
|
|
dropout=dropout,
|
|
out_channels=None,
|
|
dims=dims,
|
|
use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
)]
|
|
if transformer_depth_middle >= 0:
|
|
mid_block += [
|
|
SpatialTransformer(
|
|
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
|
disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint,
|
|
use_linear=use_linear_in_transformer),
|
|
ResBlock(
|
|
channels=ch,
|
|
emb_channels=time_embed_dim,
|
|
dropout=dropout,
|
|
out_channels=None,
|
|
dims=dims,
|
|
use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
)]
|
|
self.middle_block = TimestepEmbedSequential(*mid_block)
|
|
self._feature_size += ch
|
|
self.output_blocks = nn.ModuleList([])
|
|
for level, mult in list(enumerate(channel_mult))[::-1]:
|
|
for i in range(self.num_res_blocks[level] + 1):
|
|
ich = input_block_chans.pop()
|
|
layers = [
|
|
ResBlock(
|
|
channels=ch + ich,
|
|
emb_channels=time_embed_dim,
|
|
dropout=dropout,
|
|
out_channels=model_channels * mult,
|
|
dims=dims,
|
|
use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
)
|
|
]
|
|
ch = model_channels * mult
|
|
num_transformers = transformer_depth_output.pop()
|
|
if num_transformers > 0:
|
|
if num_head_channels == -1:
|
|
dim_head = ch // num_heads
|
|
else:
|
|
num_heads = ch // num_head_channels
|
|
dim_head = num_head_channels
|
|
if exists(disable_self_attentions):
|
|
disabled_sa = disable_self_attentions[level]
|
|
else:
|
|
disabled_sa = False
|
|
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
|
|
layers.append(
|
|
SpatialTransformer(
|
|
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
|
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint,
|
|
use_linear=use_linear_in_transformer
|
|
)
|
|
)
|
|
if level and i == self.num_res_blocks[level]:
|
|
out_ch = ch
|
|
layers.append(
|
|
ResBlock(
|
|
channels=ch,
|
|
emb_channels=time_embed_dim,
|
|
dropout=dropout,
|
|
out_channels=out_ch,
|
|
dims=dims,
|
|
use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
up=True,
|
|
)
|
|
if resblock_updown
|
|
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
|
)
|
|
ds //= 2
|
|
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
|
self._feature_size += ch
|
|
self.out = nn.Sequential(
|
|
nn.GroupNorm(32, ch),
|
|
nn.SiLU(),
|
|
conv_nd(dims, model_channels, out_channels, 3, padding=1),
|
|
)
|
|
|
|
def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
|
|
transformer_options["original_shape"] = list(x.shape)
|
|
transformer_options["transformer_index"] = 0
|
|
transformer_patches = transformer_options.get("patches", {})
|
|
block_modifiers = transformer_options.get("block_modifiers", [])
|
|
assert (y is not None) == (self.num_classes is not None)
|
|
hs = []
|
|
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
|
emb = self.time_embed(t_emb)
|
|
if self.num_classes is not None:
|
|
assert y.shape[0] == x.shape[0]
|
|
emb = emb + self.label_emb(y)
|
|
h = x
|
|
for id, module in enumerate(self.input_blocks):
|
|
transformer_options["block"] = ("input", id)
|
|
for block_modifier in block_modifiers:
|
|
h = block_modifier(h, 'before', transformer_options)
|
|
h = module(h, emb, context, transformer_options)
|
|
h = apply_control(h, control, 'input')
|
|
for block_modifier in block_modifiers:
|
|
h = block_modifier(h, 'after', transformer_options)
|
|
if "input_block_patch" in transformer_patches:
|
|
patch = transformer_patches["input_block_patch"]
|
|
for p in patch:
|
|
h = p(h, transformer_options)
|
|
hs.append(h)
|
|
if "input_block_patch_after_skip" in transformer_patches:
|
|
patch = transformer_patches["input_block_patch_after_skip"]
|
|
for p in patch:
|
|
h = p(h, transformer_options)
|
|
transformer_options["block"] = ("middle", 0)
|
|
for block_modifier in block_modifiers:
|
|
h = block_modifier(h, 'before', transformer_options)
|
|
h = self.middle_block(h, emb, context, transformer_options)
|
|
h = apply_control(h, control, 'middle')
|
|
for block_modifier in block_modifiers:
|
|
h = block_modifier(h, 'after', transformer_options)
|
|
for id, module in enumerate(self.output_blocks):
|
|
transformer_options["block"] = ("output", id)
|
|
hsp = hs.pop()
|
|
hsp = apply_control(hsp, control, 'output')
|
|
if "output_block_patch" in transformer_patches:
|
|
patch = transformer_patches["output_block_patch"]
|
|
for p in patch:
|
|
h, hsp = p(h, hsp, transformer_options)
|
|
h = torch.cat([h, hsp], dim=1)
|
|
del hsp
|
|
if len(hs) > 0:
|
|
output_shape = hs[-1].shape
|
|
else:
|
|
output_shape = None
|
|
for block_modifier in block_modifiers:
|
|
h = block_modifier(h, 'before', transformer_options)
|
|
h = module(h, emb, context, transformer_options, output_shape)
|
|
for block_modifier in block_modifiers:
|
|
h = block_modifier(h, 'after', transformer_options)
|
|
transformer_options["block"] = ("last", 0)
|
|
for block_modifier in block_modifiers:
|
|
h = block_modifier(h, 'before', transformer_options)
|
|
if "group_norm_wrapper" in transformer_options:
|
|
out_norm, out_rest = self.out[0], self.out[1:]
|
|
h = transformer_options["group_norm_wrapper"](out_norm, h, transformer_options)
|
|
h = out_rest(h)
|
|
else:
|
|
h = self.out(h)
|
|
for block_modifier in block_modifiers:
|
|
h = block_modifier(h, 'after', transformer_options)
|
|
return h.type(x.dtype)
|